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This protocol describes a complete data acquisition, analysis and computational forecasting pipeline for employing
quantitative MRI data to predict the response of locally advanced breast cancer to neoadjuvant therapy in a community-
based care setting. The methodology has previously been successfully applied to a heterogeneous patient population. The
protocol details how to acquire the necessary images followed by registration, segmentation, quantitative perfusion and
diffusion analysis, model calibration, and prediction. The data collection portion of the protocol requires ~25 min of
scanning, postprocessing requires 2–3 h, and the model calibration and prediction components require ~10 h per patient
depending on tumor size. The response of individual breast cancer patients to neoadjuvant therapy is forecast by
application of a biophysical, reaction–diffusion mathematical model to these data. Successful application of the protocol
results in coregistered MRI data from at least two scan visits that quantifies an individual tumor’s size, cellularity and
vascular properties. This enables a spatially resolved prediction of how a particular patient’s tumor will respond to
therapy. Expertise in image acquisition and analysis, as well as the numerical solution of partial differential equations, is
required to carry out this protocol.

Introduction

‘Mechanism-based modeling’ of cancer implies the incorporation of biological mechanisms into a
mathematical model designed to predict the spatial and/or temporal dynamics of tumor character-
istics. We (and others) have previously described the various opportunities and barriers for the
practical use of imaging data in predictive, mathematical modeling of cancer1–4. There is growing
evidence that imaging-informed, biophysical mathematical models can accurately predict the
development of cancers of the kidney5, prostate6,7, brain8–11, lung12,13, pancreas14–17, and breast18–27.
These studies often aim to evaluate tumor growth or response to therapy on a patient-specific basis
without having to first ‘train’ the model on large population data; that is, the individual patient’s data
calibrate the model, followed by a model-generated prediction about that individual patient’s tumor
response. Imaging data are a fundamental enabler of this process as the measurements can be
collected in three dimensions (3D) at the time of diagnosis and at multiple time points throughout
treatment, allowing for patient-specific calibration and prediction. Such an approach not only has the
capacity to potentially forecast response for individual patients, but this strategy may also enable an in
silico twin to be established for each patient to test therapeutic regimens and optimize treatment26,28.
As the majority (85%) of oncology patients receive their care outside of academic research-oriented
medical facilities29, parameterizing models with data accessible in a community setting that is specific
to an individual has the potential to dramatically and positively impact patient care.
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This protocol describes how to acquire quantitative MRI data of breast cancer within community-
based radiology centers, analyze this data to return spatially resolved maps of tumor physiology, and
employ the derived parameters for calibrating a predictive, mechanism-based, mathematical model of
tumor growth and treatment response on a patient-specific basis. While the components of this
pipeline have been previously described separately18–27, this the first description of how to apply the
methodology as one complete process. There has been a recent increase in the use of medical imaging
data to inform patient-specific mathematical models of tumor growth and treatment response
(see, e.g., ref. 30,); however, the field has been hampered by a lack of consensus on how the relevant
data are collected, processed and modeled. Thus, we hope this protocol will also provide a
(practical) learning tool that enables future strategies to be developed that use MRI data in
mathematical oncology.

Development of the protocol
Traditionally, high-spatial-resolution imaging data that enable anatomical and morphological
assessment have been acquired in the standard-of-care setting. Such data do not typically provide
insights into the underlying physiological, cellular and molecular characteristics of cancer, thereby
limiting their use for mechanism-based, mathematical modeling. Developing more specific and
quantitative measurements related to tumor biology, such as vascular status, perfusion, cellularity,
hypoxia, metabolism and proliferation, is a major effort in MRI research31. The field has matured
over the last decade, with many publications establishing the repeatability and reproducibility of
several of these imaging measures32–35. The National Cancer Institute’s Quantitative Imaging Net-
work was formed to further the clinical validation of such quantitative imaging to enable prediction of
tumor response to therapies in clinical trial settings36.

The present protocol uses two quantitative MRI modalities: dynamic contrast-enhanced MRI
(DCE-MRI) and diffusion-weighted MRI (DW-MRI). DCE-MRI acquires images in rapid succession
before, during and after the injection of a contrast agent. If the data are acquired at high enough
temporal resolution, they can be analyzed with an appropriate pharmacokinetic model to estimate
different tissue vascular features on a voxel-specific basis within the imaging volume. DCE-MRI is
repeatable and reproducible37–39, and the output of DCE-MRI analysis has a statistical relationship
with the response of breast tumors to neoadjuvant therapy (NAT)40–42. In a parallel fashion, DW-
MRI acquires data on water mobility in tissues that are linked to the number and quality of cell
barriers present, thereby providing a noninvasive readout on tissue cellularity43. DW-MRI is also
repeatable and reproducible37,38,44 and can predict the response of breast tumors to NAT40,45.
These two methods are therefore reasonable candidates for inclusion in mechanism-based,
mathematical modeling.

To predict individual prognosis for breast cancer patients, our group has developed mathematical
models that use patient-specific MRI data to initialize and constrain model parameters and predic-
tions; i.e., the model parameters are calibrated to the unique characteristics of each patient. The
earliest iteration of these modeling efforts employed a simple logistic model that utilized DW-MRI
data to estimate tumor cellularity20. The logistic model was later expanded to be defined both
temporally and spatially in 2D, where the baseline measurements of the tumor, tumor cell movement,
and the mechanical properties of the breast tissues were incorporated to constrain the model’s
predictions of the tumor growth and shape according to each individual patient’s anatomy21. While
this model’s predictions were shown to outperform standard measures (such as the Response Eva-
luation Criteria In Solid Tumors, RECIST) as a prognostic indicator of response to therapy22, it did
not explicitly consider the therapies of each individual patient. Following that iteration, we extended
the model to include estimates of drug delivery to each voxel via DCE-MRI, enabling a more accurate
assessment of local tumor cell death due to therapy on a patient-specific basis24. Most recently, we
have used this model to identify theoretical treatment regimens that we hypothesize would outper-
form the standard-of-care regimen the patient actually received26.

Details of the mathematical model
The model used here is based on a 3D mathematical model we developed that includes the
mechanical coupling of tissue properties to tumor growth and the delivery of systemic therapy24,26.
This model was designed to be initialized with patient-specific imaging data to predict response
of breast cancer patients to NAT21–23. The governing equation (a reaction–diffusion type
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partial differential equation, PDE) for the spatiotemporal evolution of tumor cells NTC(x,t),
(see ‘Approximating tumor cellularity’ below), with respect to time, t, and per voxel, x, is:

∂NTCðx;tÞ
∂t

¼ ∇ � D x;tð Þ∇NTC x; tð Þð Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Diffusion

þ kðxÞ 1�NTC x; tð Þ
θ

� �
NTC x; tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Proliferation

� αCdrug
tissueðx; tÞNTCðx; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Death due to treatment

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Reaction

; ð1Þ

where the first term on the right-hand side describes the effects of tumor cell movement (i.e., the
diffusion term), and the second term describes the tumor cell proliferation and death in time (i.e., the
reaction term). All model parameters and functions are described in Table 1, and the reader is
encouraged to refer to it as they move through the description of the mathematical model. This model
has been well documented through its evolution18–27, but we describe the features of the model and
the rationale behind the terms in detail here for clarity and completeness.

The function Dðx; tÞ represents the random diffusion (movement) of the tumor cells. Previously,
this function was simply a constant resulting in isotropic tumor spread21, but later work found that
incorporating individual patient breast anatomy into the diffusion term resulted in statistically sig-
nificant improvements in the prediction of total tumor cell number when compared with clinical
observations21. Thus, we mechanically couple the function Dðx; tÞ to the breast tissue’s material
properties via von Mises stress σvmðx; tÞ:

D x; tð Þ¼D0exp �γσvm x; tð Þð Þ; ð2Þ
where D0 is the diffusion coefficient in the absence of external forces, and γ is an empirical coupling
constant. The exponential term damps D0, where the von Mises stress is calculated for the fibroglandular
and adipose tissues within the breast, with the fibroglandular tissue assigned a greater stiffness than the
adipose tissue46. The mechanical coupling is subject to an equilibrium condition dependent upon
changes in tumor cell number:

∇ � G∇ u
*þ∇

G
1� 2ν

∇ � u*
� �

� λ∇NTC x;tð Þ ¼ 0; ð3Þ

where G is the shear modulus, G = E/(2(1–ν)), with Young’s modulus (E) and Poisson’s ratio (ν)
describing the material properties, u

*
is the displacement due to tumor cell growth, and λ is another

empirical coupling constant21–23,30,47–51. Therefore, the diffusion term encompasses tumor changes such

Table 1 | Description of variables for the model system

Variable Description

NTCðx; tÞ Number of tumor cells in the voxel at position x at time t

D Diffusion coefficient of tumor cells, where D = D0exp(−γσvm(x,t)) (mm2/d)

σvm Von Mises stress (N/m2)

u
*

Displacement vector due to tumor cell growth (mm)

G Shear modulus due to breast tissue properties, where G=E/(2(1-ν)) (kPa)
Cdrug
tissueðx; tÞ Concentration of drug in the tissue in the voxel at position x at time t (μM)

Parameter Description Value

D0 Diffusion coefficient of tumor cells without stress Calibrated, mm2/d

γ Mechanical coupling coefficient for stress Assigned at 2.0 × 10−3 (m2/N)

ν Poisson’s ratio Assigned, 0.45 (dimensionless)

E Young’s modulus for adipose, fibroglandular and
tumor tissues

Assigned, 2 kPa, 4 kPa and 20 kPa,
respectively

λ Coupling constant for displacement of tumor cells Assigned as 2.5 × 10−3 (N·m/cell)

k(x) Proliferation rate of tumor cells in the voxel at
position x

Calibrated, 1/d

θ Carrying capacity of tumor cells per voxel Defined, cells

α Efficacy of the drug against tumor cells Calibrated, 1/(μM·d)
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as growth or response to therapy that can cause deformations in the surrounding healthy tissues (i.e.,
fibroglandular and adipose tissues), thereby changing the stress field and the associated expansion
of the tumor.

The second term on the right-hand side of Eq. (1) is the reaction term that describes tumor
proliferation and therapy response. Due to the nature of the data, logistic growth is defined per voxel.
Specifically, for MRI data, measurements are defined per voxel, and for each voxel the volume is
known. Therefore, a maximum number of tumor cells can be estimated by using an approximate cell
size and packing density (again, see ‘Approximating tumor cellularity’ below). Using logistic growth,
the carrying capacity, θ, is defined per voxel as one value for all voxels, and the proliferation rate k is
spatially resolved, k(x), and derived from the data (see Step 38).

