Ecology and Evolution

Fission-Fusion Dynamics in the Social Networks of a North American Pitviper

Open Access

Journal:	Ecology and Evolution
Manuscript ID	ECE-2023-03-00417.R1
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Tetzlaff, Sasha; US Army Corps of Engineers Construction Engineering Research Laboratory; University of Illinois Urbana-Champaign College of Agricultural Consumer and Environmental Sciences, Natural Resources and Environmental Sciences Vizentin-Bugoni, Jeferson; Universidade Estadual de Campinas, Instituto de Biologia Sperry, Jinelle; US Army Engineer Research and Development Center; University of Illinois at Urbana-Champaign, Natural Resources and Environmental Sciences Davis, Mark; Prairie Research Institute, Illinois Natural History Survey Clark, Rulon; Chiricahua Community Health Centers Inc; San Diego State University, Department of Biology Repp, Roger; NOAO Schuett, Gordon; Georgia State University, Biology; Chiricahua Desert Museum,
Category:	Evolutionary Ecology
Habitat:	Terrestrial
Organism:	Vertebrate
Approach:	Natural History
Abstract:	Many animal species exist in fission-fusion societies, where the size and composition of conspecific groups change spatially and temporally. To help investigate such phenomena, social network analysis (SNA) has emerged as a powerful conceptual and analytical framework for assessing patterns of interconnectedness and quantifying group-level interactions. We leveraged behavioral observations via radiotelemetry and genotypic data from a long-term (>10 years) study on the pitviper Crotalus atrox (western diamondback rattlesnake) and used SNA to quantify the first robust demonstration of social network structures for any free-living snake. Group-level interactions among adults in this population resulted in structurally modular networks (i.e., distinct clusters of interacting individuals) for fidelis use of communal winter dens (denning network), mating behaviors (pairing network), and offspring production (parentage network). Although the structure of each network was similar, the size and composition of groups varied among them. Specifically, adults associated in moderately sized social groups at winter dens but often engaged in reproductive behaviors—both at and

П

Т

1	
1	
2	
3	
4	
5	
Э	
6	
7	
Q	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
20	
21	
22	
23	
23	
24	
25	
26	
27	
27	
28	
29	
30	
21	
21	
32	
33	
34	
25	
55	
36	
37	
38	
30	
22	
40	
41	
42	
 ∕\⊃	
43	
44	
45	
46	
47	
4/	
48	
49	
50	
- 1	
51	
52	

4 5 6 7 8 9 10 11 12 13	away from dens—with different and fewer partners. Additionally, modules formed by individuals in the pairing network were frequently different from those in the parentage network, likely due to multiple mating, long-term sperm storage by females, and resultant multiple paternity. Further evidence for fission-fusion dynamics exhibited by this population—interactions were rare when snakes were dispersing to and traversing their spring-summer home ranges (to which individuals show high fidelity), despite ample opportunities to associate with numerous conspecifics that had highly overlapping ranges. Taken together, we show that long-term datasets incorporating SNA with spatial and genetic information provide robust and unique insights to understanding the social structure of cryptic taxa that are understudied.
14	
16	
17	
18	SCHOLARONE™
19	Manuscripts
20	Manuscripts
21	
22	
23	
24	
25	
20	
27	
29	
30	
31	
32	
33	
34	
35	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
40	
50	
51	
52	
53	
54	
55	
56	
5/	
50 50	
60	

