Newswise — Physicists at McGill University have developed a system for measuring the energy involved in adding electrons to semi-conductor nanocrystals, also known as quantum dots – a technology that may revolutionize computing and other areas of science. Dr. Peter Grütter, McGill’s Associate Dean of Research and Graduate Education, Faculty of Science, explains that his research team has developed a cantilever force sensor that enables individual electrons to be removed and added to a quantum dot and the energy involved in the operation to be measured.

Being able to measure the energy at such infinitesimal levels is an important step in being able to develop an eventual replacement for the silicon chip in computers – the next generation of computing. Computers currently work with processors that contain transistors that are either in an on or off position – conductors and semi-conductors – while quantum computing would allow processors to work with multiple states, vastly increasing their speed while reducing their size even more.

Although popularly used to connote something very large, the word “quantum” itself actually means the smallest amount by which certain physical quantities can change. Knowledge of these energy levels enables scientists to understand and predict the electronic properties of the nanoscale systems they are developing.

“We are determining optical and electronic transport properties,” Grütter said. “This is essential for the development of components that might replace silicon chips in current computers.”

The electronic principles of nanosystems also determine their chemical properties, so the team’s research is relevant to making chemical processes “greener” and more energy efficient. For example, this technology could be applied to lighting systems, by using nanoparticles to improving their energy efficiency. “We expect this method to have many important applications in fundamental as well as applied research,” said Lynda Cockins of McGill’s Department of Physics.

The principle of the cantilever sensors sounds relatively simple. “The cantilever is about 0.5 mm in size (about the thickness of a thumbnail) and is essentially a simple driven, damped harmonic oscillator, mathematically equivalent to a child's swing being pushed,” Grütter explained. “The signal we measure is the damping of the cantilever, the equivalent to how hard I have to push the kid on the swing so that she maintains a constant height, or what I would call the ‘oscillation amplitude.’ ”

Dr. Aashish Clerk, Yoichi Miyahara, and Steven D. Bennett of McGill’s Dept. of Physics, and scientists at the Institute for Microstructural Sciences of the National Research Council of Canada contributed to this research, which was published online late yesterday afternoon in the Proceedings of the National Academy of Sciences. The research received funding from the Natural Sciences and Engineering Research Council of Canada, le Fonds Québécois de le Recherche sur la Nature et les Technologies, the Carl Reinhardt Fellowship, and the Canadian Institute for Advanced Research.

Saut quantique vers l’informatique de nouvelle générationDes chercheurs de McGill apportent une contribution importante à l’informatique quantique

Des physiciens de l’Université McGill ont élaboré un système pour mesurer l’énergie résultant de l’ajout d’électrons à des nanocristaux semi-conducteurs ou points quantiques : une technologie susceptible de révolutionner l’informatique et plusieurs disciplines scientifiques. Le professeur Peter Grütter, vice-doyen (recherche et formations de 2e/3e cycles) à la Faculté des sciences de McGill, explique que son équipe de recherche a mis au point un capteur de force, également appelé capteur cantilever, qui permet simultanément l’extraction et l’ajout d’électrons à un point quantique, de même que la mesure de l’énergie dégagée au cours de cette opération.

La possibilité de mesurer l’énergie à des niveaux infinitésimaux est une étape importante dans l’élaboration de composés qui seront éventuellement appelés à remplacer les puces en silicone des ordinateurs et feront la marque de l’informatique de nouvelle génération. Actuellement, les ordinateurs fonctionnent à l’aide de processeurs munis de transistors en mode actif ou inactif (conducteurs et semi-conducteurs), alors que l’informatique quantique permet aux processeurs de travailler dans différents états, ce qui augmente considérablement leur vitesse de traitement, tout en réduisant leur taille de manière importante.

Le terme « quantum » désigne la quantité minimale d’une grandeur physique pouvant séparer deux valeurs de cette grandeur. La connaissance de ces niveaux d’énergie permet aux scientifiques de comprendre et de définir les propriétés électroniques des systèmes à échelle nanométrique qu’ils conçoivent.

« Nous caractérisons les propriétés de transport optique et électronique », explique le professeur Grütter. « Cette étape est essentielle à l’élaboration de composés susceptibles de remplacer les puces en silicone des ordinateurs contemporains. »

Les principes électroniques des nanosystèmes déterminent également leurs propriétés chimiques, si bien que les travaux des chercheurs pourraient tout à fait déboucher sur des processus chimiques qui soient à la fois plus écologiques et moins énergivores. Cette technologie pourrait par exemple être appliquée aux systèmes d’éclairage, en utilisant des nanoparticules pour améliorer leur efficacité énergétique. « Nous pensons que cette méthode aura de nombreuses applications importantes en recherche fondamentale et appliquée », explique Lynda Cockins du Département de physique de McGill.

Le principe de ce capteur cantilever est relativement simple : « Le cantilever mesure environ 0,5 mm (soit l’épaisseur d’un ongle). Il s’agit grosso modo d’un oscillateur harmonique amorti très simple, l’équivalent mathématique d’une balançoire pour enfant que l’on pousse », explique le professeur Grütter. « Le signal que nous mesurons est l’amortissement du cantilever, ce qui équivaut à la force nécessaire pour pousser l’enfant sur la balançoire afin qu’il se maintienne à une hauteur constante. Il s’agit de “l’amplitude d’oscillation”.

Cette recherche, dont les résultats ont été publiés en ligne hier après-midi sur le site de la revue Proceedings of the National Academy of Sciences, a été menée en collaboration avec les professeurs Aashish Clerk, Yoichi Miyahara et Steven D. Bennett du Département de physique de McGill et des chercheurs de l’Institut des sciences des microstructures du Conseil national de recherches du Canada. Elle a bénéficié d’une subvention du Conseil de recherches en sciences naturelles et en génie du Canada, du Fonds québécois de la recherche sur la nature et les technologies, d’une bourse d’études Carl Reinhardt et de l’Institut canadien de recherches avancées.

MEDIA CONTACT
Register for reporter access to contact details