Printed, Flexible and Rechargeable Battery Can Power Wearable Sensors

Nanoengineers at the University of California San Diego have developed the first printed battery that is flexible, stretchable and rechargeable. The zinc batteries could be used to power everything from wearable sensors to solar cells and other kinds of electronics. The work appears in the April 19, 2017 issue of Advanced Energy Materials.

Neutrons Provide the First Nanoscale Look at a Living Cell Membrane

A research team from the Department of Energy's Oak Ridge National Laboratory has performed the first-ever direct nanoscale examination of a living cell membrane. In doing so, it also resolved a long-standing debate by identifying tiny groupings of lipid molecules that are likely key to the cell's functioning.

How X-Rays Helped to Solve Mystery of Floating Rocks

Experiments at Berkeley Lab's Advanced Light Source have helped scientists to solve a mystery of why some rocks can float for years in the ocean, traveling thousands of miles before sinking.

Special X-Ray Technique Allows Scientists to See 3-D Deformations

In a new study published last Friday in Science, researchers at Argonne used an X-ray scattering technique called Bragg coherent diffraction imaging to reconstruct in 3-D the size and shape of grain defects. These defects create imperfections in the lattice of atoms inside a grain that can give rise to interesting material properties and effects.

Neptune: Neutralizer-Free Plasma Propulsion

The most established plasma propulsion concepts are gridded-ion thrusters that accelerate and emit a larger number of positively charged particles than those that are negatively charged. To enable the spacecraft to remain charge-neutral, a "neutralizer" is used to inject electrons to exactly balance the positive ion charge in the exhaust beam. However, the neutralizer requires additional power from the spacecraft and increases the size and weight of the propulsion system. Researchers are investigating how the radio-frequency self-bias effect can be used to remove the neutralizer altogether, and they report their work in this week's Physics of Plasmas.

Report Sheds New Insights on the Spin Dynamics of a Material Candidate for Low-Power Devices

In a report published in Nano LettersArgonne researchers reveal new insights into the properties of a magnetic insulator that is a candidate for low-power device applications; their insights form early stepping-stones towards developing high-speed, low-power electronics that use electron spin rather than charge to carry information.

Researchers Find Computer Code That Volkswagen Used to Cheat Emissions Tests

An international team of researchers has uncovered the mechanism that allowed Volkswagen to circumvent U.S. and European emission tests over at least six years before the Environmental Protection Agency put the company on notice in 2015 for violating the Clean Air Act. During a year-long investigation, researchers found code that allowed a car's onboard computer to determine that the vehicle was undergoing an emissions test.

Physicists Discover That Lithium Oxide on Tokamak Walls Can Improve Plasma Performance

A team of physicists has found that a coating of lithium oxide on the inside of fusion machines known as tokamaks can absorb as much deuterium as pure lithium can.

Scientists Perform First Basic Physics Simulation of Spontaneous Transition of the Edge of Fusion Plasma to Crucial High-Confinement Mode

PPPL physicists have simulated the spontaneous transition of turbulence at the edge of a fusion plasma to the high-confinement mode that sustains fusion reactions. The research was achieved with the extreme-scale plasma turbulence code XGC developed at PPPL in collaboration with a nationwide team.

Green Fleet Technology

New research at Penn State addresses the impact delivery trucks have on the environment by providing green solutions that keep costs down without sacrificing efficiency.


Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Describing the dizzying pace of technological innovation, former United States Secretary of Energy Ernest J. Moniz urged graduates to "anticipate career change, welcome it, and manage it to your and your society's benefit" at the 211th Commencement at Rensselaer Polytechnic Institute (RPI) Saturday.

ORNL Welcomes Innovation Crossroads Entrepreneurial Research Fellows

Oak Ridge National Laboratory today welcomed the first cohort of innovators to join Innovation Crossroads, the Southeast region's first entrepreneurial research and development program based at a U.S. Department of Energy national laboratory.

Department of Energy Secretary Recognizes Argonne Scientists' Work to Fight Ebola, Cancer

Two groups of researchers at Argonne earned special awards from the office of the U.S. Secretary of Energy for addressing the global health challenges of Ebola and cancer.