1		
2		
3	1	Fission-Fusion Dynamics in the Social Networks of a North American Pitviner
4	1	rission-rusion Dynamics in the Social feetworks of a fiorth American filtyiper
5	2	
6	3	Sasha J. Tetzlaff ^{1,2} , Jeferson Vizentin-Bugoni ³ , Jinelle H. Sperry ^{1,4} , Mark A. Davis ^{2,4} ,
7	4	Rulon W. Clark ^{5, 6} , Roger A. Repp ⁷ and Gordon W. Schuett ^{5,8}
8	5	
9	6	¹ U.S. Army ERDC-CERL, Champaign, Illinois USA
10	7	² Illinois Natural History Survey Prairie Research Institute University of Illinois Urbana-
11	8	Champaign Champaign Illinois USA
12	9	³ Programa de Pós-Graduação em Biologia Animal Instituto de Biologia Universidade Federal
13	10	de Deletes, DS, Drezil
14	10	
15	11	⁴ Department of Natural Resources and Environmental Sciences, University of Illinois at
10	12	Urbana-Champaign, 1102 South Goodwin Avenue, Urbana, Illinois USA
17 10	13	⁵ Chiricahua Desert Museum, Rodeo, New Mexico USA
10	14	⁶ Department of Biology, San Diego State University, San Diego, California, USA
20	15	⁷ NOAO, Tucson, Arizona, USA
20	16	⁸ Department of Biology Neuroscience Institute, Georgia State University, Atlanta, Georgia,
22	17	USA
23	18	
24	19	Sasha I Tetzlaff: https://orgid.org/_0000_0001_5889_6573
25	20	Jafarson Vizontin Rugoni: https://oroid.org/0000.0002.6342.2650
26	20	Jereston Vizentin-Bugoin. https://oreid.org/0000-0002-0343-3030
27	21	Jinene H. Sperry: https://orcid.org/ 0000-0003-0929-1900
28	22	Mark A. Davis: https://orcid.org/0000-0001-9034-9430
29	23	Rulon W. Clark https://orcid.org/0000-0002-1100-1856
30	24	Gordon W. Schuett https://orcid.org/0000-0002-2133-3723
31	25	
32		
33		
34 25		
35 26		
30		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
5U 51		
טו גע		
52 53		
55 54		
55		
56		
57		
58		1
59		

Abstract Many animal species exist in fission-fusion societies, where the size and composition of conspecific groups change spatially and temporally. To help investigate such phenomena, social network analysis (SNA) has emerged as a powerful conceptual and analytical framework for assessing patterns of interconnectedness and quantifying group-level interactions. We leveraged behavioral observations via radiotelemetry and genotypic data from a long-term (>10 vears) study on the pityiper Crotalus atrox (western diamondback rattlesnake) and used SNA to quantify the first robust demonstration of social network structures for any free-living snake. Group-level interactions among adults in this population resulted in structurally modular networks (i.e., distinct clusters of interacting individuals) for fidelis use of communal winter dens (denning network), mating behaviors (pairing network), and offspring production (parentage network). Although the structure of each network was similar, the size and composition of groups varied among them. Specifically, adults associated in moderately sized social groups at winter dens but often engaged in reproductive behaviors—both at and away from dens-with different and fewer partners. Additionally, modules formed by individuals in the pairing network were frequently different from those in the parentage network, likely due to multiple mating, long-term sperm storage by females, and resultant multiple paternity. Further evidence for fission-fusion dynamics exhibited by this population-interactions were rare when snakes were dispersing to and traversing their spring-summer home ranges (to which individuals show high fidelity), despite ample opportunities to associate with numerous conspecifics that had highly overlapping ranges. Taken together, we show that long-term datasets incorporating SNA with spatial and genetic information provide robust and unique insights to understanding the social structure of cryptic taxa that are understudied.

Keywords. Annual migrations; communal living; Crotalus atrox; kinship; modularity; non-random associations; rattlesnake; social environment

1 Introduction

Since the pioneering works and influential insights of Darwin [1], Lorenz [2], Tinbergen [3],

Goodall [4], and others [5–13], the importance of social behavior, from mate choice, male

combat, and territoriality to group hunting, parental care, cooperation, and even play (in humans and other animals), has been inextricably embedded into the foundations of ecological and

evolutionary theory [9, 14–16]. Taken to its broadest extent, social behavior in natural

populations is defined as *any* interaction that occurs between two or more conspecific or

heterospecific individuals [17, 18]. Accordingly, social interactions are not only proximate

events, but also include those occurring at greater distances among individuals.

Historically, social interactions have been analyzed as dyadic interactions, quantified in myriad ways [19, 20]. The advent of modern network ecology has provided the requisite tools for more nuanced analyses via network theory [17, 21]. Although originally developed for studies of human behavior and physics [17, 22], the conceptual and analytical framework has advanced our understanding of social networks in wild animals [17, 21, 23–27]. These networks are composed of nodes denoting individuals, groups, or other entities, and edges representing interactions (e.g., behavior) between or among nodes (Appendix). Importantly, because social network analysis (SNA) provides a conceptual and analytical framework to explore patterns of interconnections amongst biological entities, it allows researchers to identify emergent group-level interaction patterns and quantify individuals' contributions to network connectedness. SNA can therefore reveal otherwise unobservable ecological patterns and the processes underlying them [17, 21, 23]. Furthermore, by using null models, robust statistical testing can be achieved to assess whether such emergent group-level patterns differ from random association among individuals [21, 26, 27].