The reaction portion of the model also contains a term for tumor cell death due to therapy. The
parameter α is a global parameter that represents the effectiveness of the therapy, and Cdrug

tissueðx; tÞ
represents the concentration of drug in the tumor tissue at position x and time t, as approximated
from the Kety–Tofts model and patient-specific parameters (see ‘DCE-MRI analysis’ below).
Importantly, the concentration of contrast agent in the tissue and plasma time courses from the
Kety–Tofts model now represent those quantities for the administered drug. This is achieved by
replacing concentration of contrast agent in the plasma curve with standard drug concentration
curves for individual drugs and calculating the concentration in the tissue with each patient’s derived
vascular perfusion parameters (again, see ‘DCE-MRI analysis’ below). Therefore, an approximation of
the concentration of drug in the tumor tissue that is spatially non-uniform and temporally varying
based on the individual patient’s NAT schedule is generated. Thus, the therapy term provides an
estimation of the spatiotemporal distribution of drug in the tissue and its effect on the cells of each
voxel. This assignment of drug delivery in the model is only a first-order approximation, not unlike
other efforts that have sought to characterize the heterogenous delivery of systemic therapy through
tissue52–55. Note that this approach implicitly assumes that the chemotherapy will extravasate into the
tumor tissue in a manner similar to that of the gadolinium-based contrast agent, an assumption that
should be relaxed by future model refinements. If a patient’s drug concentration in the plasma
deviates from population curves, this would affect the calibration of the model parameters; however, α
provides a layer of flexibility in the model whereby the population-averaged approximation of the
drug in the plasma is modulated by this global parameter.

Overview of the protocol
The procedure is divided into five major components (Fig. 1): identification of patients who would
benefit (Step 1, not shown in Fig. 1), image acquisition (Steps 2–9), data preprocessing and analysis

Image acquisition

DW-MRI
B1 field map

Variable flip angle T1
mapping 
DCE-MRI 

Data pre-processing 
and analysis

Quality control and 
corrections

Intra-visit registration
Tumor segmention

Quantitative analyses

Mapping imaging 
data to the 

mathematical model

Inter-visit registration
Defining modeling 

domains
Calculate tumor 

properties

Tumor forecasting

Simulation
Calibration
Parameter 
uncertainty

Predicting tumor 
response

Patient
outcome

Model
prediction

Fig. 1 | Overview of the protocol. Each panel contains summary keywords for each section. The procedure has five
major sections: defining the patient population (Step 1, not shown), image acquisition (Steps 2–9), data analysis
(Steps 10–25), mapping imaging data to the mathematical model (Steps 26–36), and tumor forecasting (Steps
37–40). Each section of the procedure focuses on specific areas of the protocol, and each section can be adapted for
alternative investigations or used independently given specific circumstances in other studies. For example, the
image acquisition section can be adapted for MRI studies in other organs. Also, given imaging data that are already
acquired and analyzed, the mapping and forecasting sections can be applied. Note that informed consent must be
obtained from all subjects. DCE-MRI, dynamic contrast-enhanced MRI; DW-MRI, diffusion-weighted MRI.
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(Steps 10–25), mapping imaging data to the mathematical model (Steps 26–36), and tumor fore-
casting (Steps 37–40). Each component has been divided into multiple steps for clarity of pre-
sentation. In the procedure, we provide detailed descriptions of each component, as well as guidance
on avoiding potential pitfalls and suggestions for troubleshooting.

Patient selection
Our protocol was developed for patients recruited from community-based care centers that are
eligible for NAT as a component of their care. Such patients are heterogeneous in tumor size, receptor
status, age, body mass index and ethnicity. NAT (i.e., any treatment that occurs prior to surgical
intervention) is typically indicated for patients with locally advanced breast cancer and consists of one
or more regimens given over the course of 4–6 months. For example, in the case of triple-negative
breast cancer, the standard of care can include doxorubicin and cyclophosphamide (first regimen),
followed by paclitaxel (second regimen). There are, however, many variations in these protocols as
determined by treating physicians. (This is, of course, a primary motivator for developing a math-
ematical forecasting system so that treatments can be optimized on a patient-specific basis26,28.) The
clinical response designations for NAT of pathological complete response (pCR) or residual disease
(non-pCR) are determined by surgical pathology. Specifically, pCR is defined and reported as no
residual invasive disease in either breast or axillary lymph nodes after NAT.

Image acquisition
This protocol requires the acquisition of quantitative MRI data of a breast cancer patient before and
during NAT for calibrating a predictive, mechanism-based mathematical model designed to forecast
their individual response. The timing of the imaging time points before and during NAT are of
critical importance as they are used to calibrate, simulate and assess predictions of tumor response
with the mathematical modeling system. Our protocol recommends for MRI data to be acquired at
four time points: (1) prior to the initiation of NAT, (2) after one cycle of NAT, (3) after two to four
cycles of NAT, and (4) after one cycle of NAT from scan 3. (Note: by ‘cycle’ we mean the admin-
istration of a single drug or combination of drugs over a designated period of time, typically
2–4 weeks.) These four time points provide data that correspond to the first cycles of each therapeutic
regimen for the patients that receive two consecutive regimens (Fig. 2). While three or more imaging
time points are encouraged, two imaging time points are all that is required to calibrate the model
system and then compare predictions to standard clinical measures (e.g., pathological data from
biopsies or surgery) to directly test the modeling predictions.

All image acquisition and patient care (imaging, oncology treatments, etc.) can be performed in
community care settings (i.e., not academic, research-oriented medical centers). However, to work
within the confines of imaging in standard-of-care settings, certain factors must be considered. For
example, in the figures and examples included in this article, two scanners were used: one in an
outpatient imaging facility, and the second in a regional hospital that provides both inpatient and
outpatient services. While both imaging facilities undertook breast MRI as part of their routine
clinical practice (a full diagnostic scan is ~20 min), they are located at different sites and on different
service contracts, and have different quality control guidelines. The MRI technologists at such sites
are usually responsible for positioning the patients and running the research protocols but might not
have prior experience or expertise. Therefore, it is important to establish the repeatability and
reproducibility of the required MRI measurements in each new environment37,38, and implementa-
tion of the acquisition protocol requires clear (step-by-step) descriptions to be provided for the MRI
technologists performing the scans.

Working with community physicians enables a broader segment of the population to be reached,
but scheduling research MRI scans requires close integration and frequent communication regarding
the availability of the patients, treating oncologist, referring physicians, nurses, imaging center staff
and study staff. In our experience, missing time points or lack of data due to equipment failure,
patient health, scheduling issues and/or parties unwilling to provide time is not uncommon.
Moreover, community settings do not always employ a research-oriented nurse; therefore, lines of
communication need to be clearly defined at the beginning of the study. Despite these challenges,
working in community-based radiology settings can be easier for patients, with greater access to
different facilities and allowing for more convenient travel to participate in the study.

This protocol requires acquisition of five MRI data types at each scan session: (1) DW-MRI, (2) B1
field map to correct for radiofrequency (RF) inhomogeneity, (3) variable flip angle T1-weighted data
for generating a precontrast T1 map, (4) dynamic, high-temporal-resolution, T1-weighted data before,
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during and after the injection of a gadolinium-based contrast agent (DCE-MRI), and (5) high-
resolution, pre- and postcontrast, T1-weighted anatomical scans. These MRI data types were selected
to provide reliable and quantitative values for individual breast cancer tumors as they have been well
established in the literature. The imaging protocol utilizes standard sequences that are available on all
clinical MRI scanners, eliminating the need for work-in-progress sequences or novel sequences that
are not universally available.

DW-MRI provides information about the tissue microstructure by quantifying the motion of
water molecules. Water molecules freely diffuse at ~3 × 10−3 mm2/s at 37 °C, but as they encounter
various tissue barriers, including large densities of cells, this diffusion rate, known as the apparent
diffusion coefficient (ADC), will decrease31,56,57. A minimum of two b values (a factor that reflects the
strength, duration and timing of the diffusion-encoding gradients in the scan) is required for esti-
mation of ADC (in this protocol, we use three b values of 0, 200 and 800 s/mm2, which are commonly
utilized for breast tissue). DW-MRI acquired with very high b values (>1,000 s/mm2) may result in
low signal-to-noise ratio (SNR) that can adversely affect the ADC estimate, while low b values
(<100 s/mm2) can be affected by tissue perfusion where blood flow in the smallest vessels mimics
diffusion, thereby altering the interpretation of the image.

As different tissues exhibit different T1 relaxation times, T1 mapping provides a means to dif-
ferentiate tissue types (e.g., fat, muscle, parenchyma and/or tumor) and provides native T1 values
needed for downstream pharmacokinetic analyses of DCE-MRI data31,56,57. We use a standard
approach for clinical breast T1 mapping, involving the collection of multiple T1-weighted images at
variable flip angles. We collect images at ten flip angles ranging from 2° to 20° (in 2° increments) for
estimation of typical breast tissue T1 values (where more flip angles provide more data points for
better curve fits, and this range allows for accurate estimations of various tissues in the breast from
adipose to tumor). However, this approach is sensitive to inhomogeneities in the RF B1 magnetic field
used to ‘tip’ the magnetization by various flip angles, potentially leading to inaccurate estimations of
native T1

58. To address this issue, a B1 map is acquired to quantify and correct any spatial deviations
in the nominal flip angle during acquisition of the T1-weighted images used in mapping the T1
parameter. Other T1 mapping approaches include inversion and saturation recovery sequences (that
are not as affected by B1 inhomogeneities); these methods are the ‘gold standard’ for the calculation of

Scan 1 Scan 2 Scan 3 Scan 4

First therapy regimen Second therapy regimen

Surgery

Scan 1 Scan 2 Scan 3 Scan 4 Surgery

First therapy regimen Second therapy regimen

Calibrate Calibrate

Predict Predict

a

b

Fig. 2 | Timeline of MRI acquisition with an example standard-of-care NAT regimen for triple-negative breast
cancer consisting of two therapeutic regimens. a, Example NAT regimen only. b, Example regimen with the
protocol’s calibration and prediction strategy. For a and b, wide arrows indicate the first dose and start of each cycle
(i.e., the administration of a single drug or combination of drugs over a designated period of time, typically
2–4 weeks), while the narrow arrows indicate any additional doses within each cycle. For the first regimen, red
arrows represent combination doxorubicin and cyclophosphamide (typically consisting of four cycles where drugs
are administered as single doses separated by 2 weeks). For the second regimen, blue arrows represent paclitaxel
(typically consisting of four cycles where therapy is administered every week with each cycle lasting 3 weeks—small
arrows represent the additional doses). Some patients are treated with carboplatin in combination with paclitaxel,
where carboplatin is administered during the first week of each paclitaxel cycle only (wide blue arrows). After NAT is
complete, patients undergo surgery as part of their standard of care to determine pathological response. The
protocol has MRI data collected prior to and just after the first cycle of each therapeutic regimen.
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T1, but the time necessary to collect these sequences in multislice or 3D are clinically prohibitive and
are not incorporated into our protocol.

In DCE-MRI, a paramagnetic contrast agent is injected into the bloodstream through a peripheral
vein. It travels throughout the circulatory system and can extravasate into the tumor, leading to a
decreased T1 relaxation time and corresponding increase in signal intensity in a T1-weighted image.
DCE-MRI data are acquired by collecting T1-weighted images before, during and after the delivery of
contrast agent. DCE-MRI data can then be analyzed to segment different tissues with differing
contrast enhancement and also to extract measures characterizing contrast agent pharmacokinetics
(details provided below in ‘DCE-MRI analysis’). Acquisition parameters for our DCE-MRI mea-
surement were selected to yield a temporal resolution <10 s (7.27 s) for accurate estimation of
pharmacokinetic parameters59,60. If adjusting this protocol for other tissue types, it is important to
bear in mind that an appropriate flip angle that minimizes contrast agent saturation effects must be
selected for optimal DCE-MRI results, which may vary depending on the tissue imaged (i.e., breast
versus brain).

