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Abstract
Cassava (Manihot  esculenta Crantz),  is  an important  staple  crop for  about  800 million people  worldwide, and a  key commodity  for  the starch

industry. However, the potential cassava production is limited by several biotic constraints amongst which cassava brown streak disease (CBSD) is

the most economically important disease in Africa. To date, the most sustainable strategy to control CBSD is the use of resistant varieties and the

supply  of  disease-free  planting  materials  to  cassava  farmers.  CBSD  breeding  activities  were  initiated  in  Tanzania  in  the  1930's  and Manihot
glaziovii species  was  used  as  a  donor  parent  to  generate  resistant  hybrids.  Joint  regional  initiatives  through  variety  development  and  virus-

elimination  methods  have  been  vital  for  CBSD  management  in  the  last  two  decades.  While  conventional  breeding  is  tedious  and  sources  of

broad-spectrum  resistance  are  not  always  available  to  improve  cassava,  new  plant  breeding  technologies  (NPBTs)  appears  as  a  valuable  and

complementary  tool  to  generate  virus  resistance  as  well  as  to  speed up and scale  up cassava  breeding efforts  towards  CBSD resistance.  This

review presents the breeding strategies which have so far been used to manage the CBSD disease and discusses the advantages of integrating

NPBTs in current cassava breeding programs to rapidly deliver CBSD-resistant varieties to farmers in Africa.
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 Introduction

Cassava  (Manihot  esculenta Crantz),  belongs  to  the  family
Euphorbiaceae,  and  is  an  important  staple  crop  for  about  800
million  people  worldwide[1,2]. It  is  a  key  commodity  for  food
processing industries[3]. It is mostly grown by smallholder farm-
ers in more than 100 tropical and subtropical countries. Cassava
contains a high proportion of starch (70%−85% of the root dry
matter  content)[1] and,  it  is  the  second  most  traded  source  of
starch  after  maize[2,4].  Cassava  originates  from  the  southern
Amazon  region[5] and  was  introduced  to  Africa  by  the
Portuguese in the 16th century. Its cultivation was expanded in
the 20th century when it emerged as an important food crop in
India,  Indonesia,  the  Philippines,  and  sub-Saharan  Africa
(SSA)[2,6−8].  Currently,  it  is  grown  almost  exclusively  in  tropical
and sub-tropical regions with various names. For example, it is
called  mandioca  in  Brazil,  ketela  pohon  in  Indonesia,  yuca  in
many  Spanish-speaking  countries,  akpu  in  Nigeria,  sắn  in  Viet
Nam, mihogo in Kenya[2] and imyumbati in Rwanda.

In Africa,  cassava is  a food security crop due to its  resilience
to  grow  under  harsh  conditions  including  poor  soils,  drought,
and the ease with which it can be propagated vegetatively[9]. In
East  Africa,  cassava  storage  roots  can  be  prepared  in  various
ways.  Sweet  varieties  are  eaten  raw,  boiled  or  processed  into
flour.  Hence,  various  recipes  such  as  ugali,  porridge,  alcohol
beverages  and  bread  are  prepared  from  cassava[10].  Cassava
leaves  are  consumed  as  an  important  vegetable  in  some

countries[11] including Rwanda and the Democratic Republic of
Congo[12,13]. The  higher  micronutrient  and  protein  contents  of
cassava  leaves  can  address  nutritional  deficiencies  associated
with the consumption of cassava storage roots only[14−16].

The worldwide cassava production was 302.6 million tons on
28.2  million  hectares  in  2020.  More  than  50%  of  this  produc-
tion  (193.6  million  tons)  occurs  in  Africa.  Asia  and  Latin
America  produce  27%  (81.8  million  tons)  and  8.2%  (25  million
tons)  respectively[17].  Under  optimal  conditions,  the  potential
yield for cassava can reach 90 tons of fresh roots per hectare[18].
In  east  Africa,  cassava  productivity  under  optimal  conditions
varies between 50−60 tons per hectare[19,20]. The realized aver-
age  yield  in  Africa  is  8.6  tons  per  hectare  under  small-scale
farmers.  The  use  of  improved  varieties  and  good  agriculture
practices boosts yield reaching up to 20.8 tons per hectare[20] or
to 24 tons per hectare[21].

The  average  cassava  yields  in  Africa  remain  relatively  low
compared  to  those  of  the  Asian  continent,  where  the  average
yield  is  about  21.8  tons  per  hectare[17].  This  yield  difference  is
due  to  various  abiotic  (inadequate  rainfall,  low  input  use,  low
soil fertility) and biotic (weeds, pests and diseases) factors and,
this is exacerbated by sub-optimal management practices[20,21].
Another  reason  for  the  low  productivity  of  cassava  in  Africa  is
that  it  is  often  grown  in  intercropping  systems  with  two  or
more  crops[22].  For  instance,  cassava  yield  can  be  reduced  by
nearly  60%  under  drought  conditions.  In  fact,  water  stress
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during  the  first  six  months  after  planting  (MAP)  or  during  the
entire  cropping  season  is  disastrous  because  it  decreases
cassava storage root initiation and hence reduces root yield[20].
Several  parameters,  including  leaf  longevity  and  stomatal
conductance,  can  explain  the  contrasting  performance  of
drought-susceptible  and  drought-resistant  genotypes[23].  A
strong positive correlation between leaf retention and yield as
well  as  a  positive  correlation between leaf  longevity  and yield
were  reported[23,24].  An  increase  in  leaf  retention  improves
cassava  total  biomass  production  and  accumulation  into  the
roots, which in turn, results in a higher root yield[24]. In addition,
higher stomatal conductance and delayed stomatal closure can
result  in  high  yields  in  drought-tolerant  genotypes,  while  the
opposite  can  lead  to  low  yields  in  drought-susceptible  geno-
types[23].  Another notable example is that poor weed manage-
ment  during  three  MAP  was  reported  to  cause  cassava  yield
reductions of 50%−65%[20].

$

$

Viral  diseases  are  the  leading  causes  of  this  low
productivity[25].  Two  viral  diseases  namely  cassava  mosaic
disease  (CMD)  caused  by  Geminiviruses  and  cassava  brown
streak  disease  caused  by  Ipomoviruses,  are  considered  the
main biotic constraints to cassava production in Africa[26,27]. The
annual cassava monetary losses caused by both CMD and CBSD
have  been  estimated  to  be  over  USD 1  billion[28].  In  Central,
Eastern and Southern Africa, CBSD was reported to be the most
economically important viral disease as it can cause yield losses
of up to 100%[29−31].  In Tanzania,  annual  yield/monetary losses
caused  by  CBSD  were  estimated  at  USD 51  million[32].  CBSV
infections  have  also  been  reported  to  cause  significant  reduc-
tion of amylose, amylopectin and starch contents in the cassava
storage roots[33].  Carbohydrate metabolism in cassava can also
be  impacted  by  other  viruses  such  as  cassava  mosaic  viruses.
For  instance,  the  infection  of  cassava  leaves  with  the  cassava
common  mosaic  virus  (isolate  GenBank  accession  number
KY445966)  significantly  decrease  starch  and  maltose  contents
while the sucrose-starch ratio increases[34].