SNA has elucidated many insights on the social structure of animals, from insects and fishes to primates and cetaceans [17, 21–23]. Yet, despite such advances, there are important gaps, particularly in several specious lineages of vertebrates historically considered to not be highly social [18, 28, 29]. Among these lineages, reptiles in general [but see 30, 31] and snakes specifically have received particularly short shrift, with scant studies exploring social behavior under the network perspective [18]. To our knowledge, of the ~4,000 extant species, only one snake (Crotalus cerberus) has been studied in the wild with these tools [29]. Most terrestrial snakes have cryptic lifestyles, and structure of their social networks is largely unknown [18, 28]. Yet, some species—such as large vipers, boids and pythonids—are excellent candidates for models of SNA. For example, in many moderate- to large-sized rattlesnakes (e.g., Crotalus atrox, C. cerberus, C. oreganus, C. stephensi, and C. viridis), a variety of factors including large population size and communal winter denning render them desirable subjects to study in nature. Based on prior field research [18, 28, 29, 32, 33], it appears most snakes likely form distinct clusters of individuals interacting (i.e., modular networks) which should be defined to some extent by relatedness, but these predictions have vet to be quantitatively tested [18, 28, 33]. Nonetheless, behavioral evidence strongly suggests the existence of fission-fusion dynamics (spatial and temporal changes in the size and composition of conspecific groups) in the social networks of many temperate rattlesnakes [28, 29, 34].

Here, we leveraged long-term datasets for a population of a large-bodied North American pitviper, the western diamondback rattlesnake (Crotalus atrox), to test hypotheses of social

network structure and fission-fusion dynamics [28, 29, 35]. We asked three main questions:

traits influence their connectivity within social networks? Lastly, does genetic relatedness

undergird social interactions in this system? We investigated three bipartite interactions

First, do group-level patterns emerge from distinct social interactions? Second, do individuals'

(denning, sexual pairing, and parentage) and the drivers of individuals' centrality (Appendix).

Specifically, we tested (a) whether these three bipartite networks presented non-random modular

or nested structure (Appendix); (b) which attributes (body length, sex, and home range size) are

- 105 associated with individuals' centrality in these three networks, and (c) whether interactions 106 occurrence and or frequencies in the three social networks and home range overlap are
- 107 significantly correlated with genetic relatedness among individuals (e.g., kin-based).
- 15 108

109 2 Materials and methods

- 17 110 2.1. Study system
- A single population of western diamondback rattlesnakes in the Suizo Mountains (Pinal County, Arizona, USA) was studied for 15 consecutive years from 1 March 2001 to 31 December 2015 [28, 29, 33, 36]. The research site is 40 km SSE of the city of Florence, 8 km W of State Route 79. This region is designated as Sonoran Desert, Arizona Upland Desert-Scrub subdivision [33]. Data accumulated for this C. atrox population has contributed substantially to our understanding of the species' behavior, reproductive ecology, and life history in Arizona [28, 29, 37]. Key events of the annual cycle are summarized in Figure 1, but the typical phenology of this population is described for further clarity. Egress from communal dens is centered in late March to early April [28, 29, 33, 37]. In most cases egress lingers-from days to several weeks-and occurs in several phases, including basking at the den entrance (often in groups), making short-range movements, and returning to the den. The spring mating period (second mating season) occurs before migration movements to their spring home range areas. Courtship and coitus may occur at the den itself or in the general area. Male combat for priority-of-access to females also may occur but is rarely observed [28, 29]. Migration movements in March and April bring individuals to their spring and summer home ranges. Furthest straight-line distances traveled from communal dens to home ranges are from several dozen meters to over 2 km [28, 29, 33]; mating (first mating season), skin shedding, and hunting prev are the primary behavioral activities during this time [28, 29, 33], and except for the two distinct mating seasons, there is generally little contact observed among adults, especially males. In fall (late October through November) adult individuals initiate migration to return to their respective communal dens to re-establish long-term social groups (networks) lasting for up to five months (November through March). The most common social activity at the communal dens which can be observed in all winter months is termed "sun basking" and occurs at the entrance or alongside the den itself [28, 29, 37]. Females will sometimes alternate year-to-year from communal dens to overwintering singly in shelters such as rodent middens and small mammal burrows [28, 29]. Males show near absolute fidelity to communal dens but rarely overwinter privately in granitic rubble.