Data preprocessing and analysis
Image processing starts with quality control, image correction and image registration, before moving
to extract tumor-specific characteristics and quantitative descriptions of each tumor’s cellular density
and vasculature. The methods used include segmentation via clustering techniques as well as
analysis of the quantitative MRI data to return maps of quantities reporting on blood flow and
water diffusion40.

Tumor segmentation
To analyze and process data, a tumor region of interest (ROI) is required for each patient and scan
session. Using expertly drawn ROIs for the tumor burden is the gold standard. However, if provided
with a conservatively drawn ‘bounding box’ (i.e., a hand-drawn polygon that surrounds the tumor but
not its specific contours), thresholding based on enhancement is often used to determine the
boundaries of tumors from DCE-MRI data. This threshold is a value chosen for which any voxel with
signal intensity above that threshold in the postcontrast image is considered part of the tumor. As
thresholding techniques can require manual adjustment for each patient scan and additional infor-
mation to define patient-specific thresholds24 (and vary by contrast type and amount), it is best to use
as automated an approach as possible. Our protocol employs a fuzzy c-means (FCM) clustering
algorithm61,62. The FCM algorithm outputs the probability of a voxel being tumor or nontumor,
based on DCE-MRI contrast enhancement patterns. As FCM clustering does not partition voxels into
clusters, it is more tunable than other ‘hard’ clustering methods (e.g., k-means clustering). See Fig. 3
for representative images of generating ROIs using FCM.

Registration techniques
Our approach to imaging-based modeling requires that all image sets for each patient be registered to
one common spatial coordinate system; i.e., the images must be coregistered. Note that all registration
processes do not completely preserve voxel information—even when rigid registration is used—due to
multiple interpolations and resampling. To achieve image alignment, we perform two types of
registration: intravisit registration (aligning all the data collected within one scan session) and
intervisit registration (aligning each of the datasets across all scanning sessions for each patient).
Intravisit registration is performed to correct for patient motion during the scanning session and is

DCE-MRI Manually drawn ROI Resulting FCM-generated ROI

Fig. 3 | FCM clustering to generate a tumor ROI. Depicted is the sagittal cross section of a breast for the average
DCE-MRI data for one patient (all panels). For the middle panel, a manually drawn ROI is shown, which identifies a
conservative bounding polygon for the tumor. The right panel depicts the resulting ROI generated from the FCM
algorithm within the manually drawn bounding polygon. Informed consent was obtained from this patient.
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accomplished through a rigid registration prior to the calculation of quantitative parameters
from the data.

For each patient, all image datasets are registered across time (intervisit) to a common space via a
nonrigid registration algorithm with a constraint that preserves the tumor volumes at each time
point63. If MRI data are obtained at four time points, we choose to register scans 1, 3 and 4 to scan 2
(target), as scan 2 is not an endpoint scan and is acquired early enough so that the patient will (likely)
have tumor burden present to help guide alignment. The registration algorithm consists of a rigid
registration of the tumor ROIs followed by a deformable b-spline registration with a rigidity penalty
on the tumor regions64,65. This rigidity penalty is imposed to preserve the tumor volume/size and
shape across all scan times. With a fully deformable registration, the tumor ROIs of scans 1, 3 and 4
may be morphed to match the tumor ROI of scan 2. See Fig. 4 for example comparisons of different
registration results.

DCE-MRI analysis
The DCE-MRI data are analyzed using models of contrast agent pharmacokinetics to derive quan-
titative parameters of vascular perfusion and tissue volume fractions59. Specifically, the extended
Kety–Tofts model is used to perform quantitative analysis of DCE-MRI data. We have found that a
temporal resolution of 7.27 s for DCE-MRI data provides sufficient SNR and temporal sampling for
the extended Kety–Tofts model to be applied66. However, we strongly encourage evaluation of voxel
time course fits to determine which model appropriately captures the time course behavior of specific
datasets. Pharmacokinetic modeling requires characterization of the time rate of change of the
concentration of contrast agent in a feeding artery, i.e., the arterial input function (AIF). We estimate
the AIF from the population-averaged signal intensity time course extracted from the axillary
artery67. Further, we calculate the bolus arrival time (BAT) to shift the population AIF on a

Target Original Registered

d

a b c

e

f g

Fig. 4 | Comparison of intervisit registration results with and without tumor ROI penalties incorporated into the
registration scheme. a, Target image (scan 2, defined in Fig. 2). b, ‘Moving’ image to be deformed/shifted to align to
the target image (scan 3). In b, the moving image’s tumor ROI is indicated by a black outline. c, Result of registering
the moving image to the target image using the approach described in Steps 27–31 of the text (i.e., rigid + nonrigid
B-spline with a tumor ROI penalty). d,e, Representative grid of the original moving image (d), and resulting deformed
grid after registration (e), corresponding to the registered image in c. f, g, Deformations of the representative grid
after rigid registration only (translation and rotations only) (f) and after the nonrigid B-spline registration without a
tumor ROI penalty (g). Across b–g, white circles have been added to aid in comparing the fields for the areas
surrounding the tumor. Note that, by including the tumor ROI penalty, there is less deformation of the tumor ROI; i.e.,
there is less deformation within the white circle in e versus g. This procedure is applied to the scan 1, 3 and 4 MRI
datasets. Informed consent was obtained from this patient.
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voxel-wise basis to align the enhancement time of the AIF with that of the individual voxel61, allowing
for improved fits and more accurate parameter estimation.

The reference region model68 is another approach to quantitative DCE-MRI analysis, removing
the need for direct measurement of an AIF, where the tumor enhancement curve is compared with
that of a reference region, such as pectoral muscle tissue (requiring additional tissue segmentation
efforts). Simpler methods to analyze DCE-MRI data, such as the calculation of the signal enhance-
ment ratio69 and area under the signal intensity time course curve31, can provide semiquantitative
measures of vascular characteristics that have proven informative in distinguishing benign and
malignant lesions70 and predicting disease recurrence71.

Approximating tumor cellularity
The ADC is calculated from the DW-MRI data, representing the rate at which water molecules
diffuse in the tissue. It has been shown to approximate the cellular density of tissue. ADC values are
calculated for each voxel via standard methods72, and there is abundant literature on the inverse
relationship between the measured ADC and tumor cellularity73–77. However, there is a level of
ambiguity in the source of changes in ADC, as many other factors (e.g., cell membrane perme-
ability78, cell size and tissue tortuosity79) in addition to cellularity can also affect the measured ADC.
Therefore, the approach of appraising cellularity with ADC is an approximation, and ongoing efforts
are designed to eliminate some of the ambiguity in the interpretation of ADC80–82, which could lead
to improvements in the outcomes from applying the protocol.

Mapping imaging data to the mathematical model
After the generation of quantitative maps from each MRI data type, the maps are registered across all
scan sessions (i.e., intervisit registration) for each patient so that all imaging data are aligned to a
common image space. Once aligned, a breast domain is defined, within which each individual
patient’s data are used to calculate physical characteristics of each patient’s tumor utilized by the
mathematical model. The steps for generating tumor characteristics include calculating tumor cel-
lularity, defining masks delineating fibroglandular and adipose tissues, approximating drug dis-
tributions, and estimating summary measures for each tumor across all scans.

The mathematical model employs the patient-specific characterization of breast anatomy, cellu-
larity, vascular features and approximate drug distributions. This strategy is motivated by the
hypothesis that, if a mathematical model, initialized and constrained by noninvasive imaging data for
an individual patient collected early in the course of therapy, can be used to reliably predict tumor
response, oncologists may be able to intervene and modify therapy on a patient-specific basis.
Additionally, such a model could be used to optimize therapeutic regimens for patients with more
robust mathematical methods such as optimal control theory26,28.

Tumor forecasting
The quantitative maps are then used to initialize and calibrate tumor cell proliferation, drug efficacy
and cellular migration within the mathematical model. That is, each patient’s own imaging series is
used to parameterize or identify growth and response parameters unique to that individual patient.
Once parameterized, the model can be run forward for patient-specific predictions of the spatio-
temporal evolution of tumor cellularity, allowing for a prediction of treatment response that can be
directly compared with the observed outcome for each patient.

Expertise needed to implement the protocol
This protocol is designed to be implemented by a multidisciplinary team with experience and
expertise across a wide-range of fields including both the acquisition and analysis of advanced, non-
standard-of-care MRI data in the clinical setting, image processing (including segmentation and
registration), and the numerical solution of PDEs. If implemented in the community setting,
implementation requires coordination with community health providers.

The procedure described below was developed in direct response to the challenges presented for
the incorporation of breast cancer MRI data into predictive mathematical models. These methods
were therefore developed for data collected in the community setting, across multiple imaging sites,
within specific standard-of-care constraints, and for a heterogeneous patient population. We have
worked extensively to establish the repeatability and reproducibility of this quantitative MRI protocol
at community-based imaging centers37,38,83. Furthermore, our protocol utilizes several strategies to
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reduce bias and dependency on user interaction, including detailed data acquisition strategies as well
as automated or semiautomated computational algorithms. There are, unavoidably, tasks that require
expert evaluation (e.g., outlining tumor ROIs by radiologists) and others that rely on the operator’s
input (e.g., positioning the field of view (FOV) for MRI acquisition), which we have noted throughout
the protocol. Throughout our methods, we have worked to include automated quality checks and
quantification of the data to reduce overall user/operator influence.

Applications of the protocol
The protocol was designed for predicting response in breast cancer patients receiving NAT as a
component of their clinical care. While the details of the protocol presented here are specific to breast
cancer, the methods are generally applicable to any solid tumor for which the requisite data are
accessible. In fact, this protocol has already been modified for a multimodality breast cancer modeling
study25 and, more recently, for brain cancer84. (There have also been many applications of our
approach in the preclinical setting47,48,85–88.)

In addition to the mechanism-based, mathematical modeling for which the protocol was designed,
investigators who have previously collected the appropriate imaging data may use portions of the
protocol for data processing and analysis to yield (for example) longitudinally aligned quantitative
maps of tumor features. The data returned at the completion of Step 24 can then be employed in
more conventional statistical studies that assess longitudinal changes in tumor characteristics and
separating responders from nonresponders40,42,45. Such data can also provide the input data for
analysis in the emerging field of radiomics89,90, in ‘habitat imaging’91,92, and for application in
artificial-intelligence-based models.

Limitations
The temporal sampling requirements of the DCE-MRI protocol constrain the achievable spatial
resolution of data that can be collected while limiting noise. All images are acquired in the sagittal
plane; while the transverse plane is the standard-of-care choice with a bilateral FOV, our imaging
protocols use sagittal slices for better resolution over the affected breast within a minimal amount of
time. For example, a standard-of-care, T1-weighted, contrast-enhanced acquisition requires 80–90 s,
whereas the same scan in our protocol is <10 s. With this coarser spatial resolution, we are likely
unable to measure important anatomical features and may potentially miss small feeding vessels.
This, in turn, can limit modeling strategies that aim to incorporate nutrient/oxygen delivery as well as
estimates of the distribution of systemic therapies. Of course, ongoing efforts are actively investigating
ways to provide faster acquisitions at the spatial resolution and FOV typically acquired in the
standard-of-care setting61,93,94.

