Because some four million tons of titanium dioxide particles are produced worldwide, human exposure to them is almost certain during a lifetime. In combination with UV light, the nanoparticles exhibit prophylactic activity against bacteria and therefore are studied for anti-bacterial applications. Yet, in the paper titled “Exposure to TiO2 nanopartices increases Staphylococcus aureus infection of HeLa cells,” the researchers showed that in the absence of these powerful rays, bacteria thrive.
“We discovered an almost ‘perfect storm’ generated by titanium dioxide nanoparticles against the immune system when they are not impacted by UV light,” said Miriam Rafailovich, PhD, Distinguished Professor in the Department of Materials Science and Engineering (MSE) within the College of Engineering & Applied Sciences at Stony Brook University and a co-author on the paper. “This should raise a red flag regarding exposure risks related to products that include titanium dioxide in the absence of UV light.”
The researchers, headed by Dr. Tatsiana Mironava of the Department of Materials Science and Engineering, exposed some HeLa cells, a human cell line used in research, to titanium dioxide. Together with Yan Xu of MSE and Dr. Stephen Walker, a microbiologist in the Stony Brook School of Dental Medicine, they then exposed the cells to Staphylococcus aureus, a pathogen that causes a diverse range of human infections worldwide. They found that the titanium dioxide-exposed cells had 250 percent to 350 percent more bacteria per cell than HeLa cells not exposed to the nanoparticles. Additionally, bacterial-killing macrophages exposed to titanium dioxide ingested 40 percent fewer bacteria compared to other cells, further increasing the risk of infection.
The authors concluded that these factors, in combination, ”raise serious concerns regarding the impact of exposure to titanium dioxide nanoparticles on the ability of organisms to resist bacterial infection.”
Co-investigators for the research include: Stony Brook University faculty from MSE, and the Departments of Physiology & Biophysics, and Oral Biology & Pathology; faculty from Lehigh University, University of California, Los Angeles, undergraduate interns from Stern College for Women; and high school students from the Garcia Research Program at Stony Brook University.
The research was supported, in part, by the National Science Foundation.
About Stony Brook University Part of the State University of New York system, Stony Brook University encompasses 200 buildings on 1,450 acres. Since welcoming its first incoming class in 1957, the University has grown tremendously, now with more than 25,000 students and 2,500 faculty. Its membership in the prestigious Association of American Universities (AAU) places Stony Brook among the top 62 research institutions in North America. U.S. News & World Report ranks Stony Brook among the top 100 universities in the nation and top 40 public universities, and Kiplinger names it one of the 35 best values in public colleges. One of four University Center campuses in the SUNY system, Stony Brook co-manages Brookhaven National Laboratory, putting it in an elite group of universities that run federal research and development laboratories. A global ranking by U.S. News & World Report places Stony Brook in the top 1 percent of institutions worldwide. It is one of only 10 universities nationwide recognized by the National Science Foundation for combining research with undergraduate education. As the largest single-site employer on Long Island, Stony Brook is a driving force of the regional economy, with an annual economic impact of $4.65 billion, generating nearly 60,000 jobs, and accounts for nearly 4 percent of all economic activity in Nassau and Suffolk counties, and roughly 7.5 percent of total jobs in Suffolk County.