Printed, Flexible and Rechargeable Battery Can Power Wearable Sensors

Nanoengineers at the University of California San Diego have developed the first printed battery that is flexible, stretchable and rechargeable. The zinc batteries could be used to power everything from wearable sensors to solar cells and other kinds of electronics. The work appears in the April 19, 2017 issue of Advanced Energy Materials.

Neutrons Provide the First Nanoscale Look at a Living Cell Membrane

A research team from the Department of Energy's Oak Ridge National Laboratory has performed the first-ever direct nanoscale examination of a living cell membrane. In doing so, it also resolved a long-standing debate by identifying tiny groupings of lipid molecules that are likely key to the cell's functioning.

How X-Rays Helped to Solve Mystery of Floating Rocks

Experiments at Berkeley Lab's Advanced Light Source have helped scientists to solve a mystery of why some rocks can float for years in the ocean, traveling thousands of miles before sinking.

Special X-Ray Technique Allows Scientists to See 3-D Deformations

In a new study published last Friday in Science, researchers at Argonne used an X-ray scattering technique called Bragg coherent diffraction imaging to reconstruct in 3-D the size and shape of grain defects. These defects create imperfections in the lattice of atoms inside a grain that can give rise to interesting material properties and effects.

Neptune: Neutralizer-Free Plasma Propulsion

The most established plasma propulsion concepts are gridded-ion thrusters that accelerate and emit a larger number of positively charged particles than those that are negatively charged. To enable the spacecraft to remain charge-neutral, a "neutralizer" is used to inject electrons to exactly balance the positive ion charge in the exhaust beam. However, the neutralizer requires additional power from the spacecraft and increases the size and weight of the propulsion system. Researchers are investigating how the radio-frequency self-bias effect can be used to remove the neutralizer altogether, and they report their work in this week's Physics of Plasmas.

Report Sheds New Insights on the Spin Dynamics of a Material Candidate for Low-Power Devices

In a report published in Nano LettersArgonne researchers reveal new insights into the properties of a magnetic insulator that is a candidate for low-power device applications; their insights form early stepping-stones towards developing high-speed, low-power electronics that use electron spin rather than charge to carry information.

Researchers Find Computer Code That Volkswagen Used to Cheat Emissions Tests

An international team of researchers has uncovered the mechanism that allowed Volkswagen to circumvent U.S. and European emission tests over at least six years before the Environmental Protection Agency put the company on notice in 2015 for violating the Clean Air Act. During a year-long investigation, researchers found code that allowed a car's onboard computer to determine that the vehicle was undergoing an emissions test.

Physicists Discover That Lithium Oxide on Tokamak Walls Can Improve Plasma Performance

A team of physicists has found that a coating of lithium oxide on the inside of fusion machines known as tokamaks can absorb as much deuterium as pure lithium can.

Scientists Perform First Basic Physics Simulation of Spontaneous Transition of the Edge of Fusion Plasma to Crucial High-Confinement Mode

PPPL physicists have simulated the spontaneous transition of turbulence at the edge of a fusion plasma to the high-confinement mode that sustains fusion reactions. The research was achieved with the extreme-scale plasma turbulence code XGC developed at PPPL in collaboration with a nationwide team.

Green Fleet Technology

New research at Penn State addresses the impact delivery trucks have on the environment by providing green solutions that keep costs down without sacrificing efficiency.


Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Describing the dizzying pace of technological innovation, former United States Secretary of Energy Ernest J. Moniz urged graduates to "anticipate career change, welcome it, and manage it to your and your society's benefit" at the 211th Commencement at Rensselaer Polytechnic Institute (RPI) Saturday.

ORNL Welcomes Innovation Crossroads Entrepreneurial Research Fellows

Oak Ridge National Laboratory today welcomed the first cohort of innovators to join Innovation Crossroads, the Southeast region's first entrepreneurial research and development program based at a U.S. Department of Energy national laboratory.