Another limitation is that, even if we consider only the United States, each oncology practice or
oncologist typically has a set of treatment regimens that are prescribed more often (all still within
National Comprehensive Cancer Network guidelines); thus, there may be more treatment options
included in the study when working with multiple recruiting physicians and oncology clinics, and
especially so if implementing in multiple countries. This can introduce limitations on the type of
analyses that can be performed until a large enough cohort of patients has been accrued for
statistical power.

With any quantitative measurement, error is expected. Therefore, we have included best practices
for encountering and dealing with physiologically implausible results, such as during the inter-
pretation of diffusion-weighted data and pharmacokinetic analysis. This is of particular importance
because mathematical models project/propagate errors derived from the data employed for calibra-
tion and prediction (which we address in the tumor forecasting section, Steps 37–40). Of course, the
MRI data and corresponding quantitative analyses are ultimately approximations of the breast
cancer’s characteristics at the tissue and cellular scale, and alternative methods and procedures should
continue to be explored to reduce error and ambiguity in these quantities.

We emphasize that what we present here is just one of many possible modeling formulations
applicable to the dataset produced by this pipeline, and there are various other cancer modeling
styles95. Also, while the protocol is built to accommodate heterogenous populations of patients, there
are certain exclusions applied to make the mathematical modeling as practical as possible. For
example, we exclude tumors at stages I and IV due to the fact that stage I tumors may be too small to
reliably measure (<2 cm in diameter) with the MRI techniques, and stage IV may require alternative
modeling techniques to account for tumor invasion and metastasis. Also, stage I and IV patients do
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not typically receive NAT; stage I tumors are treated with surgery and radiation, and stage IV tumors
are treated with palliative care. Furthermore, we note that many programming languages and
numerical schemes are available for determining solutions for PDEs (such as the finite element
method23), and for those less interested in the derivation of numerical codes, specific software
programs exist to aid in the implementation of PDEs (e.g., FEniCS and MATLAB’s PDE solvers).

Materials

Subjects
● Women over the age of 18 years who present with intermediate-to-high-grade invasive primary breast
cancer and are considering NAT as a component of their clinical care. Patients with disease from all
subtypes and treatment regimens (including immunotherapy, targeted and cytotoxic therapies) may be
included if they have disease stage II and III cancers. Patients with a history of kidney disease, with
abnormal creatinine or estimated glomerular filtration rate, who are pregnant or who are breast
feeding must be excluded. Also exclude any patients who have any non-MR compatible ferromagnetic
materials, are acutely ill, and/or for whom an MRI is technically unfeasible (e.g., due to breast volume
or obesity) ! CAUTION Patient data must be collected according to institutional and national
regulations, and informed consent must be obtained from patients (for an example, see Supplementary
Data 1). In the United States, data must be collected under an institutional review board-approved and
American Health Insurance Portability and Accountability Act (HIPAA)-compliant study in which
patients give informed consent to participate in a longitudinal MRI (with contrast) study throughout
the course of their standard-of-care NAT. For the example data we present here, we obtained health
information related to each participant’s disease and MRI scans. This information includes laboratory
test results, medical imaging reports, and diagnosis and treatment codes.

Reagents
● Gadolinium-based contrast agent (e.g., Multihance (Bracco) or Gadovist (Bayer)) c CRITICAL
Required for contrast-enhanced scans.

Equipment
● Power injector for administration of contrast agent (e.g., Medrad)
● MRI scanner
● Personal computer or server c CRITICAL For the data processing and analysis as well as the model
simulations, a personal computer may be capable of running the model calibration via the software
described below, but we recommend using a server with similar specifications to our server, which has
parallelized scripts for computational efficiency: 40 nodes, CPU per node: 2/8 Xeon E5-2680 2.7 GHz
(turbo, 3.5) 1/61 Xeon Phi SE10P 1.1 GHz, memory: 32 GB per node.

Equipment setup
MRI scanner
MRI of the breast should be acquired using 3T scanners equipped with an 8- or 16-channel double-
breast receive coil. For our studies, we employ Siemens scanners (Siemens Healthcare) with Sentinelle
coils (Invivo). Other 3T scanners (Philips, GE) and breast coils may require slight adjustments to
replicate the pulse sequences described in Steps 4–9, but as these are standard sequences, the scanners
have the capabilities of collecting equivalent imaging protocols. After scanning, Digital Imaging and
Communications in Medicine (DICOM) files are stripped of protected health information (PHI),
labeled with assigned study identifiers, and uploaded onto a firewalled protected server.

Software
● REDCap (https://www.project-redcap.org/) or similar c CRITICAL All clinical information regarding
patient demographics, diagnosis, treatment and surgical outcome must be acquired from the patient
clinical record by a nurse at the referring physicians’ office. We relay this information to the research
team using HIPAA-compliant communication and store in REDCap, a secure, HIPAA-compliant web
application for building and managing online databases96,97. REDCap is a widely available and utilized
service for managing single- and multiinstitutional clinical studies.

● MATLAB (MathWorks, Natick, MA) or similar c CRITICAL We use MATLAB software for the vast
majority of our process owing to its portability and convenient functionality across our diverse group
of biomedical researchers including experimentalists, computational scientists, engineers, physicists,
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mathematicians and medical professionals. However, alternative software programs are available for
the data processing, and with a sufficient programming background, the functions described
throughout our protocol can be replicated in those environments.

● Elastix (https://elastix.lumc.nl/) c CRITICAL Elastix is a toolbox for rigid and nonrigid registration of
images in 3D98. The algorithms used in Elastix for registration are similar to previous approaches used
by our group63,99–101. However, Elastix is an open-source toolbox, and its functions can be run through
the command line via MATLAB allowing it to be integrated into existing data processing scripts.

Procedure

Patient selection ● Timing ~15 min
1 Ensure patient is eligible for the study. Patients should be women over the age of 18 years who

present with intermediate-to-high-grade invasive primary breast cancer and are considering NAT
as a component of their clinical care. Verify with the treating oncologist that each patient has no
history of kidney disease and has normal creatinine and estimated glomerular filtration rate within
30 d of imaging studies. Exclude pregnant women and women who are breast feeding. Also exclude
any patients who have any non-MR-compatible ferromagnetic materials, are acutely ill and/or for
whom an MRI is technically unfeasible (e.g., due to breast volume or obesity).

2 Obtain informed consent from patient. Patients should be asked to consent to participate in research.
A copy of the consent form used by our ongoing study is supplied in the Supplementary Data 1.
! CAUTION Informed consent must be obtained from all subjects. Quantitative MRI, PHI and
therapeutic regimens are acquired for patients diagnosed with intermediate-to-high-grade invasive
breast cancers who are eligible for NAT as a component of their clinical care at community-care
oncology sites. The study population consists of women over the age of 18 years who present with
primary breast cancer and are considering NAT as a component of their clinical care. Importantly,
patients with disease from all subtypes and treatment regimens (including immunotherapy,
targeted and cytotoxic therapies) may be included for disease stage II and III cancers.

Image acquisition ● Timing ~1.5–2 h total per session (patient arrival to departure),
40 min (patient placement and removal from scanner), ~25 min (MRI scanning)

c CRITICAL We recommend the scanner be reserved for 40 min to allow sufficient time for patient to
be positioned in the breast coil (prone position), be scanned, and exit from the scanner. Preparation for
the MRI examination is no different than a typical, standard-of-care examination, including the
placement and removal of an intravenous line for administration of the contrast agent.
3 Insert an intravenous line. To do this, insert a short peripheral intravenous catheter (20–22 gauge)

in the antecubital or forearm area. Check correct positioning of the catheter tip for venous backflow
by withdrawing blood and flushing with normal saline.

4 Establish the FOV. Obtain several localizer scans at the beginning of the MRI session. First, obtain a
localizer scan by acquiring a three-plane (axial, sagittal and coronal) scout image series covering both

Table 2 | Breast MRI acquisition parameters

MRI parameters DW-MRI B1 mappinga High-resolution T1
(pre- and postcontrast)

T1 mapping: variable
flip angle

DCE-MRI

Scan sequence Single-shot spin echo,
echo planar

TurboFLASH T1-weighted, VIBE 3D gradient-echo FLASH T1-weighted, VIBE

TR (ms) 3,000 8,680 5.3 7.9b 7.02

TE (ms) 52 2 2.3 2.4b 4.6

Flip angle (°) 90 8 10 2–20 15

Acquisition matrix 128 × 128 96 × 96 256 × 256 192 × 192 192 × 192

Slice thickness (mm) 5c 5c 1 5c 5c

GRAPPA
acceleration factor

2 None 2 3 2

Fat suppression SPAIR None SPAIR None None

aDue to the inclusion of a slice gap in the B1 mapping protocol, two acquisitions (at 17 s each) were performed to cover the same FOV as the other measurements. bThese parameters should be set
to ‘minimum’ given the confines of the other pulse sequence settings. cIf adequate SNR can be maintained, then these values can be reduced. All breast MRI data were acquired in the sagittal plane
with a FOV of 256 × 256 mm2.
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breasts. Adjust the FOV to ensure coverage of the tumor in the affected breast without changing scan
parameters that would affect resolution or scan time. As all patients have been diagnosed with breast
cancer and tumor location is known, it is helpful to identify the approximate location of the lesion (e.g.,
‘7 o’clock, right breast’) from the referring physician’s office prior to the MRI to aid FOV placement.
Often, a metal-induced susceptibility artifact around the biopsy clip/marker can be used to locate the
approximate tumor center on the localizer scans. While finding the center of the FOV, adjust the
coverage in the anterior–posterior direction to include the axillary artery whenever possible (to allow for
characterization of the AIF). Acquire a second localizer scan with a sagittal-only sequence with 30 slices,
each 5 mm thick (15 cm of patient right-to-left coverage).

c CRITICAL STEP The imaging volume must be centered on the tumor and include all or as much
of the tumor as possible. Please see Table 2 for a complete summary of the imaging parameters
described in this and the following steps.
? TROUBLESHOOTING

5 Acquire DW-MRI data. Acquire DW-MRI over ten slices with 5 mm thickness and no slice gap. We
use the following parameters: repetition time/echo time TR/TE = 3,000/52 ms, flip angle 90°,
matrix 128 × 128 (over a 256 × 256 mm2 FOV), and GeneRalized Autocalibrating Partial Parallel
Acquisition (GRAPPA) acceleration of 2. We include spectrally selective adiabatic inversion
recovery (SPAIR) fat suppression. To allow for approximately equal SNR ratios at all b values,
average 6 acquisitions for b values of 0 and 200 s/mm2, and average 18 acquisitions for a b- value of
800 s/mm2 for a monopolar, single-shot spin echo, echo planar imaging sequence in a 3D-diagonal
diffusion-encoding direction. If using other scanners, use a sequence comparable to GRAPPA,
e.g., Autocalibrating Reconstruction for Cartesian imaging (ARC) for GE and image-domain
SENSitivity Encoding (SENSE) for Phillips.
? TROUBLESHOOTING

6 Map the B1 field. Use the Siemens TurboFLASH sequence with a preconditioning RF pulse102 to map
the B1 field with the following acquisition parameters: TR/TE = 8,680/2 ms, flip angle 8°, matrix 96 ×
96, and slice thickness 5 mm. Due to the inclusion of a slice gap in the B1 mapping protocol, perform
two acquisitions with a 5 mm slice gap, to cover the same FOV as the above measurements without
missing coverage in the slice direction. This pulse sequence is only available as a standard product
sequence on Siemens scanners at the time of publication. When Philips or GE Healthcare scanners are
used, an approximate B1 map can be computed from assuming a uniform T1 over adipose tissue and
interpolating over the rest of the images as published previously103,104.
? TROUBLESHOOTING

7 Acquire a high-resolution T1-weighted image. Use a volumetric interpolated breath-hold
examination (VIBE; no breath-holding required) sequence with the following acquisition
parameters: TR/TE = 5.3/2.3 ms, flip angle 10°, acquisition matrix 256 × 256, slice thickness 1
mm (96 slices), GRAPPA acceleration of 2 in the phase encode direction, and SPAIR fat
suppression. Then, acquire images for the precontrast T1 map without fat suppression with T1-
weighted images from the 3D gradient-echo, FLASH (fast low-angle shot) sequence, also known as
an SPGRE (spoiled gradient recalled echo) sequence, at ten flip angles (2°, 4°, 6°, …, 20°) with the
following parameters: TR/TE = 7.9/2.71 ms and GRAPPA accelerating factor of 3 in the phase
encode direction. Use an acquisition matrix of 192 × 192 × 10 over a sagittal square FOV (256
mm2) with slice thickness of 5 mm.

c CRITICAL STEP This precontrast T1-weighted MRI scan with fat suppression is required for
anatomical visualization purposes as well as for radiologists to identify the tumor ROI. The precontrast
T1 map is required for pharmacokinetic modeling of the DCE-MRI data described in the next step.