Importantly, leaf and root symptoms of CBSD are not neces-
sarily  correlated[32].  For  the  farmers,  root  symptoms  are  only
visible  at  harvest  when  damage  has  already  occurred.  These
'silent' symptoms of CBSD also complicate breeding efforts and
the ability to produce disease-free planting material. CBSD was
first  reported  in  the  1930s  from  north-eastern  Tanzania[35].
Subsequent surveys indicated that the disease was widespread
in coastal East Africa[36].  Based on the field observations, it was
reported  that  the  virus  causing  the  disease  could  not  spread
and  establish  at  altitudes  above  1,000  m  above  sea  level.  The
first  reports  of  CBSD  spread  into  higher  altitude  zones  of  East
Africa were made in 2004[29] as new occurrences of CBSD were
observed  in  southern  Uganda.  CBSD  was  subsequently
reported  in  several  countries  from  the  Great  Lakes  region  of
East/Central  Africa[31].  CBSD  is  caused  by  two  distinct  virus
species namely Cassava brown streak virus (CBSV) and Ugandan
cassava brown streak virus (UCBSV). These are referred to, collec-
tively, as cassava brown streak ipomoviruses (CBSIs)[37−39]. Both
viruses are positive sense single-stranded RNA (ssRNA) belong-
ing  to  the  genus Ipomovirus,  family Potyviridae[40,41].  CBSIs  are
transmitted  by  a  whitefly  vector  − Bemisia  tabaci (Genn)  but
their  dissemination also occurs  through infected cuttings[42,43].
The  typical  symptoms  of  CBSD  (Fig.  1a−d)  are  interveinal  leaf
chlorosis  without  distortion  of  the  lamina,  brown  lesions  on
green  stems,  necrosis  of  leaf  scars  and  terminal  die-back,  root
necrosis  and  stunting  of  plants  especially  in  susceptible  vari-
eties[44].  The  disease  has  only  been  reported  in  African  coun-
tries  (Table  1).  Concerted  efforts  are  needed  to  prevent  its
spread,  which  will  likely  continue  to  all  main  cassava-growing
areas of Africa and probably to Southeast Asia[3,31].

The use of resistant varieties and the distribution of disease-
free  planting  materials  are  sustainable  strategies  to  control
CBSD[2,53].  Although  recently  identified  sources  of  CBSD
resistance[54] might offer new opportunities to mitigate CBSD in
the field, the sources of CBSD resistance or tolerance used so far
in  breeding  programs  have  not  been  satisfactory.  Because
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Fig. 1    Symptoms of cassava brown streak disease. (a) Leaf chlorosis without distortion of the lamina and brown lesions on a green stem. (b)
Storage root constrictions. (c) Mild necrosis of cassava storage roots. (d) Severe necrosis of cassava storage roots.
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CBSD-tolerant  varieties  can  support  relatively  important  titers
of  CBSIs,  CBSD  resistance  is  usually  preferred  in  breeding  pro-
grams as it reduces the presence of virus inoculum in the fields
and limits the probabilities of virus evolution.

Cassava  brown  streak  disease  breeding  started  at  Amani
Research Station (ARS), Tanzania in the 1930s[55,56]. Early conven-
tional  breeding  studies  showed  that  generating  cassava  with
high levels of resistance against CBSD was possible. CBSD resis-
tance was introgressed into cultivated cassava through crosses
with Manihot  glaziovii Müll.  Arg.  followed  by  repeated  back-
crossing[56]. This  allowed the development  and deployment  of
CBSD-resistant  clones  in  East  African  countries  affected  by
CBSD since  1956[44].  The extensive  use  of  the  hybrid  46106/27
(a back-cross three generation [BC3] between Manihot glaziovii
Müll. Arg. and Manihot esculenta Crantz) in breeding programs
illustrates  the  importance  of  cross  breeding  with Manihot
glaziovii Müll.  Arg.  as  a  source  of  CBSD  resistance.  The  hybrid
46106/27  is  also  named  Kaleso  in  Kenya  and  Namikonga  in
Tanzania  and  it  remains  an  important  parental  line  in  several
conventional  breeding  programs  for  virus  resistance[57,58].
Notably,  CMVs  and  CBSIs  can  be  detected  in Manihot  glaziovii
Müll. Arg. and other wild plant species[59,60], implying that Mani-
hot  glaziovii is  no  longer  the  only Manihot host  for  CBSIs  in
Africa.  All Manihot species  originate  from  the  Americas,  and  it
can  therefore  be  postulated  that  they  have  never  been  chal-
lenged  by  CMD  or  CBSD  in  their  evolutionary  history.  It  also
indicates  that  in  Africa,  CBSIs  could have evolved over  time to
infect Manihot  glaziovii Müll.  Arg.  that  has  been  reported  as  a
source of resistance to those viruses.

Early  breeding  efforts  were  successful  in  achieving  resis-
tance  to  CBSD.  However,  the  resistance  was  not  durable  and
overcome  by  the  CBSIs.  Genotypes  known  to  possess  durable
resistance have become relatively susceptible to these viruses,
even though virus multiplication and symptom expression are
limited compared to the susceptible genotypes. The most illus-
trative  example  is  the  breakdown  of  CBSD  resistance  in  the
hybrid  Kaleso/Namikonga[58].  CBSD  resistance  breakdown  was
also reported in NASE 14, a CBSD-tolerant variety widely grown
in East African countries since its release in 2011. This genotype
was  recently  reported  to  have  high  and  severe  leaf  and  root
incidences of CBSIs in Uganda[61]. Recent research also suggests
that  deployed  cassava  varieties  could  exert  selection  on  CBSIs
as  widely  distributed  cassava  varieties  are  potentially  associ-
ated with specific UCBSV haplotypes[62].  The molecular mecha-
nisms  for  the  resistance  breakdown  in  previously  resistant  /
tolerant  varieties  remain  to  be  elucidated[63].  Notably,  CBSIs

have also  been detected in M.  glaziovii Müll.  Arg.  which previ-
ously  served  as  a  putative  source  of  CBSD  resistance[59,60].
Conventional  breeding  should  be  complemented  with  new
plant  breeding  technologies  (NPBTs)  in  speeding  and  scaling
up  cassava  breeding  efforts  towards  CBSD  resistance.  In  this
context,  the  search  for  other  sources  of  resistance  is
vital[53,54,64,65].  Given  the  endemic  presence  of  CBSIs  in  eastern
Africa,  it  is  also  key  to  support  cassava  breeding  initiatives  in
eastern and southern Africa[66]. This review provides an update
on  employed  breeding  strategies  to  fight  CBSD  and  discusses
the  potential  of  NPBTs  as  an  additional  key  tool  for  effective
CBSD management in Africa.

 Cassava reproduction

Cassava  is  a  highly  heterozygous  and  commonly  vegetative
reproducing  crop  using  stem  cuttings  or  tissue  culture
systems[67].  Its  vegetative  propagation  promotes  the  develop-
ment and selection of  homogenous clones and enhances trait
heritability  and  selection  response.  However,  cassava  has  a
monoecious  flowering  system  and  produces  true  seeds
through self-  or  cross-fertilization.  Typically,  cassava  is  a  cross-
fertilizer due to protogyny, that is, the stigma is receptive about
two  weeks  before  the  pollen  grain  is  released  from  the  same
flower[68].  Protogyny  enhances  natural  out-crossing  or  poly
crosses and the development of  half-sib progenies,  while con-
trolled  crosses  involving  selected  parents  allow  the  develop-
ment  of  full-sib  progenies[3,69].  During  controlled  pollinations,
the mature pollen is collected and stored for a few hours while
waiting  for  the  opening  of  female  flowers  which  usually
happens later during the day. It is also practical to cover female
flowers on the day of anthesis to avoid any contamination with
unwanted  pollen[70].  Cross-fertilization  induces  genetic  diver-
sity  and  allows  the  selection  of  new  recombinants[71−73].  Self-
fertilized  seeds  are  produced  due  to  the  synchronization  of
stigma receptivity and pollen release from flowers of the same
plant  or  from  flowers  of  different  plants  of  the  same
genotype[57].  Continuous  and  controlled  selfing  enables  the
development of homozygous and homogenous individuals for
future  cross-breeding  or  genetic  analysis.  However,  cassava
flowering  is  under  the  influence  of  genotype  ×  environment
interaction and, therefore, it  is  sometimes challenging to cross
certain genotypes[74].