Department of Energy Secretary Recognizes Argonne Scientists' Work to Fight Ebola, Cancer

Two groups of researchers at Argonne earned special awards from the office of the U.S. Secretary of Energy for addressing the global health challenges of Ebola and cancer.

Jefferson Science Associates, LLC Recognized for Leadership in Small Business Utilization

Jefferson Lab/Jefferson Science Associates has a long-standing commitment to doing business with and mentoring small businesses. That commitment and support received national recognition at the 16th Annual Dept. of Energy Small Business Forum and Expo held May 16-18, 2017 in Kansas City, Mo.

Rensselaer Polytechnic Institute President's Commencement Colloquy to Address "Criticality, Incisiveness, Creativity"

To kick off the Rensselaer Polytechnic Institute Commencement weekend, the annual President's Commencement Colloquy will take place on Friday, May 19, beginning at 3:30 p.m. The discussion, titled "Criticality, Incisiveness, Creativity," will include the Honorable Ernest J. Moniz, former Secretary of Energy, and the Honorable Roger W. Ferguson Jr., President and CEO of TIAA, and will be moderated by Rensselaer President Shirley Ann Jackson.

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

The Tennessee Higher Education Commission has approved a new doctoral program in data science and engineering as part of the Bredesen Center for Interdisciplinary Research and Graduate Education.

SurfTec Receives $1.2 Million Energy Award to Develop Novel Coating

The Department of Energy has awarded $1.2 million to SurfTec LLC, a company affiliated with the U of A Technology Development Foundation, to continue developing a nanoparticle-based coating to replace lead-based journal bearings in the next generation of electric machines.

Ames Laboratory Scientist Inducted Into National Inventors Hall of Fame

Iver Anderson, senior metallurgist at Ames Laboratory, has been inducted into the National Inventors Hall of Fame.

DOE HPC4Mfg Program Funds 13 New Projects to Improve U.S. Energy Technologies Through High Performance Computing

A U.S. Department of Energy (DOE) program designed to spur the use of high performance supercomputers to advance U.S. manufacturing is funding 13 new industry projects for a total of $3.9 million.

Penn State Wind Energy Club Breezes to Victory in Collegiate Wind Competition

The Penn State Wind Energy Club breezed through the field at the U.S. Department of Energy Collegiate Wind Competition 2017 Technical Challenge, held April 20-22 at the National Wind Technology Center near Boulder, Colorado--earning its third overall victory in four years at the Collegiate Wind Competition.


Casting a Wide Net

Designed molecules will provide positive impacts in energy production by selectively removing unwanted ions from complex solutions.

New Software Tools Streamline DNA Sequence Design-and-Build Process

Enhanced software tools will accelerate gene discovery and characterization, vital for new forms of fuel production.

The Ultrafast Interplay Between Molecules and Materials

Computer calculations by the Center for Solar Fuels, an Energy Frontier Research Center, shed light on nebulous interactions in semiconductors relevant to dye-sensitized solar cells.

Supercapacitors: WOODn't That Be Nice

Researchers at Nanostructures for Electrical Energy Storage, an Energy Frontier Research Center, take advantage of nature-made materials and structure for energy storage research.

Groundwater Flow Is Key for Modeling the Global Water Cycle

Water table depth and groundwater flow are vital to understanding the amount of water that plants transmit to the atmosphere.

Finding the Correct Path

A new computational technique greatly simplifies the complex reaction networks common to catalysis and combustion fields.

Opening Efficient Routes to Everyday Plastics

A new material from the Inorganometallic Catalyst Design Center, an Energy Frontier Research Center, facilitates the production of key industrial supplies.

Fight to the Top: Silver and Gold Compete for the Surface of a Bimetallic Solid

It's the classic plot of a buddy movie. Two struggling bodies team up to drive the plot and do good together. That same idea, when it comes to metals, could help scientists solve a big problem: the amount of energy consumed by making chemicals.

Saving Energy Through Light Control

New materials, designed by researchers at the Center for Excitonics, an Energy Frontier Research Center, can reduce energy consumption with the flip of a switch.