8 Acquire a dynamic set of T1-weighted, VIBE (no breath-holding required) images (this is the
DCE-MRI acquisition). Use the following acquisition parameters: TR/TE = 7.02/4.6 ms, flip angle
15°, matrix 192 × 192, with ten slices of 5 mm thickness each, and GRAPPA acceleration factor of 2
in the phase encode direction yielding a temporal resolution of 7.27 s. (Note that, with further
developments in rapid acquisition, slices thinner than 5 mm may be accessible without sacrificing
too much SNR.) The comparable sequences on GE and Philips scanners are FAME (Fast
Acquisition with Multiphase EFGRE3D) and THRIVE (T1W High Resolution Isotropic Volume
Examination), respectively. Start acquisition of this DCE-MRI data. After 1 min, begin to
administer a gadolinium-based contrast agent via a power injector at the dosage recommended on
the product insert and at the flow rate of 2 mL/s through the IV catheter placed in Step 3, all while
continuing to acquire the DCE-MRI data. Follow administration of the contrast agent with a saline
flush (20 mL) at a flow rate of 2 mL/s through (again) the IV catheter placed in Step 3.
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c CRITICAL STEP Note that different contrast agents or injection rates may lead to different
pharmacokinetics. If pharmacokinetic parameters are calculated, used or compared across the
patient population, it is imperative to use a consistent contrast agent and injection protocol. It is
also important to record the contrast agent dosage used for reference at subsequent visits.

9 Acquire a postcontrast, high-resolution T1-weighted image. Use a VIBE (no breath-holding required)
sequence with the following acquisition parameters: TR/TE = 5.3/2.3 ms, flip angle 10°, acquisition
matrix 256 × 256, slice thickness 1 mm (96 slices), GRAPPA acceleration 2, and SPAIR (Spectral
Selection Attenuated Inversion Recovery) fat suppression.

c CRITICAL STEP A postcontrast, T1-weighted MRI scan with fat suppression is required for
anatomical visualization purposes as well as for radiologists to identify the tumor ROI.

Image analysis ● Timing ~2–3 h
10 Upload and save data. Save as un-anonymized DICOM files onto the Picture Archiving

Communication System (PACS) server associated with the radiology practice that is acquiring the
scans. Save a separate copy of the DICOM files for which PHI is replaced with a unique subject
identifier, and upload these anonymized files onto a firewalled protected server.

j PAUSE POINT Data analysis can be performed at a later date. For each patient, we advise that the
images be processed and analyzed as a set across all visits. See Fig. 5 for a flowchart of all steps in
the data analysis pipeline.

11 Organize data. Copy DICOM data into individual patient visit directories to ensure original copies
of the data taken off the scanner are preserved. Import DICOM data into the MATLAB workspace
using built-in MATLAB functions dicomread and dicominfo. Arrange DICOM slices in ascending
order of slice position within the scanner (i.e., not acquisition order but spatial order; slices
collected in an interleaved fashion should be reordered by spatial location). Save the final image for
each type of MRI scan as a matrix in a MATLAB structure, along with the header information for
each DICOM (pulled in using dicominfo). Save each scan’s structure in floating point precision as .
mat files to integrate with the pipeline’s image processing and analysis steps. Save the DW-MRI,
variable flip angle T1-weighted and DCE-MRI data as 4D matrices where the fourth dimension
represents each b value, flip angle and repetition, respectively. Save the final MATLAB structure to
each patient/visit directory.

j PAUSE POINT Data analysis can continue at a later date.
12 Check the slice positions. Use the DICOM header information so that each scan is aligned with those of

the DCE-MRI data to ensure the same FOV is being analyzed across scans for each patient and visit.

c CRITICAL STEP At the scanner, several types of errors can occur, including a shifted FOV
(compared with previous scans) or slices offset by a value different than the 5 mm slice thickness.

j PAUSE POINT Data analysis can continue at a later date.
? TROUBLESHOOTING

13 Up-sample the DW-MRI and B1 map data to match the DCE-MRI spatial resolution. Use a nearest-
neighbor interpolation for 2D gridded data (interp2, MATLAB). Save the resulting interpolated
data to the .mat file in the MATLAB structure for that patient and visit.

c CRITICAL STEP In this protocol, the B1 map and DW-MRI data are acquired at a lower spatial
resolution than that of the DCE-MRI data (due to time constraints and SNR considerations). These
scans must match the resolution of the target image for successful intravisit registration.

j PAUSE POINT Data analysis can continue at a later date.
14 Align DW-MRI data to DCE-MRI data. Use the b= 0 image (as the SNR is higher for the b= 0 s/mm2

data compared with the b = 200 or 800 s/mm2 data). Register each slice of the b = 0 s/mm2

diffusion-weighted scan to the corresponding slice of the first repetition of DCE-MRI data using the
MATLAB rigid registration algorithm with function imregtform. Apply the transformation obtained
from the function’s output to the b = 200 and 800 s/mm2 DW-MRI data using the MATLAB
imwarp function. Save the resulting 4D matrix of DW-MRI data registered to the DCE-MRI data as
a separate .mat file.

j PAUSE POINT Data analysis can continue at a later date.
15 Align the variable flip angle T1-weighted MRI to the DCE-MRI data. Repeat Step 14, but use the

variable flip angle T1-weighted MRI data in place of the DW-MRI data. Register each slice of each
T1-weighted image to the first repetition of DCE-MRI data (imregtform, imwarp, MATLAB). Save
the variable flip angle data as a 4D matrix, and then export as a .mat file.

j PAUSE POINT Data analysis can continue at a later date.
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16 Align B1 maps. The B1 mapping sequence utilized for this study outputs a proton-density-weighted
image and a calculated map of the estimated flip angle each voxel in the image experienced. To align
the B1 maps to the DCE-MRI data, register each slice of the proton-density-weighted image to the first
repetition of DCE-MRI data (imregtform, imwarp, MATLAB—see Step 14) owing to the higher SNR of
the proton-density-weighted image compared with the flip angle map. Apply the resulting geometric
transformation to the flip angle map. Save the resulting data, and export as a .mat file.

j PAUSE POINT Data analysis can continue at a later date.
17 Correct for motion within the DCE-MRI scan. Align each slice of each repetition of the DCE-MRI

sequence to the corresponding slice of the first repetition (imregtform, imwarp, MATLAB—see Step
14). Save the resulting data as a 4D matrix, and export as a .mat file.

c CRITICAL STEP Breast motion due to respiration or patient movement can occur during the
DCE-MRI acquisition.

j PAUSE POINT Data analysis can continue at a later date.
18 Generate tumor ROIs. Manually draw a bulk ROI (this must be done by a board-certified

radiologist) to conservatively outline the lesion under investigation. Then, apply FCM clustering to
the voxels within the drawn ROI with the class number set to 2 (one each for the lesion and
nonlesion tissue types) using MATLAB’s fcm function. After the binary mask is identified,
postprocess to fill holes (i.e., zeros in the mask that are surrounded by ones) via the MATLAB
function imfill. Additionally, eliminate regions <8.45 mm3 (i.e., 1 × 1 × 1 voxels) via the MATLAB
function bwareaopen. Save the resulting ROI to the .mat file in the MATLAB structure for that
patient and visit.

c CRITICAL STEP The following lesion segmentation process was adapted from ref. 62.

j PAUSE POINT Data analysis can continue at a later date.
? TROUBLESHOOTING
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Fig. 5 | Flowchart of the data analysis steps of the protocol. Step numbers are listed in red, and step names are
listed in black. While the early data analysis steps (10–19) rely on the completion of the previous steps, several of the
latter steps (20–24) can be performed in parallel.
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19 Ensure registration is successful, and identify any artifacts (due to silicone implants, cardiac motion,
etc.). Manually visualize each set of pre- (from Steps 11–13) and postregistration (from Steps
14–17) scans. Remove patient datasets with substantial artifacts (deforming the images) from the
study. To evaluate the results of tumor segmentation, visualize ROIs by overlaying them on
background-subtracted DCE-MRI data as well as high-resolution postcontrast T1-weighted images.

j PAUSE POINT Data analysis can continue at a later date.
20 Calculate ADC maps. Fitting the DW-MRI data to Eq. (4):

S bð Þ ¼ S0 � exp �ADC � bð Þ; ð4Þ
where S(b) is the signal intensity in the presence of diffusion gradients at strength b, S0 is
the signal intensity in the absence of diffusion gradients, and b is the strength of the diffusion
gradients. Fit Eq. (4) to the signal intensities from the b = 200 and b = 800 s/mm2 DW-MRI data
on a voxel-by-voxel basis. In particular, for datasets that have only two b values, the ADC values
can be calculated directly (i.e., no fitting). Alternatively, use linear regression with ln(S(b)) and b to
determine the ADC map via MATLAB function regression. While the b = 0 s/mm2 data are
acquired, they are not used in the ADC calculation for this protocol—due to low b values being
affected by tissue perfusion—but are used in the registration of the diffusion-weighted data (details
in Step 14). Save the resulting ADC map to the .mat file in the MATLAB structure for that patient
and visit.

j PAUSE POINT Data analysis can continue at a later date.
? TROUBLESHOOTING

21 Calculate the B1-corrected T1 values for each voxel. Fit (lsqcurvefit, MATLAB) the measured multi-
flip angle, signal intensity data to the gradient-recalled echo signal, S, equation:

S ¼ S0 � sin f � að Þ � 1� exp �TR=T1ð Þð Þ
1� exp �TR=T1ð Þ � cos f � að Þð Þ

� �
exp �TE=T�

2

	 

; ð5Þ

where S0 is a constant related to scanner gain and proton density, α is the prescribed set of flip
angles, and f is the flip angle correction factor for a given voxel that accounts for inhomogeneity in
B1 (TE << T2

* is assumed, so exp(−TE/T2
*) can be set to 1). The flip angle correction factor (f) is

calculated by dividing the B1 map by the flip angle (a). The fitting process yields the flip-angle-
corrected T1 map and S0. Save the resulting corrected T1 map to the .mat file in the MATLAB
structure for that patient and visit.