 Management options for cassava brown
streak disease

Although the initial hybridization work implemented at ARS,
Tanzania in the 40's and 50's has provided valuable CBSD resis-
tant  breeding material,  the  breakdown of  the CBSD resistance
in the last decades calls for immediate actions to mitigate CBSD
in  Africa,  from  the  identification  and  exploitation  of  new
sources of resistance to the implementation of phytosanitation
(Fig 2).

Some  local  tolerant  varieties  have  been  identified  and  used
as  an  option  to  manage  CBSD  in  Tanzania  and  Mozambique
(Fig.  2a).  For  instance,  a  local  genotype  'Nanchinyaya'  that
showed  CBSD  tolerance  was  successfully  used  in  southern
Tanzania[75].

Phytosanitation, which involves using healthy planting mate-
rials  and practicing roguing[76] represents  a  valuable approach
for  CBSD management (Fig.  2a).  It  encompasses:  1)  The use of

Table  1.    List  of  countries  where  cassava  brown  streak  disease  is
reported.

Number Country Reference

1 Tanzania [35]
2 Malawi [36]
3 Kenya [45]
4 Mozambique [46]
5 Uganda [29]
6 Burundi [47]
7 Democratic Republic of Congo [48]
8 Mayotte (French Department) [49]
9 Comoros [50]

10 Rwanda [51]
11 Zambia [52]
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clean  planting  materials  obtained  after  tissue  culture,  regular
virus indexing for  pre-basic generation seed supplemented by
a  consistent  roguing  of  diseased  plants  in  the  field;  2)  Collec-
tive  interventions  aimed  at  urging  farmers  living  in  the  same
locality  to  collaborate  in  implementing  phytosanitary
actions[77].  The effectiveness of community phytosanitation for
managing CBSD was assessed in two communities of Tanzania
(Mkuranga  and  Chato  districts)  from  2013  to  2016.  In  both
target communities, large reductions in CBSD incidence as well
as  cassava yield increase were recorded[37].  The success  of  this
approach calls for the rapid implementation of phytosanitation
measures in integrated cassava virus management programs in
places  where  CBSD  remains  a  major  constraint  to  cassava
production.

Region-wide,  large  scale  measures  have  also  been  imple-
mented to restrict the spread of CBSD across the African conti-
nent. Movement of planting materials across the regions can be
controlled through strict quarantine measures in order to make

sure  that  the  disease  is  not  brought  beyond  its  confined
area[78].  Therefore only tissue cultured and virus tested materi-
als  are  recommended  while  exchanging  germplasm  between
countries[79]. This measure will continue to be essential in order
to prevent the spread of CBSD in West African countries where
no CBSD occurrence has been reported so far.

Given  the  costs  associated  with  the  distribution  of  disease-
free planting material, the sustainable and cost-effective option
for  managing  CBSD  in  the  African  context  remains  the  use  of
resistant varieties by farmers[53]. In addition, farmers should use
stems  and  cuttings  from  plants  whose  roots  did  not  show
symptoms  to  prevent  disease  dissemination  and  resistance
breakdown.  Therefore,  there  is  an  urgent  need  to  develop
CBSD-resistant varieties as a collaborative regional effort and to
promote  good  practices  for  planting  material.  Breeding
programs  should  not  only  target  CBSD  resistance,  but  also
include on additional  farmer-  and consumer-preferred traits  in
order to ease the adoption of new varieties.

(a) Management options against CBSD

(b) Screening cassava germplasm

for CBSD resistance

Conventional breeding New plant breeding technologies (NPBTs)

Identification of mode
of inheritance

Identification of resistance and susceptibility gene (s)

Validation of identified gene (s)

Crossing block:

Selfing
Poly crossing

Crossing block:
Selfing
Poly crossing

(c) Breeding strategies for CBSD resistance

 
Fig. 2    Illustration of management and breeding strategies used to mitigate CBSD in Africa. (a) Various CBSD management options were used.
Those  are  the  production  of  clean  planting  material  by  farmers,  phytosanitation,  virus  elimination  using  tissue  culture,  thermotherapy  and
chemotherapy and the use of resistant varieties. (b) Screening cassava germplasm and mutated population for CBSD resistance can be carried
out  either  in  the  fields  (CBSD  hotspots)  or  in  controlled  environments  where  grafting  method  or  infectious  clones  can  be  used.  (c)  In
conventional  breeding,  a  resistant  genotype  is  crossed  with  a  susceptible  one  and  GCA  and  SCA  for  CBSD  resistance  are  evaluated  in
progenies. Various genomic tools and NPBTs for CBSD resistance were used. Crossing of an identified resistant parent with susceptible farmer-
preferred genotype is followed by a determination of the mode of inheritance, the candidate genes, and then validation of candidate genes.
Validated  markers  are  used  as  inputs  in  molecular  breeding.  After  gene  validation,  field  experiments  are  conducted  to  screen  and  select
adapted superior genotypes for release. Conventional breeding is lengthy because it can take 8−10 years. Using NPBTs can help to shorten this
cycle to few years: starting with mapping population development for marker discovery (2 years), marker development and validation (1 year)
and field trials (2 years), the breeding cycle can take about 5 years. Once the markers are available, this cycle can be even shorter i.e., 3−4 years.
This figure was created with BioRender.com.
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 Screening cassava germplasm for CBSD
resistance

Screening  for  natural  resistance  in  the  cassava  germplasm
represents  another  important  approach  to  provide  the
breeder's  community  with  new  sources  of  CBSD  resistance.
Usually, CBSD screening experiments are conducted in the field
(virus hotspots) or in controlled conditions (screenhouses) (Fig.
2b).  Genotypes  are  then  evaluated  for  leaf  and  root  necrosis
symptoms (incidence and severity)  as  well  as  for  the viral  load
via reverse  transcription  quantitative  real  time  polymerase
chain reaction (RT-qPCR).

 Available protocols for CBSD resistance screening
Methods  and  techniques  for  studying  viral  diseases  are

essential in order to investigate plant host resistance[80,81]. Vari-
ous protocols have been developed in order to screen cassava
germplasm  for  CBSD  resistance.  Some  protocols  were  applied
in  the  fields,  while  others  were  used  in  the  greenhouse  and
complemented  by  laboratory  analysis  for  virus  detection  and
quantification.

 CBSD resistance screening under field conditions
Field  screening  activities  for  CBSD  resistance  are  generally

conducted in disease hotspot areas. Field experiments are typi-
cally  established  in  a  randomized  complete  block  design
(RCBD) with replications for at least two seasons. A susceptible
genotype  is  usually  included  in  the  experiment  and  disease
spreader  rows  are  established  inside  and  around  the  experi-
ment to increase the inoculum pressure and ensure that all test
genotypes  are  equally  exposed  to  CBSD  inoculum[58,61,82−84].
Cassava screening for resistance against CBSIs remains compli-
cated  and  time  consuming,  not  only  because  of  random  and
slow virus infections, but also the reliance on root necrosis eval-
uation  as  an  ultimate  evidence  of  cassava  plant  resistance[64].
Therefore, it is recommended that root assessment takes place
at 12 MAP because root necrosis symptoms become more visi-
ble and severe as cassava plants mature[36,44,85].