Teaching Perovskites to Swim

Scientists at the ANSER Energy Frontier Research Center designed a two-component layer protects a sunlight-harvesting device from water and heat.

Origin of Milky Way's Hypothetical Dark Matter Signal May Not Be So Dark

Article ID: 673969

Released: 2017-05-02 12:05:52

Source Newsroom: SLAC National Accelerator Laboratory

  • Credit: NASA/CXC/University of Massachusetts/D. Wang et al.; Greg Stewart/SLAC National Accelerator Laboratory

    An excess of gamma-rays coming from the center of the Milky Way is likely due to a population of pulsars – rapidly spinning, very dense and highly magnetized neutron stars that emit “beams” of gamma rays like cosmic lighthouses. The pulsars’ location in the oldest region of the galaxy suggests that they leach energy from companion stars, which prolongs the pulsars’ lifetime. The background image shows the galactic center as seen by NASA’s Chandra X-ray Observatory.

  • Credit: NASA; A. Mellinger/Central Michigan University; T. Linden/University of Chicago

    When astrophysicists model the Milky Way’s gamma-ray sources to the best of their knowledge, they are left with an excess glow at the galactic center. Some researchers have argued that the signal might hint at hypothetical dark matter particles. However, it could also have other cosmic origins.

  • Credit: Greg Stewart/SLAC National Accelerator Laboratory

    An excess of gamma rays coming from the center of the Milky Way has fueled hopes the signal might stem from hypothetical dark matter particles that collide and destroy each other (left). The radiation could also be produced by pulsars – rapidly rotating neutron stars with strong magnetic fields (right).

  • Credit: NASA/DOE/Fermi LAT Collaboration

    Simulated distribution of gamma-ray sources in the inner 40 degree by 40 degree region of the Milky Way with the galactic center in the middle. The map shows pulsars in the galactic disk (red stars) and in the galaxy’s central region (black circles).

  • Credit: NASA

    Artist’s conception of the Fermi Gamma-ray Space Telescope in orbit. The Large Area Telescope (LAT) – one of the spacecraft’s two scientific instruments (center; the long wings are solar panels) – was assembled at SLAC, which also hosts its operations center.

  • Credit: NASA/DOE/Fermi LAT Collaboration

    The sky in gamma rays with energies greater than 1 gigaelectronvolts, based on eight years of LAT data.

Menlo Park, Calif. — A mysterious gamma-ray glow at the center of the Milky Way is most likely caused by pulsars – the incredibly dense, rapidly spinning cores of collapsed ancient stars that were up to 30 times more massive than the sun. That’s the conclusion of a new analysis by an international team of astrophysicists, including researchers from the Department of Energy’s SLAC National Accelerator Laboratory. The findings cast doubt on previous interpretations of the signal as a potential sign of dark matter – a form of matter that accounts for 85 percent of all matter in the universe but that so far has evaded detection.

“Our study shows that we don’t need dark matter to understand the gamma-ray emissions of our galaxy,” said Mattia Di Mauro from the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), a joint institute of Stanford University and SLAC. “Instead, we have identified a population of pulsars in the region around the galactic center, which sheds new light on the formation history of the Milky Way.”

Di Mauro led the analysis for the Fermi LAT Collaboration, an international team of researchers that looked at the glow with the Large Area Telescope (LAT) on NASA’s Fermi Gamma-ray Space Telescope, which has been orbiting Earth since 2008. The LAT – a sensitive “eye” for gamma rays, the most energetic form of light – was conceived of and assembled at SLAC, which also hosts its operations center.

The collaboration’s findings, submitted to The Astrophysical Journal for publication, are available as a preprint.   

A Mysterious Glow  

Dark matter is one of the biggest mysteries of modern physics. Researchers know that dark matter exists because it bends light from distant galaxies and affects how galaxies rotate. But they don’t know what the substance is made of. Most scientists believe it’s composed of yet-to-be-discovered particles that almost never interact with regular matter other than through gravity, making it very hard to detect them.

