X
X
X

Scientists Set Record Resolution for Drawing at the One-Nanometer Length Scale

Using a specialized electron microscope outfitted with a pattern generator, scientists turned an imaging instrument into a lithography tool that could be used to create and study materials with new properties.

For First Time, Researchers Measure Forces That Align Crystals and Help Them Snap Together

For the first time, researchers have measured the force that draws tiny crystals together and visualized how they swivel and align. Called van der Waals forces, the attraction provides insights into how crystals self-assemble, an activity that occurs in a wide range of cases in nature, from rocks to shells to bones.

Video Captures Bubble-Blowing Battery in Action

PNNL researchers have created a unique video that shows oxygen bubbles inflating and later deflating inside a tiny lithium-air battery. The knowledge gained from the video could help make lithium-air batteries that are more compact, stable and can hold onto a charge longer.

Study Offers New Theoretical Approach to Describing Non-Equilibrium Phase Transitions

Two physicists at Argonne offered a way to mathematically describe a particular physics phenomenon called a phase transition in a system out of equilibrium. Such phenomena are central in physics, and understanding how they occur has been a long-held and vexing goal; their behavior and related effects are key to unlocking possibilities for new electronics and other next-generation technologies.

Berkeley Lab Scientists Discover New Atomically Layered, Thin Magnet

Berkeley Lab scientists have found an unexpected magnetic property in a 2-D material. The new atomically thin, flat magnet could have major implications for a wide range of applications, such as nanoscale memory, spintronic devices, and magnetic sensors.

Stabilizing Molecule Could Pave Way for Lithium-Air Fuel Cell

Lithium-oxygen fuel cells boast energy density levels comparable to fossil fuels and are thus seen as a promising candidate for future transportation-related energy needs.

Scientists Identify Chemical Causes of Battery "Capacity Fade"

Researchers at Argonne National Laboratory identified one of the major culprits in capacity fade of high-energy lithium-ion batteries.

Modeling Reveals How Policy Affects the Adoption of Solar Energy Photovoltaics in California

Researchers at the University of California, Riverside, inspired by efforts to promote green energy, are exploring the factors driving commercial customers in Southern California, both large and small, to purchase and install solar photovoltaic (PV) systems. As the group reports this week in the Journal of Renewable and Sustainable Energy, they built a model for commercial solar PV adoption to quantify the impact of government incentives and solar PV costs.

Machine Learning Dramatically Streamlines Search for More Efficient Chemical Reactions

A catalytic reaction may follow thousands of possible paths, and it can take years to identify which one it actually takes so scientists can tweak it and make it more efficient. Now researchers at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University have taken a big step toward cutting through this thicket of possibilities.

Freezing Lithium Batteries May Make Them Safer and Bendable

Columbia Engineering Professor Yuan Yang has developed a new method that could lead to lithium batteries that are safer, have longer battery life, and are bendable, providing new possibilities such as flexible smartphones. His new technique uses ice-templating to control the structure of the solid electrolyte for lithium batteries that are used in portable electronics, electric vehicles, and grid-level energy storage. The study is published online April 24 in Nano Letters.


OU Engineering Professor Receives National Science Foundation Early CAREER Award

A University of Oklahoma Gallogly College of Engineering professor, Steven P. Crossley, is the recipient of a five-year, National Science Foundation Early CAREER Award in the amount of $548,829 for research that can be used to understand catalysts that are important for a broad range of chemical reactions ranging from the production of renewable fuels and chemicals for natural gas processing. The research will be integrated with educational and outreach programs intended for American Indian students, emphasizing the importance of sustainable energy.

3 Small Energy Firms to Collaborate with PNNL

Pacific Northwest National Laboratory is collaborating with three small businesses to address technical challenges concerning hydrogen for fuel cell cars, bio-coal and nanomaterial manufacturing.

ORNL to Collaborate with Five Small Businesses to Advance Energy Tech

Five small companies have been selected to partner with the Department of Energy's Oak Ridge National Laboratory to move technologies in commercial refrigeration systems, water power generation, bioenergy and battery manufacturing closer to the marketplace.

U.S. Department of Energy's INCITE Program Seeks Advanced Computational Research Proposals for 2018

The Department of Energy's INCITE program will be accepting proposals for high-impact, computationally intensive research campaigns in a broad array of science, engineering, and computer science domains.

New Berkeley Lab Project Turns Waste Heat to Electricity

A new Berkeley Lab project seeks to efficiently capture waste heat and convert it to electricity, potentially saving California up to $385 million per year. With a $2-million grant from the California Energy Commission, Berkeley Lab scientists will work with Alphabet Energy to create a cost-effective thermoelectric waste heat recovery system.

New SLAC Theory Institute Aims to Speed Research on Exotic Materials at Light Sources

A new institute at the Department of Energy's SLAC National Accelerator Laboratory is using the power of theory to search for new types of materials that could revolutionize society - by making it possible, for instance, to transmit electricity over power lines with no loss.