Disease  assessment  is  carried  out  by  evaluating  CBSD  inci-
dence  and  severity  on  both  leaves  and  roots.  Incidence  and
severity  are  repeatedly  assessed  at  2−3  month  intervals[58,84].
For CBSD severity leaf assessment, a scale of 1−5 is used where
1 corresponds to no apparent symptoms and 5 corresponds to
defoliation  with  stem  lesions  and  pronounced  dieback.  Root
severity  assessment  is  accomplished  at  harvest  (12MAP).  The
root severity scale of 1 to 5 is used (1) no apparent symptoms,
(2)  less  than  5%  of  root  necrosis,  (3)  about  5%−10%  of  root
necrosis,  (4)  about  10%−25%  of  root  necrosis  and  mild  root
constriction,  (5)  greater  or  equal  to  25%  of  root  necrosis  and
severe root constriction[86]. Because cassava genotypes that are
free of CBSD leaf symptoms do not necessarily have roots free
of  CBSD  necrotic  symptoms,  a  complete  evaluation  of  CBSD
resistance  usually  requires  the  inspection  of  the  storage  roots
at the end of the growing cycle.

 CBSD resistance screening under greenhouse conditions
A  number  of  protocols  to  screen  cassava  germplasm  for

CBSD  resistance  were  implemented  in  controlled  conditions
(greenhouses and laboratories). Chip bud-grafting method was
developed  for  CBSIs  inoculation  in  the  greenhouse.  Axillary
buds from six to eight week old CBSV-infected rootstock plants
carrying single or mixed CBSV and UCBSV infections are grafted
into  test  plants[80].  The  use  of  the  most  virulent  isolate

CBSV-Mo83  (DSMZ  PV-0949,  GenBank  accession  FN434436)
with  the  bud  grafting  method  is  important  because  it  allows
significant shortening of the screening duration as CBSD symp-
toms appear at one month after grafting[64].

Top  cleft-grafting  and  side  grafting  methods  can  also  be
used  to  screen  cassava  genotypes  for  CBSD  resistance  under
greenhouse  conditions  (27  °C,  16  h  of  light,  60%  humidity)[81].
The top cleft-grafting method whereby a scion is inserted into
infected  rootstocks  remains  very  effective  as  it  maximizes  the
infection rates and avoids escapes from infection. For instance,
using  this  method,  breeding  lines  KBH  2006/18  and  KBH
2006/26 remained asymptomatic for 16 weeks after being inoc-
ulated  with  U/CBSV  while  susceptible  genotypes  displayed
symptoms  at  4  weeks  after  inoculation[87].  The  top-grafting
method has also been used for screening Ghanaian cultivars to
assess the susceptibility of cassava germplasm used in Western
Africa and not yet exposed to CBSD pandemics in the field[88].

Although  the  grafting  methods  have  enabled  screening  of
CBSD  resistance,  they  remain  time-consuming  and  sometimes
display suboptimal infection rates. Infectious clones have been
used  as  an  important  tool  for  virus-resistance  screening
studies[89,90].  Viral  infectious  clones  contain  genome  copies  of
viral pathogens in bacterial plasmids that provide a large inocu-
lum  to  initiate  plant  infection.  They  are  delivered  to  plants  by
physical  introduction  with  the  help  of  abrasives  or  biolistic
devices using viral RNA transcripts or plasmid DNA, or by using
Agrobacterium-mediated  plant  inoculation.  U/CBSV  infectious
clones  have  been  successfully  used  to  inoculate Nicotiana
benthamiana species  using  Agrobacterium-mediated  plant
inoculation[91−93].  However,  there  has  been  limited  success  in
infecting  cassava  plants  by  agroinoculation  with  the  CBSV
infectious clones and grafting has so far remained the method
of choice for CBSD resistance screening experiments[92].  There-
fore, there is a need to develop infectious clones of CBSIs effec-
tive at establishing CBSD in cassava as well as to investigate the
biological  factors  preventing  effective  inoculation  with  clones
of  CBSIs  in  cassava.  Cloning  strategies  and  inoculation  meth-
ods  might  require  further  optimization  in  order  to  achieve
good infectivity in cassava[90].

 Screening efforts to find CBSD resistance in the
cassava germplasm

Since the re-emergence of CBSD, efforts have been launched
to  screen  the  cassava  germplasm  for  natural  resistance/toler-
ance  to  CBSD.  The  screening  activities  have  been  initially
performed on cassava genotypes used by farmers or in breed-
ing programs in Africa.  In recent years,  the screening activities
have been expanded to the whole cassava germplasm, includ-
ing genotypes from Southern America[54].

In Africa, several resistant and tolerant genotypes were iden-
tified  amongst  evaluated  genotypes[29,82,84,88,94,95].  These  resis-
tant  /  tolerant  genotypes  could  be  used  by  farmers  to  reduce
CBSD losses or by breeding programs as good sources of resis-
tance  against  CBSD.  Surprisingly,  though  CBSD  is  not  yet
reported in West African countries, the fact that nearly all Nige-
rian  genotypes  have  shown  susceptibility  to  CBSD[82,88] is
alarming  and,  it  informs  West  African  cassava  breeders  that
their  cultivars  lack  resistance  to  this  disease  and  therefore  re-
emphasizes  that  they  should  avoid  importing  cassava
germplasm  from  East  African  countries.  It  should  be  remem-
bered  that  the  movement  of  cassava  planting  materials  from

Breeding for cassava disease resistance
 

Bizimana et al. Tropical Plants 2024, 3: e006   Page 5 of 15



West Africa to East Africa is officially allowed but the opposite is
forbidden to avoid any introduction of CBSD in West Africa[77].

Although various screening efforts are ongoing to find CBSD
resistance in African germplasm, it was realized that resistance
present  in  Africa  is  not  sufficient  to  cope  with  the  disease,
therefore  additional  sources  of  virus  resistance  were  searched
in  cassava  collections  and  cassava  germplasm  prevalent
outside  Africa.  In  this  regard,  238  cassava  lines  from  America
(CIAT)  were  screened  for  CBSD  resistance  under  greenhouse
conditions  using the  CBSV-Mo83 isolate  with  the  bud-grafting
method. Most of the accessions were susceptible, but, interest-
ingly,  seven  genotypes  remained  healthy  with  no  symptoms
and  no  virus  detection  in  both  leaves  and  roots[54].  This  resis-
tance found in American genotypes is justified by the fact that
viruses (U/CBSVs) could not replicate and are only restricted to
the phloem companion cells[65]. After greenhouse experiments,
extensive  field  trials  were  conducted  in  Africa,  and  promising
results  were  obtained.  In  fact,  three  genotypes  (COL  40,  PER
556  and  COL  2182)  exhibited  high  levels  of  resistance  to
U/CBSV and they were  considered as  immune[65].  These geno-
types  will  serve  as  another  important  source  of  resistance  to
CBSD  that  breeders  in  NARS  (National  Agricultural  Research
System)  can  use  in  their  future  breeding  programs.  Once
crossed  with  highly  tolerant  genotypes  (e.g:  KBH  2016B/504),
these  genotypes  can  provide  significant  resistance  to  U/CBSV
and  hence,  contribute  to  the  efforts  towards  mitigating  CBSD
impact  in  Africa.  Nevertheless,  it  was  observed  that  several
CBSD-resistant  or  immune  genotypes  are  susceptible  to  CMD.
Therefore,  additional  breeding  efforts  will  be  required  to
combine resistances to both viral diseases.