Jefferson Science Associates, LLC Recognized for Leadership in Small Business Utilization

Jefferson Lab/Jefferson Science Associates has a long-standing commitment to doing business with and mentoring small businesses. That commitment and support received national recognition at the 16th Annual Dept. of Energy Small Business Forum and Expo held May 16-18, 2017 in Kansas City, Mo.

Rensselaer Polytechnic Institute President's Commencement Colloquy to Address "Criticality, Incisiveness, Creativity"

To kick off the Rensselaer Polytechnic Institute Commencement weekend, the annual President's Commencement Colloquy will take place on Friday, May 19, beginning at 3:30 p.m. The discussion, titled "Criticality, Incisiveness, Creativity," will include the Honorable Ernest J. Moniz, former Secretary of Energy, and the Honorable Roger W. Ferguson Jr., President and CEO of TIAA, and will be moderated by Rensselaer President Shirley Ann Jackson.

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

The Tennessee Higher Education Commission has approved a new doctoral program in data science and engineering as part of the Bredesen Center for Interdisciplinary Research and Graduate Education.

SurfTec Receives $1.2 Million Energy Award to Develop Novel Coating

The Department of Energy has awarded $1.2 million to SurfTec LLC, a company affiliated with the U of A Technology Development Foundation, to continue developing a nanoparticle-based coating to replace lead-based journal bearings in the next generation of electric machines.

Ames Laboratory Scientist Inducted Into National Inventors Hall of Fame

Iver Anderson, senior metallurgist at Ames Laboratory, has been inducted into the National Inventors Hall of Fame.

DOE HPC4Mfg Program Funds 13 New Projects to Improve U.S. Energy Technologies Through High Performance Computing

A U.S. Department of Energy (DOE) program designed to spur the use of high performance supercomputers to advance U.S. manufacturing is funding 13 new industry projects for a total of $3.9 million.

Penn State Wind Energy Club Breezes to Victory in Collegiate Wind Competition

The Penn State Wind Energy Club breezed through the field at the U.S. Department of Energy Collegiate Wind Competition 2017 Technical Challenge, held April 20-22 at the National Wind Technology Center near Boulder, Colorado--earning its third overall victory in four years at the Collegiate Wind Competition.


Casting a Wide Net

Designed molecules will provide positive impacts in energy production by selectively removing unwanted ions from complex solutions.

New Software Tools Streamline DNA Sequence Design-and-Build Process

Enhanced software tools will accelerate gene discovery and characterization, vital for new forms of fuel production.

The Ultrafast Interplay Between Molecules and Materials

Computer calculations by the Center for Solar Fuels, an Energy Frontier Research Center, shed light on nebulous interactions in semiconductors relevant to dye-sensitized solar cells.

Supercapacitors: WOODn't That Be Nice

Researchers at Nanostructures for Electrical Energy Storage, an Energy Frontier Research Center, take advantage of nature-made materials and structure for energy storage research.

Groundwater Flow Is Key for Modeling the Global Water Cycle

Water table depth and groundwater flow are vital to understanding the amount of water that plants transmit to the atmosphere.

Finding the Correct Path

A new computational technique greatly simplifies the complex reaction networks common to catalysis and combustion fields.

Opening Efficient Routes to Everyday Plastics

A new material from the Inorganometallic Catalyst Design Center, an Energy Frontier Research Center, facilitates the production of key industrial supplies.

Fight to the Top: Silver and Gold Compete for the Surface of a Bimetallic Solid

It's the classic plot of a buddy movie. Two struggling bodies team up to drive the plot and do good together. That same idea, when it comes to metals, could help scientists solve a big problem: the amount of energy consumed by making chemicals.

Saving Energy Through Light Control

New materials, designed by researchers at the Center for Excitonics, an Energy Frontier Research Center, can reduce energy consumption with the flip of a switch.

Teaching Perovskites to Swim

Scientists at the ANSER Energy Frontier Research Center designed a two-component layer protects a sunlight-harvesting device from water and heat.

Opening Efficient Routes to Everyday Plastics

Article ID: 673963

Released: 2017-05-02 11:05:27

Source Newsroom: Department of Energy, Office of Science

  • Credit: Image: Manuel A. Ortuño, ICDC EFRC

    Hollow channels of a sponge-like metal-organic framework material.