j PAUSE POINT Data analysis can continue at a later date.
22 Calculate the population AIF. For each patient’s dataset, generate a subtraction image from

the contrast-enhanced data where the average precontrast dynamics are subtracted from
the average postcontrast dynamics. For each scan, identify the axillary artery in the subtraction
images. Manually select a single voxel within the axillary artery as a ‘seed’ for a 3 × 3 kernel
centered on the seed. Save the location of the seed in a vector. For an adjacent slice, select a
5 × 5 ROI centered on the voxel corresponding to the seed voxel location. For each voxel within the
5 × 5 ROI, define a 3 × 3 window centered on each voxel. Compare the average signal intensity time
courses of each window (25 windows) to that of the seed voxel’s kernel using the correlation
coefficient (MATLAB’s function corr). For the voxel window with the greatest correlation to the
seed, save the location of the voxel in the vector and set the voxel as the new seed. Repeat this
process through all of the slices. For the voxels saved in the vector, remove any voxels with the
following criteria:
● the maximum signal intensity does not occur within the first ~45 s of the postcontrast dynamics
● the maximum signal intensity is approximately <20 times greater than the standard deviation of
the first three precontrast dynamics

● the average signal intensity of the last ~120 s is approximately >40% of the maximum
For the voxels that remain in the vector after the three bulleted steps, average them at each time
point to yield one single, average time course. Save the resulting time course as the individual AIF to
the .mat file in the MATLAB structure for that patient and visit. To generate the population AIF,
average the resulting individual AIFs across all patient sets available.

c CRITICAL STEP This calculation of the population AIF makes use of the semiautomatic
algorithm developed by Li et al.63. Calculation of the population AIF can be updated with each
acquisition of new patient data67.

j PAUSE POINT Data analysis can continue at a later date.
? TROUBLESHOOTING
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23 Determine the BAT. Fit the signal intensity time course from each tumor voxel (using MATLAB’s
lsqcurvefit) to the half-logistic function

ShlðtÞ ¼
0; 0<t � τAT

2A
1þexp �B t�τBATð Þð Þ � A; t>τAT

(
; ð6Þ

where A and B control the amplitude and slope of the uptake portion of the Shl(t) time course,
respectively, and τBAT is the BAT at a specific voxel location. Temporally align the population AIF
curve for each voxel with:

Cp tð Þ ¼ 0; 0<t � delaypop
AIF t � delaypop

	 

; t>delaypop

;

(
ð7Þ

where delaypop = τBAT − τpop and τpop is the BAT of the population AIF61.
24 Convert the measured signal intensity for the DCE-MRI experiment to the concentration of contrast

agent to enable the pharmacokinetic modeling described below. The signal intensity measured in the
DCE-MRI experiment is described by Eq. (5), where we note that T1 ≡ T1(t) is how the measured
T1 value at time t changes due to the concentration of contrast agent according to:

1=T1 tð Þ ¼ r1Ct tð Þ þ 1=T10; ð8Þ
where r1 is the relaxivity constant specific to the contrast agent, and T10 is the native T1 (from the
precontrast T1 map obtained from Step 21). Finally, Ct(t) is described using the BAT-shifted AIF
(i.e., Cp(t) from Eq. (7)) and fitting each voxel’s concentration time course to the extended
Kety–Tofts model,

Ct x; tð Þ ¼ Ktrans xð Þ
Z t

0
Cp uð Þ exp � Ktrans xð Þ=ve xð Þ t � uð Þð Þð Þduþ vp xð ÞCp tð Þ; ð9Þ

where Ct(x,t) and Cp(t) are the contrast agent concentrations in the tissue and plasma, respectively, at
position x and time t; Ktrans(x) is the volume transfer constant of contrast agent from the plasma to
the tissue space at position x, ve(x) is the extravascular extracellular volume fraction at position x, and
vp(x) is the plasma volume fraction at position x. The measured signal intensity time course for each
voxel within the tumor ROI can now be fit by this nested set of three equations (i.e., Eq. (9)
substituted into Eq. (8), which is then substituted into Eq. (5)) and Cp(t) from Eq. (7), using lsqcurvefit
(MATLAB). This fitting routine provides a value of Ktrans, ve and vp at each voxel position, x, within
the tumor ROI. Calculate the efflux constant, kep (x) as KtransðxÞ/ve(x). Save the resulting four
pharmacokinetic parameter maps to the .mat file in the MATLAB structure for that patient and visit.

j PAUSE POINT Data analysis can continue at a later date.
? TROUBLESHOOTING

25 Generate enhanced anatomical images. Enhance contrast by applying a local-statistics-based transfer
function to each voxel of a subtraction anatomical image (average precontrast images minus average
postcontrast images)105. Specifically, use the transfer function

Ienh ¼
Ic �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2c � I2orig

q
; 0<X � Xc

Ic �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Imax � Icð Þ2� Imax � Iorig

	 
2q
;Xc<X � Xmax

8><
>: ð10Þ

where Iorg is the original image, Imax the maximum intensity in the original image, and Ienh the
resulting enhanced image. This transfer function is S-shaped, so Ic is the inflection point defined as
the 95th percentile of the intensity. This strategy for histogram normalization ensures that foreground
enhancement as well as background suppression can be achieved simultaneously. Save the resulting
enhanced anatomical images to the .mat file in the MATLAB structure for that patient and visit.

j PAUSE POINT Data analysis can continue at a later date.

Mapping the imaging data to the mathematical model ● Timing ~1 d (Steps 28–30 are the
rate-limiting steps as they require the use of all patient data in a study)

c CRITICAL The following steps (i.e., Steps 26–36) describe the methods required to convert the
processed MRI data into a single modeling domain and derive relevant, physical quantities for model
simulations starting with intervisit registration.
26 Manually compare the slices across the different visits evaluating each patient’s anatomy to determine

a rough slice alignment. Note that this is the first-time data from different visits are compared; i.e.,
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one cannot complete this step or continue to the next steps until data are acquired from at least two
visits. Using enhanced images, utilize unique characteristics in the patient’s anatomy (visible
structures in the tissue and vessels) and the tumor-bearing slices to determine which of the ten
slices for each visit correspond to the slices across all visits. Performing this initial alignment
improves the ability of the registration algorithm to converge to a solution. Save the corresponding
slices to the .mat file in the MATLAB structure for that patient and visit.

c CRITICAL STEP This is required prior to applying the registration algorithm.

j PAUSE POINT Analysis can continue at a later date.
? TROUBLESHOOTING

27 Convert files to .mhd files. This can be accomplished by using MATLAB’s Medical Imaging
Toolbox function write_mhd. To use this function, save the tumor ROIs and enhanced
anatomical images for the slices determined in Step 26 for registration. Additionally,
define parameter files for each patient and scan to be registered (further instructions for formatting
of these files can be found at http://elastix.bigr.nl/wiki/index.php/Parameter_file_database).
Once these files are generated, perform registration by calling the elastix function, which first
rigidly aligns the tumor ROIs and corresponding anatomical images followed by the b-spline
registration with rigidity penalty over the tumor ROI. Once the deformation field is generated,
apply the deformation field to all remaining maps and images for each patient set by calling the
transformix function.

c CRITICAL STEP This is required prior to running Elastix.
28 Explore a range of rigidity penalty weights. To select an appropriate weight for the rigidity penalty,

apply the above registration functions (Step 27) for a range of values for subset of patients, where
scan 2 is the ‘target’ image and scan 1 is the image to be registered.

29 Evaluate rigidity penalty weights. Evaluate the results of the different penalty weights (from Step 28)
using the metrics detailed below. Select a weight that maximizes metrics 1 and 3 while minimizing
metric 2. For metric 3, divide histograms (probability density functions) of the original target and
registered maps into the same 100 segments (i.e., converting the histograms into vectors), and then
normalize to calculate their inner product as similarity.
● Metric 1: similarity or normalized mutual information between reference image and registered
target image

● Metric 2: sum of the Jacobian determinant of the final deformation field within the tumor region
● Metric 3: consistency between the distributions of quantitative parameters before and after
registration

30 Select a rigidity penalty weight. Compare the resulting registered images (Step 28) to identify a
‘tolerant range’ of the studied configuration parameter (i.e., weight of the rigidity penalty term).
Within this tolerant range, the performance of registration is reasonable and similar; outside the
range, the registration either fails or substantially changes values within the tumor ROI (per the
metrics described in Step 29). Note that the tolerant range varies between different patients, as well
as between different visits for individual patients. Therefore, choose a value that falls in the tolerant
range for all the patients used in this parameter investigation.

j PAUSE POINT Analysis can continue at a later date.
31 Register the images. Using the details of Step 27 and the penalty weight derived from Steps 28–30,

register the enhanced images of scans 1, 3 and 4 to scan 2 (target). Apply the resulting deformation
fields to all corresponding patient parameter maps. Save the resulting registered data to new .mat
files (separate from previous data analysis files) in the MATLAB structure for that patient and visit.

j PAUSE POINT Analysis can continue at a later date. The following steps describe defining and
calculating modeling quantities.
? TROUBLESHOOTING

32 Define modeling domains. Manually draw breast ROIs to define the domain for mathematical
modeling. Using the enhanced images, for each slice, carefully outline the breast region outside of
the chest wall and within the skin of the organ using the MATLAB function roipoly. Save the
outlined shapes as binary masks, with zeros outside the breast ROI. If the tumor is not near the
chest wall, segmentation can simply eliminate the chest region. Save the resulting breast masks to
the .mat file in the MATLAB structure for that patient and visit.

j PAUSE POINT Analysis can continue at a later date.
? TROUBLESHOOTING

33 Calculate tumor cells per voxel. Using the MATLAB function imfilter, smooth the registered ADC
maps for each slice using a Gaussian filter with size 3 × 3 voxels. Convert the ADC value for each

PROTOCOL NATURE PROTOCOLS

18 NATURE PROTOCOLS |www.nature.com/nprot

http://elastix.bigr.nl/wiki/index.php/Parameter_file_database
www.nature.com/nprot


voxel within the tumor (as segmented using the above methods) to an estimate of the
number of tumor cells per voxel at each position x and time t, NTC(x,t), via established
methods:20–22,24,27,72

NTC x; tð Þ¼θ
ADCw�ADC x; tð Þ
ADCw�ADCmin

� �
; ð11Þ

where ADCw is the ADC of free water (3 × 10−3 mm2/s)106, ADC(x; t) is the ADC value for the
voxel at position x and time t, and ADCmin is the minimum (positive) ADC value over all tumor
voxels for the patient across all scans27,74. The parameter θ is the carrying capacity describing the
maximum number of tumor cells that can physically fit within a voxel; its numerical value can be
determined by assuming a spherical packing density of 0.7405107, a nominal tumor cell radius of
10 μm108 and a voxel volume of 8.45 mm3 (using the DCE-MRI resolution). Save the resulting
tumor cell map (NTCðx; tÞ) to the .mat file in the MATLAB structure for that patient and visit.