 Achievements in breeding for cassava brown
streak disease resistance

Securing  resistance  against  CBSD,  is  a  prerequisite  for
sustainable  cassava  production  in  Africa.  Thus,  developing
CBSD resistant varieties will help to grow a healthy and produc-
tive  crop  while  preventing  the  spread  of  the  virus  in  regions
that are not yet affected on the continent (West Africa)[65].

 Conventional breeding strategies for controlling
cassava brown streak disease

Conventional breeding is the most widely used approach for
developing  new  cassava  varieties[67].  In  this  process,  genetic
variability  is  generated  by  crossing  two  flowering  plants  and,
large numbers of  plants are advanced until  desired genotypes
are identified and selected. Then, selected genotypes undergo
performance  evaluation  before  the  official  release  to  farmers
(Fig. 2c)[96].

In a study to evaluate the importance of general  combining
ability  (GCA)  and  specific  combining  ability  (SCA)  and  inheri-
tance of relevant traits, Zacharias and Labuschagne crossed five
parental genotypes using a full diallel mating design in Mozam-
bique.  Results  of  this  study  showed  that  both  GCA  and  SCA
were significant for CBSD resistance. The Chigoma and Mulalei
genotypes appeared as good candidates to be used as parental
lines in breeding programs for  CBSD resistance,  while preserv-
ing other desired traits such as good yield and root characteris-
tics[97].

To  study  the  genetic  control  of  resistance  to  CBSD,  Kulem-
beka  and  colleagues  evaluated  cassava  clones  generated  in  a
full  diallel  mating  design  with  four  parents  at  two  locations

(Chambezi and Naliendele) in Tanzania. The main finding of this
study was that the GCA effects were more important than SCA
in the genetic control of resistance to CBSD[53].

In  Malawi,  four  parents  with  good  flowering  ability,  low
mean  CBSD  scores  and  good  GCA  for  CBSD  resistance  were
identified  in  2012.  They  were  either  locally  bred/improved
(parents  Phoso  and  Mkondezi)  or  introduced  by  the  Interna-
tional  Institute  of  Tropical  Agriculture  (IITA)  (parents  Silira  and
Mulola).  The  four  parents  were  crossed,  and  the  breeders
selected  13  progenies  with  CBSD  resistance  and  high  storage
root attributes for genetic advancement[98].

Dual  infections  of  the  viruses  causing  CMD  and  CBSD  are
commonly observed in cassava fields[99]. The only effective and
sustainable way of controlling them is the development of dual
resistant  cassava  cultivars[61].  In  this  regard,  a  CMD  resistant
parent  (AR37-80)  was  crossed  with  a  CBSD  resistant  parent
(Namikonga)  to  generate  F1  progenies  with  dual  resistances.
Crosses were carried out and evaluated for two seasons at the
Tanzania  Agricultural  Research  Institute  (TARI)  located  at
Naliendele  (a  CMD  and  CBSD  hotspot)  in  Southern  Tanzania.
Majority  of  F1  progenies  were  CMD  and  CBSD  resistant,  and
their  resistance  was  not  significantly  different  from  their
respective  resistant  parents.  These  progenies  with  dual  resis-
tance  (Namar  050,  Namar  110,  Namar  200,  Namar  334,  Namar
371,  and  Namar  479),  are  important  sources  of  resistance  that
could be further evaluated to determine farmer acceptance or
exploited in future breeding programs[100].  The deployment of
CBSD  resistant  cultivars  have  provided  a  significant  contribu-
tion  to  cassava  yield  improvement  in  Uganda  over  the  last
decades.  The  evaluation  of  32  cassava  cultivars  released  from
1940  to  2019  in  Uganda  indicates  an  average  annual  genetic
gain  of  2.3%  and  1.5%  for  CBSD  foliar  and  CBSD  root  necrosis
resistances respectively[101].

Inbreeding was used as another conventional breeding strat-
egy  against  CBSD.  Cassava  is  a  cross  pollinating  plant  which
results  in  a  high  level  of  heterozygosity.  It  is  known  that
inbreeding via consecutive  self-pollination  cycles  eases  the
identification of useful recessive traits, either already present in
the cassava gene pool or induced by mutagenesis[3,7,102]. This is
achieved via (a) breaking down allelic combinations of individ-
uals  followed  by  a  change  in  phenotypes;  and  (b)  increasing
the  homozygosity  of  loci  which  eases  the  elimination  of
masked  unwanted  alleles[103] and,  therefore,  reducing  the
genetic  load  that  was  present  in  cassava  genotype[3,7,102] .
Despite  the  potential  of  selfing  in  cassava  improvement,  a
severe inbreeding depression is the major challenge[104] arising
from  the  accumulation  of  deleterious  mutations  in  the
genome[102,105] .  Inbreeding  depression  drastically  affects  the
survival  of  inbred genotypes in cassava[104] causing a shortage
of  breeding  materials  for  the  next  selection  phases.  Nonethe-
less,  research  on  inbreeding  has  shown  some  good  potential.
For  instance,  reportedly  S1  clones  have  been  reported  to
display good agronomic features including plant height, starch
yield and dry matter content[104].

For  cassava  diseases,  little  but  promising  research  has  been
carried out. For example, a study on inbreeding depression for
severity caused by cassava leaf diseases revealed the predomi-
nance of additive genetic effects, highlighting the possibility of
selecting  transgressive  individuals  in  S1  families[105].  Despite
the  amount  of  research  that  has  been  carried  out  on  cassava
inbreeding[104−107],  very  little  has  so  far  been  achieved  using
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this  approach  to  enhance  CBSD  resistance.  In  Uganda,
researchers assessed the possibility of exploiting inbreeding as
a strategy for generating new sources of resistance to CBSD. A
high  proportion  of  generated  seedlings  was  poor  in  terms  of
vigor, height and growth, and this was considered to be due to
inbreeding depression and virus infection. Interestingly, within
each  family,  a  few  S1  inbreds  exhibited  higher  levels  of  resis-
tance (based on foliar  and root symptoms) to viral  diseases[58]

.

The use of selfing in cassava remains an interesting approach to
identify  recessive  genes  for  virus  resistance  as  well  as  to  carry
higher breeding values in the parental  material  used for  intro-
gression of virus resistance[108].

In  the  last  two  decades,  various  studies  were  conducted  on
natural  recessive resistance to plant potyviruses and this  resis-
tance  was  shown  to  be  associated  with  polymorphism  in  the
eukaryotic  translation  initiation  factor  genes  (eIFs)  which
inhibits virus interactions with VPg, leading to the failure of the
virus to infect the plant. The eIFs-mediated recessive resistance
against potyviruses, closely related to ipomoviruses in the same
family  Potyviridae,  was  reported  in  several  crops  including
pepper[109], lettuce[110] and tomato[111].

While  conventional  breeding  have  delivered  important
advances in CBSD resistance, there is a need to continue char-
acterizing  the  novel  sources  of  durable  CBSD  resistance  by
developing  molecular  markers  to  ease  the  introgression  of
CBSD resistance.

 Regional strategies to mitigate cassava brown
streak disease

Since the outbreak of CBSD in previously unaffected parts of
East  and  Central  Africa  in  the  early  2000s,  concerted  regional
efforts  have been vital  for  managing the disease.  For instance,
selection  of  tolerant  genotypes  and  use  of  open  quarantine
facility at Kibaha (Tanzania) was instrumental to readily provide
tolerant  varieties  to  be  used  as  a  short-term  CBSD  mitigation
strategy in Tanzania and Mozambique[27].