Lenvio Inc. Exclusively Licenses ORNL Malware Behavior Detection Technology

Virginia-based Lenvio Inc. has exclusively licensed a cyber security technology from the Department of Energy's Oak Ridge National Laboratory that can quickly detect malicious behavior in software not previously identified as a threat.

Argonne Scientist and Nobel Laureate Alexei Abrikosov Dies at 88

Alexei Abrikosov, an acclaimed physicist at the U.S. Department of Energy's Argonne National Laboratory who received the 2003 Nobel Prize in Physics for his work on superconducting materials, died Wednesday, March 29. He was 88.

Jefferson Lab Accomplishes Critical Milestones Toward Completion of 12 GeV Upgrade

The Continuous Electron Beam Accelerator Facility (CEBAF) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility has achieved two major commissioning milestones and is now entering the final stretch of work to conclude its first major upgrade. Recently, the CEBAF accelerator delivered electron beams into two of its experimental halls, Halls B and C, at energies not possible before the upgrade for commissioning of the experimental equipment currently in each hall. Data were recorded in each hall, which were then confirmed to be of sufficient quality to allow for particle identification, a primary indicator of good detector operation.

Valerie Taylor Named Argonne National Laboratory's Mathematics and Computer Science Division Director

Computer scientist Valerie Taylor has been appointed as the next director of the Mathematics and Computer Science division at Argonne, effective July 3, 2017.


Uncrowded Coils

A new fast and robust algorithm for computing stellarator coil shapes yields designs that are easier to build and maintain.

Fast Electrons and the Seeds of Disruption

Physicists measured fast electron populations. They achieved this first-of-its-kind result by seeing the effect of the fast electrons on the ablation rate of small frozen argon pellets.

Plasma Turbulence Generates Flow in Fusion Reactors

Heating the core of fusion reactors causes them to develop sheared rotation that can improve plasma performance.

The Roadmap to Quark Soup

Scientists discover new signposts in the quest to determine how matter from the early universe turned into the world we know today.

Neutrons Play the Lead to Protons in Dance Around "Double-Magic" Nucleus

Electric and magnetic properties of a radioactive atom provide unique insight into the nature of proton and neutron motion.

Ultrafast Imaging Reveals the Electron's New Clothes

Scientists use high-speed electrons to visualize "dress-like" distortions in the atomic lattice. This work reveals the vital role of electron-lattice interactions in manganites. This material could be used in data-storage devices with increased data density and reduced power requirements.

One Small Change Makes Solar Cells More Efficient

For years, scientists have explored using tiny drops of designer materials, called quantum dots, to make better solar cells. Adding small amounts of manganese decreases the ability of quantum dots to absorb light but increases the current produced by an average of 300%.

Electronic "Cyclones" at the Nanoscale

Through highly controlled synthesis, scientists controlled competing atomic forces to let spiral electronic structures form. These polar vortices can serve as a precursor to new phenomena in materials. The materials could be vital for ultra-low energy electronic devices.

In a Flash! A New Way for Making Ceramics

A new process controllably but instantly consolidates ceramic parts, potentially important for manufacturing.

Deciphering Material Properties at the Single-Atom Level

Scientists determine the precise location and identity of all 23,000 atoms in a nanoparticle.


Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park




Advantage: Water

Article ID: 672971

Released: 2017-04-13 16:05:00

Source Newsroom: Pacific Northwest National Laboratory

  • Credit: Zdenek Dohnalek/PNNL

    When water (shown in blue) comes in for a landing on the common catalyst titanium oxide (shown in red and green), it splits into hydroxyls (on leftward surface) just under half the time.

RICHLAND, Wash. – When a molecule of water comes in for a landing on the common catalyst titanium oxide, it sometimes breaks up and forms a pair of molecule fragments known as hydroxyls. But scientists had not been able to show how often the breakup happened. Now, researchers have determined that water is only slightly more likely to stay in one piece as it binds to the catalyst surface than it is to form the hydroxyl pairs.

 

The result — water's advantage is so small — might surprise some chemists. But understanding that small advantage has wide-ranging significance for a variety of potential applications in industries that use titanium dioxide. These industries include alternative fuel production, solar energy and food safety, and even self-cleaning windows. It will also help scientists better understand how acids behave and expand their knowledge of how molecules split.

 

"How water binds was the big question," said chemist Zdenek Dohnalek at the Department of Energy's Pacific Northwest National Laboratory. "Chemists had mixed information from a lot of different methods, and theorists also had ideas. Using a unique combination of instruments, we've finally solved it."

 

The team reported the work in the Proceedings of the National Academy of Sciences.

 

Land of mystery

 

Even though many industries use titanium oxide to help speed up chemical reactions, scientists have not uncovered all of its secrets. A key mystery, researchers have long debated, is the way in which water interacts with titanium oxide. The interaction is important in its own right to split water, but it also influences the course of many reactions in general.