j PAUSE POINT Analysis can continue at a later date.
34 Segment the fibroglandular and adipose tissues. Use the enhanced imaging data and a two-class k-

means clustering (MATLAB function kmeans) to generate initial masks for fibroglandular and
adipose tissues37. To suppress noise and eliminate voxels containing both tissues, apply k-means
clustering for a second time on the adipose region segmented by the first clustering to erode the
edges. Finally, for the fibroglandular tissue mask, eliminate small ‘islands’ (≤10 connected voxels)
using MATLAB function bwareaopen. Save the resulting segmentation masks to the .mat file in the
MATLAB structure for that patient and visit.

j PAUSE POINT Analysis can continue at a later date.
35 Approximate drug delivery. To approximate concentrations of drug delivered throughout the tumor

tissue, utilize the derived physiological parameters from the perfusion/diffusion analysis and each
patient’s individual therapeutic regimen. Using Eq. (9) (the Kety–Tofts model) whereby the DCE-
MRI-derived parameters (Ktrans, ve and vp) are available for each voxel (from the analysis described
in Step 24), replace the Cp(t) term in Eq. (9) with the concentration of drug in the plasma from
measured population curves for each drug the patient received (for example, see refs. 109–112) with
repeated doses according to each patient’s specific therapeutic regimen. Save the resulting drug
distributions as a 4D matrix (time being the fourth dimension) to the .mat file in the MATLAB
structure for that patient and visit.

j PAUSE POINT Analysis can continue at a later date.
? TROUBLESHOOTING

36 Calculate tumor summary measures. Calculate the total tumor cellularity by summing the number
of tumor cells across all the voxels in the tumor ROI. Approximate the tumor volume as the
product of the total number of voxels within the segmented tumor ROI and the voxel volume (8.45
mm3 using the DCE-MRI spatial resolution described above in section 7). To calculate the longest
axis of each tumor, evaluate the 3D tumor ROI using the function regionprops3 within MATLAB,
which approximates the longest possible axis within a 3D object. These measures of cellularity,
volume and longest axis are to be applied to all of the model’s predictions to enable direct
comparison with the clinically measured data. Note that implementing this process of image
segmentation and longest diameter calculation makes the evaluation as rigorous as possible.

j PAUSE POINT Mathematical modeling can continue at a later date. The following steps provide
the methods for implementing a mathematical model to utilize the above patient-specific, MRI-
derived quantities to generate individual patient response predictions.

Tumor Forecasting ● Timing ~10 h per patient, can be up to several days depending on
tumor size
37 Implement the model (i.e., Eqs. (1–3)) in 3D. Use a fully explicit finite difference scheme with central

difference in space and forward difference in time. With voxel dimensions defined by the size of the
DCE-MRI voxel grid, a maximum diffusion coefficient of 0.001 mm2/d, a time step of Δt = 0.25 d
will ensure numerical stability. Set the size of the computational domain by a square whose
dimensions are determined by the size of the breast domain for each patient. Assign the tissue
stiffnesses in Table 1 to the tumor, fibroglandular and adipose tissue ROIs for the mechanical
coupling. Apply a no-flux boundary condition for the tumor cells and zero tissue displacement (i.e.,
u
*

= 0 at the x-boundary) on the breast domain boundary. For computational efficiency, solve the
mechanical coupling (Eq. (3)) to the diffusion (Eq. (2)) every 20 timesteps. For additional details on
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implementing these numerical methods, see ref. 50. Please also see the troubleshooting table for
additional details to ensure simulation accuracy.

j PAUSE POINT Model calibration can continue at a later date.
? TROUBLESHOOTING

38 Calibrate model parameters for each patient. Utilize two of the MRI datasets for each patient to
calibrate the mathematical model and then simulate the model to a later scan or the time of surgery
to make a prediction of tumor response. For example, the datasets from visits 1 and 2 are used for
calibration to the first therapeutic regimen, thereby enabling simulating the model and predicting
the measured response of the tumors at the time of visit 3. Similarly, use datasets from visits 3 and 4
for calibration to the second therapeutic regimen to simulate the model and predict the response of
tumors at the time of surgery (as determined by pathology). See Fig. 2 for an illustration of this
calibration and prediction strategy.

Use the cellularity maps of the two scans for each patient (derived from the ADC of the DW-
MRI data—see Steps 20 and 33) to calibrate model parameters, where the tumor from the earlier
imaging visit initializes the calibration (with the corresponding tissue maps for mechanical coupling
and distributions of drugs) and the later tumor ROI is the target for calibration. Calibrate the D0

and α parameters globally, and the k parameter map spatially, where the remaining parameters are
assigned to the literature values in Table 1 and θ is directly calculated (Step 33). Utilize a
Levenberg–Marquardt least-squares, nonlinear optimization for calibration113, where the sum of
squared errors between the simulated tumor cell numbers from the model and the calculated
number of tumor cells from the imaging data is minimized with the following parameters:
maximum number of iterations 200, initial lambda 10−20, and lambda increment factors 9 and 11,
and perform the Jacobian calculation every 25 iterations. Additionally, bound the global parameters
D0 and α to be greater than zero, and bound D0 < 0.001 mm2/d. Stopping criteria are the sum of the
squared errors < 0.001, concordance correlation coefficient of 1 between the model simulation and
target distribution of tumor cells, and/or after the maximum number of iterations has been realized.
See ref. 50 for additional details on the implementation of the Levenberg–Marquardt method for
model calibration.

j PAUSE POINT Tumor forecasting can continue at a later date.
? TROUBLESHOOTING

39 Assess uncertainty. For the following predictions and evaluations, uncertainty related to the
calibrated parameters and data measurements must be considered. Choose three representative
datasets from the cohort. Using the calibrated parameters, simulate the model from scan 1 to scan 2
(target scan for calibration) for each tumor. Add an appropriate range of noise (determined by, for
example, repeatability studies for DW-MRI data37) to voxels in each tumor cell map of the model
generated scan 2 results using a normal distribution (MATLAB function randn). Calibrate the
model to the noisy scan 2 tumor cell map, and save the resulting parameter values. Repeat for a
total of 100 sets for each tumor in the three representative datasets (N = 300 total). Calculate the
percent difference for each parameter between the corresponding original parameter values and
each of the results from fitting the noisy data. Calculate the 95% confidence interval for each
parameter using all samples. Determine whether a uniform or normal distribution is representative
of the resulting parameter difference distributions.

For each patient in the cohort, generate 50 random parameter sets by sampling distributions of
the parameters defined by the calculated 95% confidence intervals centered about each patient’s
calibrated parameter set (use MATLAB’s rand for uniform distributions or randn for normally
distributed values). Simulate the model from scan 2 to scan 3 for each of the 50 randomized
parameter sets for each patient. Calculate the 95% confidence interval across all 50 resulting tumor
predictions for each patient for total cellularity, volume and longest axis. Therefore, simulation
results will include confidence intervals based on the uncertainty in the parameter estimates.

40 Forecast tumor response. Using the corresponding calibrated parameters and maps (tissues, tumor
cellularity, drug distributions) from scan 2, simulate the model from the time of scan 2 to scan 3.
Evaluate the resulting 3D prediction with measured tumor response using the summary measures
(total tumor cellularity, total tumor volume and longest axis, Step 36). Additionally, compare the
predicted tumor and measured scan 3 tumor with the Dice coefficient (measuring overlap of the
predicted ROI and measured ROI; a Dice of zero indicates no overlap, whereas a Dice of 1 indicates
perfect overlap), and/or the concordance correlation coefficient to directly compare the prediction
to the measurement for each patient. The predicted percent change from baseline to scan 3 can be
compared with actual response defined by RECIST.
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Using the corresponding calibrated parameters and maps (tissue, cellularity, drug distribution)
from scan 4, simulate the model from the time of scan 4 to scan surgery. Compare the resulting
summary measures and their corresponding predicted percent changes with surgically defined
responses for the cohort (e.g., pCR versus non-pCR groups) using appropriate statistical
comparison test for the cohort size (i.e., t tests, Wilcoxon rank sum test, Kendall and Pearson
correlation coefficients, etc.).

Troubleshooting

Troubleshooting advice can be found in Table 3.

Table 3 | Troubleshooting table

Step Problem Possible reason Solution

4 Unable to identify the tumor Breast tissue anatomy and tumor
sizes/shapes vary widely between
patients, and it may be very
difficult to identify the tumor

Biopsy clips and radiological notes are frequently helpful
for identifying the tumor location. Biopsy clips create a
dark signal void surrounded by brighter tissue signal and
are easily spotted

5 Low SNR The resolution of the image may
be too fine

Boost SNR by choosing a lower resolution or regridding
the image post acquisition

6 When a product sequence for
measuring B1 is not available

Scanner is not equipped with a
B1-mapping sequence

After an initial uncorrected T1 map is made using the
variable-flip angle sequence approach, use thresholding to
select only those voxels that most likely belong to adipose
fat. Based on the assumption that T1 values should be a
consistent value for these voxels, compute an estimate of
the flip angle error by assuming the acquired map includes
B1 error. Once the B1 map is filled in for adipose fat voxels,
use spatial interpolation to estimate B1 at other (non-fat)
voxels. This correction, while suboptimal to performing a
true B1 map, should serve to reduce the magnitude of flip
angle error when B1 mapping sequences are not available
on the study scanner103,104

12 A certain scan acquisition
contains more slices than
included for the DCE-MRI data

This often happens during
scanning for variable flip angle T1
mapping data, the high-resolution
T1-weighted data

Only utilize the aligned slices or do a 3D interpolation to
realign the images for downstream analysis, and save the
data in a new structure

18 Too much or too little tumor
results from segmentation

FCM algorithms have a threshold
that can be tuned for belonging to
different partitions

Adjust the membership threshold in the FCM algorithm

20 Unable to derive expected values
for ADC

Using low b values (<100 s/mm2)
can be affected by tissue
perfusion, thus altering the
interpretation of the image

Including more than two b values can improve the
accuracy of parameter estimation

Poor data fitting May need to use interpolation methods to populate ADC
values for voxels with bad fits

21 Signal drop in the AIF Standard-of-care examinations
may administer high
concentrations of contrast agent,
which may induce T2

* effects in
the signal intensity curves
measured from the large vessels
(i.e., those typically employed for
AIF estimation)

May need to assume an analytical form of the
concentration of the contrast agent in the plasma and fit
to the average signal intensity time course67

22 Unphysiological values from the
pharmacokinetic model fits Ktrans,
ve, vp, kep < 0, ve, vp > 1, and/or
Ktrans, kep > 5

Could be in regions of necrosis
where the Kety–Tofts model does
not account for such
phenomena114

Bound calibration method or filtered-out values beyond
the physiological range from downstream analysis (may
need to use interpolation methods to populate filtered-out
voxels)

26 Alignment of tumors/anatomy is
off by several slices

Can occur despite best efforts to
center the FOV on the center of
the tumor during scanning—due
to the tumor dramatically
changing in size and shape during
the course of therapy

Additional blank slices may be needed to ‘pad’ the ends of
any particular scan set to achieve alignment and maintain
equal dimensions across datasets

Table continued
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Timing

All times are approximate.
Step 1, patient accrual: highly variable depending on local method
Step 2, patient consent: 15 min
Step 3, placement of IV line: 10 min
Step 4, FOV determination for MRI examination: 2 min
Step 5, DW-MRI data acquisition: 1 min 39 s
Step 6, B1 map data acquisition: 34 s
Step 7, pre-contrast high-resolution T1-weighted scan, and variable flip angle T1-weighted images: 3 min
13 s and 1 min 39 s, respectively
Step 8, DCE-MRI data acquisition: 8 min
Step 9, precontrast high-resolution T1-weighted scan: 3 min 13 s
Step 10, upload to PACS: 5–10 min
Step 11, DICOM reading and conversion: 6 min
Step 12, checking of slice positions using the DICOM header information: 1 min