Just look around: bottles, cups, furniture. We use plastics every day. Researchers at the Inorganometallic Catalyst Design Center have discovered a new material that can efficiently transform propane into propylene, a key component of the common plastics around you.

Propylene has a broad variety of applications in industry. In 2013, the United States alone used more than 14 million tons of it! However, the typical industrial methods to obtain propylene are not very energy efficient. First, propylene is produced along with many other products with very low yield; second, the process requires temperatures as high as 650 °C or 1,200 °F. As an alternative, the addition of oxygen in the propane feed helps decrease the temperature needed for synthesis, but the reaction still requires a material to make the system more efficient. Here is where metal-organic frameworks, a.k.a. MOFs, make their entrance.

Versatile sponges. MOFs are a family of materials in which metallic centers are connected by organic molecules forming a 3D network. They contain large pores resembling those of a sponge. The MOFs can absorb and carry several times their own weight, so they can be used for gas storage and separation, detection of chemicals, and chemical reaction catalysis.

MOF catalysts coming to the rescue. One major application of MOFs is catalysis. A catalyst is a material that boosts the rates of chemical reactions, thereby making them more efficient and sustainable. Some reactions are not practical unless a catalyst is present. The activity of a solid catalyst usually depends on the amount of its surface that can be seen by the chemical reactants, such as propane. The use of highly porous MOFs tremendously increases the contact surface, such that each and every “hot spot” (catalytic site) can cause a chemical transformation.

There are a few known catalysts that, in the presence of oxygen, can transform propane (found in natural gas) into propylene (a valuable chemical), but their catalytic activity is low. However, by using a porous MOF to support cobalt oxides, scientists can prepare much smaller particles that could exhibit enhanced reactivity.

Just like a hundred marbles have more surface than one bowling ball, smaller cobalt oxides have larger contact surfaces. The particles are well separated in the MOF network, and that preserves the activity and lifetime of the catalyst. As a result, this new material can operate efficiently at low temperatures (for example, 230 °C or 446 °F) while maintaining a high and constant reaction rate for about 20 hours. Computational modeling has confirmed the experimental results showing that propylene is produced faster than other non-desirable products.

The first step of a long walk. This study provides a first step towards obtaining MOF-supported catalysts that are effective for low-temperature, more efficient, propylene production. Further optimization of these materials could ultimately affect the manufacture and pricing of everyday plastics. The impact of MOFs in daily life may soon be felt, with cheaper furniture, cups, and bottles possibly just around the corner!


Sponsors: This work was supported by the Inorganometallic Catalyst Design Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. A.W.P. and M.R.D. were supported by the Department of Defense through the National Defense Science and Engineering Fellowship program. A.E.P.P. acknowledges a Beatriu de Pinós fellowship from the Ministry of Economy and Knowledge from the Catalan Government.

User facilities: This work made use of the J.B. Cohen X-ray Diffraction Facility supported by the Materials Research Science and Engineering Centers program of the National Science Foundation at the Materials Research Center of Northwestern University. This work made use of the Electron Probe Instrumentation Center and Keck-II facilities of the Northwestern University Atomic and Nanoscale Characterization Experimental Center, which has received support from the Soft and Hybrid Nanotechnology Experimental Resource; the Materials Research Science and Engineering Centers program at the Materials Research Center; the International Institute for Nanotechnology; the Keck Foundation; and the State of Illinois, through the International Institute for Nanotechnology.

Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Materials Research Collaborative Access Team (MRCAT, Sector 10-ID-B) operations are supported by the U.S. Department of Energy and the MRCAT's institutions. The authors acknowledge the Minnesota Supercomputing Institute at the University of Minnesota for providing computational resources.

More Information: 

Li Z, AW Peters, V Bernales, MA Ortuño, NM Schweitzer, MR DeStefano, LC Gallington, AE Platero-Prats, KW Chapman, CJ Cramer, L Gagliardi, JT Hupp, and OK Farha. 2017. “Metal-Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature.” ACS Central Science 3(1):31-38. DOI: 10.1021/acscentsci.6b00290

This item, written by Manuel A. Ortuno and Zhanyong Li, is part of Frontiers in Energy Research, a newsletter for the Energy Frontier Research Centers created by early career members of the centers. See http://www.energyfrontier.us/newsletter/