- 57 58
- 59
- 60

Figure 1. Annual cycle and phenology of behavioral, physiological, reproductive, and life history events
for adult *Crotalus atrox* at Suizo Mountains (Pinal County, Arizona), and nearby areas, based on 15
consecutive years (2001–2015) of research [28, 29, 36–40]. Note: Shed Cycle refers to skin shedding
(ecdysis).

37 38 143

138

9 144 2.2 Collecting and processing subjects

Animals selected for this study were either collected at or near known communal dens during 145 146 egress in spring (March–April) or found in their spring-summer home range. Animals were captured and processed as detailed in previous studies [28, 29, 36-39]. At capture, Global 147 148 Positioning System (GPS) coordinates were obtained, and subjects were measured (snout-vent 149 length, tail length, head dimensions to the nearest millimeter; body mass to the nearest 1.0 g) and 150 sex confirmed (via probing) while under light anesthesia (isoflurane). Individuals were photographed, implanted with a unique passive integrated transponder (PIT) tag (AVID, Inc., 151 152 Norco, California, U.S.A.), and their proximal rattle segments were colored via marker. A focal 153 group of adult C. *atrox* collected from 2001-2010 were used in social network analyses (n = 50) 154 focal animals: 22 males 28 females). Subjects were selected for radio-tracking based on size (≥ 700 mm SVL) and good state-of-health. Each animal had an appropriately sized (\leq 5% body 155 156 mass) temperature-sensitive radio-transmitter (models SI-2T and AI-2T, 11-16 g; Holohil Inc., 157 Carp, Ontario, Canada) surgically implanted within the coelom following general procedures used for snakes [46]. After processing, all subjects were released at their exact capture site. 158 56

1		
2		
3	159	
4	160	2 3 Radio-tracking
5	161	Focal animals were radio-tracked minimally 2–4 times per month during winter. Tracking was
6	162	increased substantially sematimes daily or twice daily from early August through mid
7	102	increased substantiany—sometimes dany of twice dany—noin early August through inte-
8	163	September, the period of birthing. During spring and fall, snakes were tracked weekly on
9	164	average. For each animal location, UTM coordinates were recorded using along with behavioral
10	165	data (particularly if associating with conspecifics), body and environment temperatures, feeding
11	166	and ecdysis status, plant associations, subject location (above or below the ground surface),
12	167	visible or not visible, and health status [28, 29, 36–39].
13	168	
14	169	2.4 Snatial analyses
15	170	We estimated home range sizes by creating 100% minimum convex polygons (MCPs) around
10	170	the outermost redictelemetry locations for each analysin AreCIS Dro 2.6.1. To produce a single
12	1/1	the outermost radiotelemetry locations for each snake in Arcors Pro 2.0.1. To produce a single
19	1/2	value for the degree of overlap for each possible pair combination of telemetered snakes, we
20	173	calculated the average overlap for the two individuals in each pair as $(AB/A + AB/B)/2$, where A
21	174	is the home range size of individual A, B is the home range size of individual B, and AB is the
22	175	area shared by both A and B. Using this method, we generated a pairwise matrix of average
23	176	home range overlap values [33].
24	177	
25	178	2.5 Genotype Data
26	179	All social network analyses performed in this study that incorporated DNA-based information
27	180	was accomplished using previously published data [28, 20, 33]. See these studies for all
28	100	procedures used in DNA sampling, extraction, constraining, and parentage and relatedness
29	101	procedures used in DNA sampling, extraction, genotyping, and parentage and relatedness
30	182	analysis.
31	183	
32	184	2.7 Social network analysis
33	185	We built an interaction matrix for each social interaction considered (denning, pairing, and
34 25	186	parentage; Appendix). The denning network was a matrix of all male and female study subjects
35	187	as rows and columns containing 1s and 0s indicating whether a given pair of all possible pair
27	188	combinations of snakes from either sex were observed sharing the same den (Fig. 2a) or not.
38	189	respectively. The pairing network was a matrix with females represented in columns and males
39	190	represented in rows containing a series of 1s and 0s indicating whether each possible male-
40	191	female pair combination was observed engaging in any behavior associated with mating or not
41	102	respectively: examples of pairing behavior included male female pairs in convlation (Fig. 2b) or
42	192	ubase hadias wars in contact (a a males lying on females) or provintity during either mating
43	195	whose bodies were in contact (e.g., males tying on remaies) of proximity during either mating
44	194	season. The parentage network was a matrix with females represented in columns and males
45	195	represented in rows, containing a series of 1s and 0s indicating whether each possible male-
46	196	female pair combination produced offspring or not, respectively; relatedness among individuals
47	197	was determined from tissues such as blood or shed skins from adults and neonates (Fig. 2c and
48	198	2d).
49	199	
50		
51		
52		
55 51		
54		
56		
57		
58		6
59		v
60		