 

On titanium oxide's surface, molecules of water switch between being intact and splitting into hydroxyls. Even though there are many different ways of measuring the ratio of intact water to hydroxyls at any given time, scientists have not been able to nail it down for decades.

 

To explore the problem, PNNL researchers combined different tools in a new way. They sent beams of water at various speeds onto cold titanium oxide sitting under a very high resolution microscope known as a scanning tunneling microscope.

 

The microscope let them visualize the catalyst's titanium and oxygen atoms. The atoms appear as bright and dark rows, like a cornfield with tall rows of corn alternating with ditches, and individual molecules of water appear as bright spots that don't align with the rows.

 

In addition to viewing water molecules as they hit the surface, the team simulated details of the atoms interacting in exacting detail on a high performance computer. Combining experiments and simulations allowed the team to settle the long-standing debate.

 

Instant attraction

 

Shaped like a V, a water molecule has a fat oxygen atom in the middle bound to two smaller hydrogen atoms on either side. Titanium oxide helps break the bonds between the atoms to push a chemical reaction forward: the titanium atoms trap water molecules, while nearby oxygens, also part of the catalyst surface, draws away then captures one of the hydrogen atoms.

 

When this happens, two hydroxyls are formed, one from a surface oxygen combining with the hydrogen and the other leftover from the water molecule.

 

The scientists needed to know how often the hydroxyls formed. Do water molecules largely stay intact on the surface? Or do they immediately convert to hydroxyls? How likely water will stay intact on titanium oxide — and how easily the hydroxyls reform into water — sets the stage for other chemical reactions.

 

To find out, the chemists had to develop technologies to measure how often the hydroxyls arose on the surface. Using resources developed within EMSL, the Environmental Molecular Sciences Laboratory, a DOE Office of Science User Facility at PNNL, they shot a beam of water molecules at a titanium oxide surface at low energy — the beam shooting slowly, and at high energy — moving fast like out of a firehose.

 

They ended up with bright spots on the surface, and the higher the energy, the more spots. But the spots did not look bright enough to include both hydroxyls, as expected, so they performed additional experiments to determine what the spots were.

 

Spot on

 

The team shot water at the titanium dioxide surface and then froze the water in place. Then they slowly warmed everything up. Raising the temperature revealed the spots — which they thought were at least one hydroxyl — changing into water molecules. This meant that each spot had to actually be a pair of hydroxyls because the evidence showed that all the raw materials needed to make a water molecule were sitting there, and both hydroxyls were needed.

 

They performed various other experiments to determine the temperature at which a landing water molecule converts into hydroxyl pairs and vice versa. From that they learned that water is only slightly more stable than the hydroxyl pairs on the surface — 10 percent more, if we go by the amount of energy it takes to disrupt them.

 

Simulating the water landings on a high performance computer, also at EMSL, the researchers found out the only water molecules that stuck to the catalyst were ones that landed in a figurative ditch within a cornfield, where the water's oxygen faced a titanium atom down in the ditch.

 

If the water came in with just the right speed, the water reoriented and docked one of its hydrogens towards a nearby oxygen, forming the hydroxyl pairs seen in the experiments. If not, the water molecule just bounced off.

 

"We discovered that electrostatics — the same static that makes sparks when you rub your feet on the carpet — helped steer the water molecules onto the surface," said theoretical chemist and coauthor Roger Rousseau.

 

All of these details will help researchers understand catalysis better and improve our understanding of chemical reactions. In addition, the results reveal a value that scientists have long tried to nail down — how easy or hard it is for water to lose a hydrogen on titanium oxide.

 

This work was supported by the American Recovery and Reinvestment Act and the Department of Energy Office of Science.

 

Reference: Zhi-Tao Wang, Yang-Gang Wang, Rentao Mu, Yeohoon Yoon, Arjun Dahal, Gregory K. Schenter, Vassiliki-Alexandra Glezakou, Roger Rousseau, Igor Lyubinetsky, and Zdenek Dohnálek. Probing Equilibrium of Molecular and Deprotonated Water on TiO2(110), Proc Natl Acad Sci U S A Early Edition February 6, 2017, DOI: 10.1073/pnas.1613756114.

 

EMSL, the Environmental Molecular Sciences Laboratory, is a DOE Office of Science User Facility. Located at Pacific Northwest National Laboratory in Richland, Wash., EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. Its integrated computational and experimental resources enable researchers to realize important scientific insights and create new technologies. Follow EMSL on Facebook, LinkedIn and Twitter.

 

Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. Founded in 1965, PNNL employs 4,400 staff and has an annual budget of nearly $1 billion. It is managed by Battelle for the U.S. Department of Energy's Office of Science. As the single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information on PNNL, visit the PNNL News Center, or follow PNNL on Facebook, Google+, Instagram, LinkedIn and Twitter.