Table 3 (continued)

Step Problem Possible reason Solution

31 Intervisit registration failure Despite careful initial alignment of
slices and selection of the tumor
ROI weight factor, the registration
can fail (especially for tumors that
have greatly reduced in size by the
time of scan 4)

Additional manipulations may be required, including
trimming the moving images to remove large amounts of
image outside the breast and/or remove large amounts of
the image that includes the chest cavity. Even with these
additional corrections, registration can fail or simply be
unable to align tumor ROIs. In these cases, simple rigid
registration or manual alignment may be necessary. The
MATLAB functions imregtform and imwarp can be used for
rigid registration

32 Unusual breast domain Some breasts contain implants
near the tumor ROI that would not
be a part of the modeling domain

For breasts containing implants, two domains can be
drawn: the first containing the entire breast region and the
second where the breast implant is segmented out. The
first breast mask can be used for image/display purposes,
but the mathematical model simulates on the second
domain as we assume the tumor cannot grow into the
breast implant

35 DCE-MRI data do not have the
requisite temporal resolution for
pharmacokinetic analysis

We note that certain MRI
protocols do not allow for the
requisite temporal resolution for
pharmacokinetic analysis

In these cases, to approximate a normalized drug
distribution in each voxel of tissue, a map of the blood
volume can be calculated by computing the area under
the dynamic curve (AUC) of the baseline-subtracted time
course for each voxel and normalized by the AIF AUC
value (as an approximation of blood volume) from
contrast-enhanced data25. The signal enhancement ratio71

may also be used in this way to estimate drug distribution

37 Numerically unstable results This can be due to several
numerical scheme errors

Check that the diffusion coefficient, grid size and time
step selected maintain numerical stability (see ref. 50 for
stability equations specific to this scheme). Verify
boundary conditions where tumor cells are conserved and
not lost when proliferation is zero and diffusion is large

38 Calibration is computationally
expensive

Calibration can take >1 d per
patient when using a spatially
defined proliferation map for large
tumors and domains

To reduce computation time for all calibrations, the voxel
matrix within the designated domain can be down-
sampled. Parallelize codes to further reduce
computational cost by utilizing multiple available
processors concurrently on a server. Focus calibration on
a smaller domain containing the tumor ROI and not over
the whole breast. Broyden’s method can also be used to
approximate the update of the Jacobian for each iteration

Calibration will not converge Using maps from the previous
scan may limit the calibration
scheme to hit the target (e.g.,
using scan 1 maps to calibrate to
scan 2). Different tumors may be
more difficult for the calibration to
converge

Can use the starting number of tumor cells and shape
from scan 1 (scan 3) with the tissue and drug distribution
maps of scan 2 (scan 4) for calibration. The lambda
increment factors increased or decreased are often
problem-specific and need to be empirically determined to
improve convergence. Larger tumors may require more
iterations
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Step 13, upsampling of the DW-MRI and B1 map data to the resolution of the DCE-MRI data: 3–4 min
Step 14, alignment of the DW-MRI data to the DCE-MRI data: 1 min
Step 15, alignment of the variable flip angle T1-weighted images to the DCE-MRI data: 7 min
Step 16, alignment of the B1 data to the DCE-MRI data: 1 min
Step 17, motion correction within the DCE-MRI data: 9 min
Step 18, tumor segmentation: 20 min
Step 19, quality control of the acquired data: 5 min
Step 20, calculation of the ADC maps: 4 min
Step 21, computation of the B1-corrected T1 maps: 22 min
Step 22, construction of a patient’s AIF: 5 min
Step 23, BAT determination for each voxel in the DCE-MRI dataset: 5 min
Step 24, pharmacokinetic analysis for each voxel in the DCE-MRI data: 25 min
Step 25, enhancement of the anatomical images: 2 min
Step 26, comparison of slices across all visits for each patient: 10 min
Step 27, conversion of file types to .mhd: 1 min
Steps 28–30, identification of longitudinal registration weighting for all patient data from all patient
visits: 1 d
Step 31, alignment of parameter maps from all visits for each patient: 15 min
Step 32, selection of domain for mathematical modeling for each patient set (i.e., all scan sessions from
one patient): 5–10 min
Step 33, conversion of ADC maps to estimates of cell number: 1 min
Step 34, segmentation of breast tissue into fibroglandular and adipose tissues: 1 min
Step 35, estimation of spatiotemporal distribution of drug concentration: 1 min
Step 36, calculatation of the estimate of tumor cells, total tumor volume and longest axis: 1 min
Step 37, simulation of the model forward in space and time: 5 min
Step 38, calibration of the model to the patient data: several hours to 2 d, depending on the domain size
Step 39, assessment of uncertainty in model predictions: 1 d
Step 40, evaluation of predictive ability: 5 min

Anticipated results

In the following sections, we describe and present illustrative results associated with processing one
dataset through the entire protocol. The example dataset used is that of a breast cancer patient with
triple negative (estrogen receptor, progesterone receptor and human epidermal growth factor
receptor 2 negative) invasive ductal carcinoma in the left breast. At the time of the first imaging
session, the patient was 59 years of age with a body mass index of 28.3 kg/m2. All four scans were
acquired over a period of 6 months during which the patient was treated with NAT. Surgery
determined that the patient had residual disease (i.e., a non-pCR outcome) at the conclusion of NAT.

Image acquisition
See Fig. 6 for examples of the resulting MRI data collected for the patient’s first scan from the data
acquisition steps. Figure 6a shows the lower b-value diffusion-weighted image (see Step 5), while Fig.
6b presents the B1 map quantifying the difference between the prescribed flip angle and that actually
experienced by each voxel (Step 6). Figure 6c shows a single 10° flip angle image from the multi-flip
angle data acquired to estimate the T1 map (Step 7), and Fig. 6d displays the average of all images
acquired during the DCE-MRI sequence (Step 8). Note the differences between the various MRI
modalities; in particular, observe how the DCE-MRI data (Fig. 6d) allow for visualization of the
tumor and other tissue structures.

Data processing and analysis
See Fig. 7 for how the example images in Fig. 6 are processed using the protocol (Steps 10–25) to
identify various properties of the patient’s tumor. In particular, the ADC map is derived from the
DW-MRI data acquisitions (Step 20), the tumor ROI is defined using the DCE-MRI data and FCM
algorithm (Step 18), a corrected T1 map is generated from the variable flip angle T1 images and the B1
map (Step 21), and the resulting Kety–Tofts parameters characterizing the vasculature within the
tumor are derived utilizing the DCE-MRI data, tumor ROI and corrected T1 map (Step 23).
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Mapping imaging data to the mathematical model
See Fig. 8 for example intermediary and subsequent images for the steps that convert the quantitative
data maps to quantities utilized within the mathematical modeling system. Here, for example,
images for all four scans can be visualized in the intervisit registration Fig. 8a (Steps 26–31).
After intervisit registration, a modeling domain is identified over the breast (Step 32), ADC values
within the tumor ROI are converted to tumor cellularity (Step 33), masks for the fibroglandular and
adipose tissues are generated using a k-means clustering algorithm (Step 34), and drug distribution in
the patient’s tissue is approximated using the Kety–Tofts model and plasma concentration curves of
the patient’s therapeutic regimen (Step 35). For this patient, the resulting summary measures
described in Step 36 for visits 1–4 are: total cellularity (cells) of 1.53 × 109, 1.42 × 109, 1.13 × 109 and
1.20 × 109; volumes (mm3) of 14,462, 11,831, 5,813 and 4,551; and longest axes (mm) of 36, 34, 32
and 29, respectively.

T1 (10°)B1 mapDW-MRI (b = 200 s/mm2) DCE-MRI

0 0 2  0 0 2 × 102

Units SI FA ratio ms SI

a b c d

1.5 × 1035 × 102

Fig. 6 | Example image acquisition results. a–d, A central slice for an illustrative patient depicting the 200 s/mm2 b
value from DW-MRI (a), the flip angle (FA) ratio from the B1 map (b), the 10° T1-weighted acquisitions (c) and the
average signal intensity for the DCE-MRI data across all dynamics (d). The tumor burden is indicated with the red
box. Informed consent was obtained from this patient.

Fuzzy c-means
algorithm

ADC maps for scans 1–4e

3 × 10–3

mm2/s

0

Kety–Tofts model

a

Scans 1–4: physiological
parameters (K trans, ve, vp) 

g

0.1
min–1
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Scan alignment, data interpolation and intra-visit registration
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Fig. 7 | Example results from the data analysis. a–h, Each of the MRI data is aligned, interpolated to the same resolution, and registered across visits
using a rigid registration algorithm. The DW-MRI data are used to calculate the ADC map (a, e). The DCE-MRI data are used to identify the tumor
ROIs (b, f). The multi-flip angle (MFA) T1 scans and the B1 map correction are used to calculate a T1 map (c, d and h, respectively). The DCE-MRI data
(b) along with the T1 map (h) are used to calculate the Kety–Tofts model parameters (g) within the tumor ROI (from f). Informed consent was
obtained from this patient.
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Tumor forecasting
See Fig. 9 for an example comparison of the prediction from the mathematical model
and the experimentally measured data for three central slices at the time of scan 3 for the same
patient data presented in Figs. 6–8. Specifically, the mathematical model was calibrated using
the patient’s data from her first two scans, and then, with the resulting patient-specific parameters,
the model was simulated forward in time from scan 2 to the time of scan 3 (as described in
Steps 37–40). Note that the model is able to predict the patient’s tumor response with errors <17%
for the three summary tumor measures (total cellularity, volume and longest axis) and has
strong statistical correlation with the shape and cellular densities of the tumor (see figure caption
for more details).

Data availability
We have made available one patient dataset that has been fully preprocessed (i.e., Steps 1–36) and
ready for the calibration and prediction components (i.e., Steps 37–40). This will enable the interested
investigator to verify that the calibration and prediction code is working on the individual investi-
gator’s platform. The dataset is available at https://github.com/ChengyueWu/Quantitative-MRI-of-
breast-cancer-patients-to-forecast-response-to-therapy.

Code availability
We have made the code for the calibration and prediction components (i.e., Steps 37–40) available
without charge to anyone for academic, research, experimental or personal use. This code and license
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Fig. 8 | Converting imaging data to physical quantities for the mathematical model. a–g, Prior to deriving modeling quantities, intervisit registration is
required to align the images across all visits (a; details provided in Fig. 4). Once aligned, the ADC maps (b) are used to calculate the tumor cellularity
(c). DCE-MRI data (d) are used to identify fibroglandular and adipose tissues (e) using a fuzzy k-means algorithm. The Kety–Tofts model parameters,
specific to each patient, are used along with each patient’s individual therapeutic regimen (f) to derive approximate drug distributions in the tumor
tissue (g). Informed consent was obtained from this patient.
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may be found at https://github.com/ChengyueWu/Quantitative-MRI-of-breast-cancer-patients-to-
forecast-response-to-therapy. To distribute or make other use of the software, including commercial
use, a license must be obtained from The University of Texas at Austin (by contacting licensing@otc.
utexas.edu).
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