Figure 2. Examples of interactions used to quantify social network structures for western diamondback rattlesnakes (*Crotalus atrox*) inhabiting the Suizo Mountains in Arizona, USA: A) Adults occupying a communal den, B) male and female copulating, C) mother with neonates and D) shed skins used to genotype individuals. Photos A, C, and D taken by Roger Repp, and B taken by Brendan O'Connor.

We tested whether the distribution of interactions among individuals presented modular or nested structure. Modularity was calculated using the metric Q and the algorithm DIRTLPAwb+ which searches for the optimum division of the observed interaction matrix into modules [41]. O ranges from 0 to 1 (perfectly modular). Nestedness was estimated using the NODF metric which calculates the non-overlap and decreasing fill of the interaction matrix [42] or WNODF, which is the equivalent for quantitative matrices, i.e., interaction frequencies measured [43]. Both NODF and WNODF ranges from 0 (no nestedness) to 100 (perfectly nested). We used a null model to test the significance of the observed Q and NODF/WNODF by comparing the metric calculated for the observed interaction matrix with the metric calculated from random matrices generated with a null model. Specifically, we used the *vaznull* null model which reshuffles interaction within a matrix while keeping the number of individuals and connectance (i.e., the proportion of realized links in relation to the total possible) the same as the observed matrix. We considered the metric significant when the observed value was higher than the 95% confidence interval produced by the null model. To quantify individuals' connectivity within each network, we calculated their closeness centrality (CC; Appendix). This metric quantifies the proximity of a node (individual, in this case) to all other nodes in the network [44, 45] indicating nodes that are more connected and, therefore, are highly influential in the network. All analyses were conducted using the *bipartite* package [46] in R version 4.0.5 [47].

To investigate whether individual-specific variables were associated with individual's centrality in a network, we used generalized linear mixed models (GLMMs) where CC was the response variable and sex, snout-vent length (SVL), body mass, and MCP were predictors. Since we detected high correlation between SVL and body mass (Pearson's r = 0.87), we excluded body mass from our models, given lower variation in SVL measurements among individuals [22, 27]. For snakes tracked more than one year, we used mean MCP size as a predictor of CC; adults in this population have highly repeatable annual MCP sizes (R = 0.83, 95% CI: 0.69–0.90; unpublished data). For each of the three separate networks, CC was calculated independently, and used as the response variable in the models. In all models, we included the number of years an individual was detected as a random factor to control for sampling variation among individuals. Our analyses followed the general recommendations by Zuur and colleagues [48]. All predictor variables were scaled by mean centering and dividing by the standard deviation prior to analysis. Model fitting was performed using the function glmmadmb of the R package glmmADMB [49] using zero-inflated gaussian distributions. We then used the function dredge of the R package MuMIn [50] to compare models including all possible combinations of predictor variables, plus an intercept-only model. We performed model selection based on the Akaike information criterion corrected for small sample sizes (AICc). Finally, when there was more than one model including >95% of the model weight [51], we conducted model averaging considering all these models.

> To test whether genetic relatedness among individuals influenced interactions in any of the three networks, we performed three Mantel tests contrasting each of the three observed matrices with the focal-animal relatedness matrix (as above). Statistical significance ($\alpha \le 0.05$) was accessed through 9999 permutations, using the R package ade4 [52].