Virus  elimination  was  also  used  as  a  regional  strategy  to
combat  CBSD  (Fig.  2a)  and  this  elimination  was  implemented
via the  5CP  project  (Cassava  varieties  and  Clean  seed  to
Combat  CBSD  and  CMD  project)  targeting  the  eastern  and
southern African countries including Kenya, Tanzania,  Uganda,
Malawi  and  Mozambique.  Using  virus-indexing,  tissue  culture,
chemotherapy  and  thermotherapy;  31  cassava  varieties  were
successfully  cleaned  from  virus  infections.  The  virus  elimina-
tion study was implemented in the UK (under controlled condi-
tions)  as  a  neutral  venue  and  successfully  cleaned  plantlets
were  shipped  back  to  the  African  partners  for  multiplication
and subsequent distribution to farmers[43].

As part of the same project, a second batch of the 31 clones
were cleaned up by the Kenya Plant Health Inspectorate Service
(KEPHIS).  Following  successful  virus  elimination  and  indexing,
about  seventy-five in  vitro plantlets  per  clone (from five  coun-
tries)  were  sent  to  Genetic  Technologies  International  Limited
(GTIL),  a  private  tissue  culture  lab  in  Kenya,  and  micro-propa-
gated  to  produce  ≥ 1,500  plantlets [112].  Successfully  cleaned
plants  were  shipped  back  to  the  partners  in  each  of  the  five
countries  for  hardening  off  and  field  multiplication  in  low
disease  pressure  sites.  Materials  multiplied  in  this  way  were
used  to  set  up  multi-locational  trials  for  genotype  by  environ-
ment  evaluations[38] and  the  top-performing  clones  in  each
country were advanced for  national  performance trials,  official
release,  followed  by  distribution  to  farmers  through  seed

systems. This study, therefore, contributed to the virus elimina-
tion, exchanging, release and dissemination of the best cassava
germplasm  at  the  regional  level  which  contributed  signifi-
cantly to the management of both CMD and CBSD. In addition,
the  project  built  strong  partnerships  between  breeders  and
virologists  in  national  and  international  institutions  that  has
ensured  the  successful  exchange  of  elite  germplasm.  Com-
bined with other breeding efforts implemented by NARS, initia-
tives of  this  kind will  remain key approaches to mitigate CBSD
in  the  region.  Capacity  building  is  a  key  component  in  these
programs  given  that  the  breeding  of  virus  resistance  often
requires a wide range of expertise including breeders, patholo-
gists,  entomologists  and  molecular  biologists.  Smallholder
farmers  pursuing  mass  production  of  planting  material  also
require  technical  support  and training on how they can main-
tain  clean  planting  material  for  subsequent  production.  Both
formal  and  informal  seed  multipliers  should  be  trained  to
sustain  the  production  of  high-quality  planting  material  in
target production countries[113].

 Genomic tools and NPBTs to advance the
breeding for CBSD resistance

With conventional breeding, it generally takes 8−10 years to
develop  a  new  cassava  variety[114] (Fig.  2c).  Therefore,  new
breeding  technologies  appear  as  an  attractive  option  to
shorten  the  time  needed  to  develop  and  release  new  cassava
varieties  (Fig.  2c)[115].  Technologies  such  as  marker  assisted
selection, genomic selection, transgenesis, genome editing and
others  have  been  developed  and  applied  to  cassava.  Several
NPBTs have been deployed in order to develop CBSD resistant
cassava varieties (Table 2).

 Identification of quantitative trait loci (QTLs) associated
with CBSD resistance

Studies  on  the  identification  of  quantitative  trait  loci  (QTL)
associated with CBSD resistance were performed[116−119]. Those
QTLs are inputs  in marker-assisted breeding (MAB) as  they are
expected to ease the pyramiding of resistance QTLs into a sole
genotype, thereby speeding up the breeding process for CBSD
resistance[117].

It is within this context that two QTLs consistently associated
with resistance against  CBSD root necrosis  on chromosomes 2
and 11, as well as a putative QTL that was located on chromo-
some  18  were  identified[116].  After  constructing  a  genetic  map
of QTLs for resistance to cassava diseases, two QTLs associated
with  only  CBSD  root  necrosis  resistance  (on  chromosomes  5
and  12),  seven  QTLs  associated  with  only  CBSD  foliar  symp-
toms  resistance  (on  chromosomes  4,  6,  17  and  18)  and  two
QTLs  associated with  both CBSD foliar  and root  necrosis  resis-
tance on chromosomes 11 and 15 were identified[117].  Training
population was used to detect QTLs associated with CBSD resis-
tance  after  phenotyping  and  genotyping.  In  fact,  QTLs  associ-
ated with CBSD resistance were found on chromosomes 9 and
11  while  QTLs  detected  on  chromosomes  2,  3,  8  and  10  were
associated with resistance to CBSD root necrosis[118].  Two QTLs
(one minor  and one major)  for  foliar  CBSD resistance on chro-
mosomes  11  and  18  were  detected.  The  major  QTL  for  foliar
symptoms  explained  12.9%  of  phenotypic  variation  at  6  MAP.
For root necrosis,  all  identified QTLs were considered minor as
the phenotypic variance explained (PVE) was less than 10%[119].
A  low  allele  frequency  putatively  associated  with  Namikonga-
derived  resistance  to  CBSD  and  a  wide  distribution  of  this
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frequency  in  the  South-Eastern  and  Central  (SEC)  African
germplasm has also been reported[120].

Several  CBSD-resistance  QTLs  have  so  far  been
reported[116−119]. However, there is limited progress in integrat-
ing and deploying those QTLs through marker-assisted breed-
ing  programs.  Because  QTL  applicability  can  be  limited  to
specific  genetic  backgrounds  and  may  be  subjected  to  GxE
interaction  effects  thereby  limiting  their  genetic  stability  for
selection,  it  is  important  to  continue  translational  research  to
effectively  convert  QTL  knowledge  into  practical  breeding
strategies[121−127].

 Genomic selection
Genomic  selection  (GS)  has  been  used  in  numerous  plant

breeding programs including cassava[128−130]. GS has been used
to  estimate  the  genomic  prediction  accuracies  for  different
traits and reports showed that the prediction accuracies varied
between  measured  traits.  For  instance,  moderate  to  high
genomic  and  pedigree  accuracies  (0.56–0.72  and  0.62–0.78)
were reported for cassava dry yield and fresh root yield respec-
tively[131]. In another study, low to moderate predictive abilities
were  reported  for  fresh  root  yield  (0.4569  to  0.4756),  dry  root
yield  (0.4689  to  0.4818)  and  dry  matter  content  (0.5655  to
0.5670)[115].

GS has been also used as a strategy to improve cassava virus
resistance  and  promising  results  have  been  reported.  While
prediction accuracies have reached higher levels (0.26–0.40) for
CMD[114] ,  reports on using GS for CBSD resistance showed low
to  high  prediction  accuracies.  In  this  regard,  using  empirical
data from 1301 cassava clones, the accuracy of seven genomic
prediction  models  was  assessed  and  a  predictive  ability  of
0.31–0.42 for CBSD root severity was reported[132]. Also, a study
conducted by Ozimati and colleagues showed higher genomic

prediction accuracies for CBSD resistance using optimized East
African  training  populations[133].  Optimization  of  the  training
population  entails  selecting  breeding  lines  with  phenotypic
and  genotypic  data,  that  are  representative  of  selected  candi-
dates  in  order  to  maximize  the  genomic  selection[134].  In
another study conducted in Uganda, low predictive abilities for
CBSD resistance (mean of 0.20 for G-BLUP) were reported[135].