One way scientific instruments might catch a glimpse of dark matter particles is when the particles either decay or collide and destroy each other. “Widely studied theories predict that these processes would produce gamma rays,” said Seth Digel, head of KIPAC’s Fermi group. “We search for this radiation with the LAT in regions of the universe that are rich in dark matter, such as the center of our galaxy.”

Previous studies have indeed shown that there are more gamma rays coming from the galactic center than expected, fueling some scientific papers and media reports that suggest the signal might hint at long-sought dark matter particles. However, gamma rays are produced in a number of other cosmic processes, which must be ruled out before any conclusion about dark matter can be drawn. This is particularly challenging because the galactic center is extremely complex, and astrophysicists don’t know all the details of what’s going on in that region.    

Most of the Milky Way’s gamma rays originate in gas between the stars that is lit up by cosmic rays – charged particles produced in powerful star explosions, called supernovae. This creates a diffuse gamma-ray glow that extends throughout the galaxy. Gamma rays are also produced by supernova remnants, pulsars – collapsed stars that emit “beams” of gamma rays like cosmic lighthouses – and more exotic objects that appear as points of light.  

“Two recent studies by teams in the U.S. and the Netherlands have shown that the gamma-ray excess at the galactic center is speckled, not smooth as we would expect for a dark matter signal,” said KIPAC’s Eric Charles, who contributed to the new analysis. “Those results suggest the speckles may be due to point sources that we can’t see as individual sources with the LAT because the density of gamma-ray sources is very high and the diffuse glow is brightest at the galactic center.”

Remains of Ancient Stars  

The new study takes the earlier analyses to the next level, demonstrating that the speckled gamma-ray signal is consistent with pulsars.

“Considering that about 70 percent of all point sources in the Milky Way are pulsars, they were the most likely candidates,” Di Mauro said. “But we used one of their physical properties to come to our conclusion. Pulsars have very distinct spectra – that is, their emissions vary in a specific way with the energy of the gamma rays they emit. Using the shape of these spectra, we were able to model the glow of the galactic center correctly with a population of about 1,000 pulsars and without introducing processes that involve dark matter particles.”

The team is now planning follow-up studies with radio telescopes to determine whether the identified sources are emitting their light as a series of brief light pulses – the trademark that gives pulsars their name.

Discoveries in the halo of stars around the center of the galaxy – the oldest part of the Milky Way – also reveal details about the evolution of our galactic home, just as ancient remains teach archaeologists about human history.

“Isolated pulsars have a typical lifetime of 10 million years, which is much shorter than the age of the oldest stars near the galactic center,” Charles said. “The fact that we can still see gamma rays from the identified pulsar population today suggests that the pulsars are in binary systems with companion stars, from which they leach energy. This extends the life of the pulsars tremendously.”    

Dark Matter Remains Elusive  

The new results add to other data that are challenging the interpretation of the gamma-ray excess as a dark matter signal.

“If the signal were due to dark matter, we would expect to see it also at the centers of other galaxies,” Digel said. “The signal should be particularly clear in dwarf galaxies orbiting the Milky Way. These galaxies have very few stars, typically don’t have pulsars and are held together because they have a lot of dark matter. However, we don’t see any significant gamma-ray emissions from them.”

The researchers believe that a recently discovered strong gamma-ray glow at the center of the Andromeda galaxy, the major galaxy closest to the Milky Way, may also be caused by pulsars rather than dark matter. 

But the last word may not have been spoken. Although the Fermi-LAT team studied a large area of 40 degrees by 40 degrees around the Milky Way’s galactic center (the diameter of the full moon is about half a degree), the extremely high density of sources in the innermost four degrees makes it very difficult to see individual ones and rule out a smooth, dark matter-like gamma-ray distribution, leaving limited room for dark matter signals to hide.  

This work was funded by NASA and the DOE Office of Science, as well as agencies and institutes in France, Italy, Japan and Sweden.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. To learn more, please visit www.slac.stanford.edu.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.