The findings  in  the  above studies  on GS show the potential
of using this approach in cassava breeding albeit not all results
were  satisfactory.  For  CBSD  resistance,  low  to  high  prediction
accuracies  were  reported.  Interesting  results  were  obtained
using  optimized  training  populations,  implying  that  cassava
breeders  will  have  to  first  optimize  the  training  population  in
order  to  successfully  exploit  the  full  potential  of  GS  for  CBSD
resistance.  The  immune  resistance  to  CBSD  found  in  training
populations  could  be  introgressed  into  susceptible  cassava
breeding  clones  through  repeated  backcrossings  using  the
conventional method. During each cycle of the repeated back-
crosses,  a  representative  number  of  the  F1  individuals  should
be  backcrossed  to  different  susceptible  parents  of  heterozy-
gous  genetic  backgrounds  to  limit  inbreeding  depression  and
select  CBSD-resistant  individuals  with  an  adequate  level  of
heterozygosity.  Alternatively,  genes  conferring  immune  resis-
tance  can  be  isolated  and  stacked  to  susceptible  parents
through genetic transformation. With the advancement of New
Genomic Techniques, the edition of CBSD susceptibility factors
to generate new ideotypes without altering the genetic consti-
tution of the crop could also be considered.

 Eukaryotic translation initiation factor (eIFs)
Recessive  resistance  against  viruses  is  broadly  exploited  in

crops  susceptible  to  potyviruses[138−140].  The  eIFs  genes  are
considered  as  key  actors  in  plant  potyvirus  interactions  as

Table 2.    Summary of published studies on NPBTs towards CBSD management.

No Objective of the study Key findings Reference

1 To identify molecular markers associated with resistance
against CBSD

Two consistent QTLs were associated with CBSD root necrosis
resistance on chromosomes II and XI, plus a putative QTL located on
chromosome XVIII.

[116]

2 To identify QTL associated with resistance to CBSD root
necrosis and CBSD foliar symptoms

Two QTLs were associated with only CBSD root necrosis (on
chromosomes V and XII), seven QTLs were associated with only
CBSD foliar symptoms (detected on chromosomes IV, VI, XVII and
XVIII) and two QTLs that were associated with both CBSD foliar and
root necrosis on chromosomes XI and XV.

[117]

3 To map QTL associated with resistance to foliar and root
necrosis CBSD symptoms

Two QTLs (1 minor and 1 major) for foliar CBSD symptoms on
chromosome XI and XVIII. The major QTL for foliar symptoms
explained 12.87% of PHV at 6 MAP.

[119]

4 To determine CBSD resistance-associated allele frequency
and distribution and investigate the genetic relationships
between some CBSD resistant genotypes

A low allele frequency was putatively associated with Namikonga
derived resistance to CBSD and there was a wide distribution of this
frequency in the south-eastern and central African germplasm.

[120]

5 To evaluate the potential of GS to enhance CBSD resistance
via assessing the accuracy of 7 genomic prediction models

Results showed good predictive ability of 0.40–0.42 for foliar CBSD
severity and 0.31–0.42 for CBSD root severity at 6 MAP.

[132]

6 To assess the use of genomic predictions of West African
clones by using training data from a Ugandan population

Higher genomic prediction accuracies for CBSD resistance were
obtained by using optimized East African training populations.

[133]

7 To assess the efficacy of GS for improving cassava for CBSD
resistance and other traits

Low predictive abilities for CBSD resistance (mean of 0.20 for
G-BLUP) were reported.

[135]

8 To evaluate the association of 5 eIFs with cassava tolerance
and susceptibility responses to CBSD

Results showed that two SNPs in two genes were weakly associated
with the CBSD but without any direct causal-effect relationship.

[136]

9 To examine the power of diverse germplasm assembled
from two cassava breeding programs in Tanzania at
different breeding stages to predict traits and discover
quantitative trait loci (QTL)

QTLs associated with CBSD resistance were found on chromosomes
9 and 11 while QTLs detected on chromosomes 2, 3, 8 and 10 were
associated with resistance to CBSD root necrosis. Other three QTLs
for dual resistance to CMD and CBSD were detected on
chromosome 4 (one QTL) and chromosome 12 (2 QTLs).

[118]

10 To generate eIF isoform (nCBP1,nCBP2 and nCBP1/nCBP2)
mutants in line 60444 and assess their reponses upon
challenge with CBSV

Results showed that ncbp-1/ncbp-2 mutants exhibited not only
delayed and attenuated CBSD aerial symptoms, but also reduced
severity and incidence of storage root necrosis.

[137]

CBSD: Cassava brown streak disease; CBSV: cassava brown streak virus; QTL: Quantitative trait locus; GS: Genomic selection; MAP: Months after planting; SNP:
Single nucleotide polymorphism; eIF: Eukaryotic translation initiation factors.
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mutations in those genes can lead to total or partial resistance
to  potyviruses[141].  Useful  mutations  in  eIFs  genes  have  so  far
been  reported  in  pepper,  cucumber,  lettuce,  arabidopsis  and
tomato[109,110,142−144].

The eIF-based studies were performed to assess their associ-
ation  with  CBSD  resistance.  The  association  of  five  eIF  genes
with  cassava  tolerance  and  susceptibility  responses  to  CBSD
was  evaluated.  Using  non-synonymous  SNPs,  this  study
revealed no significant association between any SNP of the five
eIF4E  genes  and  the  tolerance  or  susceptibility  to  CBSD.
However, the study reported that two SNPs in two genes were
weakly  associated  with  the  CBSD  responses  but  did  not  have
any  direct  causal-effect  relationship[136].  Sheat  and  co-workers
recently  evaluated  South-American  genotypes  with  various
levels of resistance. Those accessions need to be evaluated for
variation in eIFs sequences in order to understand the basis of
their resistance[54]. Though recessive resistance was reported in
several  crop  species,  it  would  be  important  to  evaluate  the
potential  of  recessive  resistance  by  selfing  accessions  carrying
mutations in eIF sequences predicted to alter their interactions
with VPgs.

Clustered  regularly  interspaced  short  palindromic  repeats
(CRISPR) - mediated genome-editing technology provides new
opportunities for engineering plant disease resistance, and it is
considered as one of the NPBTs that can speed up the introduc-
tion  of  desired  traits  into  crops[145].  Several  studies  have  been
carried  out  using  CRISPR  genome  editing  technologies  on
cassava[137,146,147].  Gomez  and  colleagues  used  CRISPR/Cas9  to
edit cassava eIF4E isoforms i.e novel cap-binding protein 1 and
2  (nCBP-1  and  nCBP-2).  This  resulted  in  a  reduction  in  CBSD
symptom incidence and severity in the susceptible model culti-
var 60444. The resulting nCBP-1/nCBP-2 mutants exhibited not
only  delayed  and  attenuated  CBSD  aerial  symptoms,  but  also
reduced severity and incidence of storage root necrosis[137].

 Mutation breeding
Mutation  breeding  through  gamma  irradiation  has  been

tested for variety development[148]. Most studies conducted on
cassava  mutation  breeding  have  so  far  targeted  yield  and
related traits[148−151]. Although mutation breeding has not been
specifically applied as a tool for generating cassava virus resis-
tance,  it  was notable that the primary product of two decades
of  mutation  breeding  research  in  Ghana,  the  cassava  variety
‘Tek  Bankye’,  was  highly  susceptible  to  CMD[149].  Due  to  its
random nature, an effective use of mutation breeding to gener-
ate virus resistant material will require screening large numbers
of mutants in locations where the virus pressure is high or with
cost-effective  methods  under  greenhouse  conditions.  Impor-
tantly,  identification  and  exploitation  of  recessive  virus  resis-
tance will also require to self each mutant prior to exposure to
viral pressure.

 Other technologies for speeding up cassava
breeding

Cassava  is  vegetatively  propagated via stem  cuttings[70,152].
This  characteristic  is  advantageous  for  breeders  because  it
permits to quickly get enough clonal materials to perform large
scale  crossings  between  selected  parental  lines.  Breeders  use
crossing  and  seed  propagation  but  getting  desired  crosses
(traits) is not easy because of poor flowering, non-synchroniza-
tion  of  flowering  time  and  low  pollen  viability[152].  Moreover,
the cassava life cycle is very long[114] and there is often a strong
GXE  component  to  flowering[74].  Methods  that  stimulate  early

flowering with an increased number of viable flowers could be
instrumental  to  shorten  the  long  cassava  breeding  cycle[153].
Given  the  long  cassava  breeding  cycle,  the  so-called  speed
breeding techniques[154] hold a great potential to revolutionize
cassava breeding.

One  of  the  most  important  factors  to  consider  for  speed
breeding  in  cassava  is  flower  induction  and  boosting  flower
initiation in genotypes that are poorly flowering. Cassava flow-
ering  is  associated  with  branching  ability  and  growth  type.
However,  erect  growing  genotypes  are  usually  preferred  over
branching  genotypes  which  further  limit  the  potential  to  effi-
ciently  cross  the  parental  material.  Different  approaches  such
as  grafting,  plant  hormones,  photoperiod  extension[70,155] and
genetic  engineering  such  as  introgression  of  flower-inducing
genes  in  cassava[156,157] have  been  reported  to  induce  cassava
flowering,  but  not  all  of  them are practically  efficient.  A useful
technique  that  can  be  affordable  and  practical  everywhere  is
the  pruning  of  young  cassava  branches  at  the  first  flowering
time[158].

Although not commonly used in cassava breeding programs,
grafting  was  reported  to  enhance  cassava  flowering  and
promising  results  have  been  obtained  as  genotypes  with
profuse  flowering habit  can trigger  flowering in  low flowering
genotypes  through  grafting[159,160].  Using  red  light  emitting
diodes  (LEDs)  and  extended  photoperiod  conditions,  it  was
possible to reduce the number of days to first branching in non
or late flowering cassava genotypes[158].  The use of the flower-
ing locus T (FT) was another strategy to induce early flowering
in  cassava.  The  over-expression  of  the Arabidopsis FT  in  trans-
genic cassava (model cultivar 60444) induced early flowering in
glasshouse  environment[156] as  well  as  stimulation  of  branch-
ing, increased rate of flowering and increased viability of flow-
ers[157].  The  key  role  of  the  endogenous  FT  genes  (MeFT1  and
MeFT2)  in  flowering  has  also  been  confirmed  using  induction
treatments  such  as  extended  photoperiod,  cytokinin  (BA)  and
silver thiosulfate (STS)[161]. Plant growth regulators (PGRs) were
used to stimulate flowering in cassava. The anti-ethylene silver
thiosulfate[162],  cytokinin[163] and  paclobutrazol[164] were
reported to increase and sustain flower production in cassava.
Notably,  the  optimum  time  for  PGR  application[162] and
coupling  PGR  applications  with  pruning[163] are  other  impor-
tant  factors  to  consider  for  a  successful  stimulation  of  flower-
ing in cassava. Most cassava breeding programs use a combina-
tion  of  EP,  PGR  and  pruning,  because  other  technologies
appear  less  practical  or  constrained  by  regulation  (i.e.  trans-
genic expression of flowering genes).

Synchronization  of  flowering  for  parental  genotypes  is
another  key  factor  to  consider  in  order  to  succeed  and  speed
up cassava breeding.  One strategy to  synchronize  flowering is
the use of  different  planting dates.  Genotypes that  flower  late
should be planted ahead of time to match their flowering dates
with early flowering genotypes[152].  This can only be successful
if  cassava  breeders  know  the  exact  dates  of  flowering  for  the
genotypes  to  be  crossed.  In  addition,  particular  environments
might  favor  flowering  more  than  others[74],  therefore  optimal
locations for  flowering should be identified and used for flow-
ering  synchronization  purposes.  Poor  flower  synchronization
can  be  mitigated  through  the  use  of  extended  photoperiod
although  it  requires  low  temperature  conditions  which  would
only  be  applicable  in  high  altitude  environment  or  locations
with seasonal winter[165].
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Nowadays,  pollen  can  be  successfully  stored  in  genebanks
(cryopreservation in liquid nitrogen) without any damage to its
genetic  makeup[166].  To  date,  no  protocol  is  available  for
cassava pollen cryopreservation, which could enable the cross-
ing of genotypes with different flowering times.  Cryopreserva-
tion  can  also  facilitate  the  exchange  of  pollen  materials  be-
tween breeders working in different geographical locations[167].
Good  quality  and  cryopreserved  pollen  grains  would  also  be
free  of  pathogens,  thereby  circumventing  quarantine  restric-
tions between countries.

 Conclusions and recommendations

CBSD  remains  an  important  constraint  to  cassava  produc-
tion in Eastern and Central Africa. Efforts to develop CBSD resis-
tance will  need to be an important part  of  modernized breed-
ing  approaches  that  aim  to  develop  improved  varieties  with
balanced  trait  sets  that  meet  the  needs  of  user-focused  prod-
uct  profiles.  This  will  require  building  regional  capacity  and
provide  long-term  support  to  breeding  programs,  which
should  aim  at  providing  millions  of  cassava  farmers  with  vari-
eties that combine high levels of CBSD resistance with optimal
yield  and  market-preferred  qualities.  In  order  to  achieve  this
ambitious goal, the following recommendations can be made:

(1) A network of African cassava breeders is required to share
knowledge  and  experience  about  CBSD  management  across
the  continent.  This  network  will  also  help  breeders  set  collec-
tive  strategies  for  CBSD  management  and  create  and/or
enhance CBSD resistance in Africa.

(2)  Access  to  advanced  tools  and  technologies  (such  as
sequencing  facilities,  genome-editing  technologies,  bioinfor-
matics  tools  such  as  softwares,  etc)  by  NARS  and  private
companies  will  be  paramount  in  mitigating  CBSD  and  CMD
impact  as  well  as  scaling  up  cassava  improvement  in  Africa.
These technologies should be adapted to circumvent the limi-
tations posed by heterozygous progenitors.

(3) Building and/or strengthening the capacities of all  stake-
holders  involved  in  cassava  production  (national  and  regional
public  and  private  institutions,  seed  multipliers,  and  farmers)
will be crucial for cassava improvement in Africa. Investment by
different  stakeholders  (governments,  private  sector,  universi-
ties,  international  institutions,  etc.)  in  cassava  breeding  is
encouraged  in  order  to  develop  cassava  genotypes  that  are
CBSD-resistant.

(4) Controlling the movement of planting materials is critical
to  prevent  the  introduction  of  CBSD-infected  cuttings  in  a
given  country.  This  will  require  regular  surveillance  of  each
country’s  border,  observing  strict  quarantine  measures  and
phytosanitary  regulations  throughout  the  distribution  of
cassava planting materials. Those measures should also set the
scene  for  the  development  of  a  sustainable  cassava  seed
system.

(5) Finally, the cassava community must address the issue of
an efficient trait introgression in cassava breeding.
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