Results

3.1 Subjects

From 2001 through 2015, we sampled 299 individuals: 191 were adult individuals and 108 neonates from 30 different litters produced by 18 different females [33]. There were 15 additional unmarked males identified via genotyping who sired offspring that were considered in the parentage network [33]. The denning network was composed of 23 adult individuals (all but two in the focal group with radio-transmitters), summing up 27 combinations of individuals sharing a den. Few snakes were given IDs during processing at communal shelters and used for aspects of this study, (such as relation of relatedness to den choice) but were not radio-tracked (e.g., CA-99; Table 1). The pairing network was composed of interactions between 19 females and 28 males, including 43 distinct pairs of individuals. The parentage network was composed of 18 females who sired offspring with 27 males, including 27 distinct pairs of partners siring 46 offspring [see Appendix: Tables A1–A8]

- 3.2 Spatial analysis
- a) Landscape use

Despite considerable individual variation, males had larger and less variable average estimated spring-summer home range sizes (13.36 ha \pm 9.26 SD) than females (5.08 ha \pm 4.44 SD). MCPs

for individuals tracked over multiple years were remarkably consistent in size and shape (see

Fig. A1 for an example). We observed substantial overlap of many snakes' home ranges,

- especially for individuals that shared communal dens (Fig. 3a) or were observed engaging in

273 reproductive behaviors (Fig. 3c). Males largely overwintered in communal dens but would

sometimes overwinter in isolation, including at sites far from communal shelters (Fig. 3b).
Females often gave birth far from communal shelters and overwintered privately much more

than males (Fig. 3d).

Figure 3. Spatial data on our focal group (22 males, 28 females) of adult *Crotalus atrox*. A) Annual home ranges (minimum convex polygons; MCP) of males (blue) and females (orange) that were observed overwintering in communal dens (AD = den ID). B) Sites where males overwintered in isolation (pink diamonds) or communal dens in relation to their annual home range; C) Home ranges of males and females that were observed engaging in reproductive behaviors. D) Sites where females gave birth (blue triangles) and overwintered privately (pink circles) or in communal dens (white squares) in relation to their home range.

286 b) Home range overlap and relatedness

Mantel tests comparing home range (MCP) overlap with relatedness revealed there was no correlation between the degree of pairwise home range overlap and relatedness (r = 0.004, p > 0.05).

291 3.3 Social network analyses

292 a) Communal den occupants

2		
3	293	With few exceptions, all telemetered individuals that used communal dens exhibited absolute
4	294	fidelity to these sites over the 10-year period where snakes were consistently radio-tracked
5	295	(Table 1). For example, CA-1, the longest tracked snake in this study, showed fidelity to den
7	296	AD1 for the seven winters it was tracked. Conversely, females CA-2 and CA-77 used a
8	297	communal shelter for only one winter and were otherwise observed overwintering privately.
9	298	Similarly, male CA-55 used a communal shelter twice in three winters (Table 1).
10		
11	299	Table 1. Data on the use of eight communal dens by a subset (11 adult females, 20 adult males)
12	300	of the focal group (subjects fitted with radio-transmitters) of adult Crotalus atrox studied in the
13 14	301	Suizo Mountains, Arizona (2001–2010). The focal group ($N = 50$) consisted of 22 adult males
14	302	and 28 adult females. Numbers denote abbreviated IDs of the radio-tracked subjects (CA-1 is 1,
16	303	CA-5 is 5, and so on) and color denotes sex (orange = females, blue = males). AD = den ID. See
17	304	text Appendix and Supplemental Material for additional information

text, Appendix and Supplemental Material for additional information.

			Wint	ter Comm	unal Den ID			
	AD1	AD4	AD5	AD6	AD7	AD8	AD9	AD10
Winter								
2000–2001 2001–2002	1, 2, 3 1, 3, 4							
2002–2003	1, 5, 6		31	7				
2003–2004	1 , 5, 6, 33, 41	13, <mark>16</mark> , 32	34	44, 46	47			
2004–2005	1 , 5, 6, 33, 41	13, <mark>16</mark> , 32	77	44, 46	47 , 58			
2005-2006	1	16, 81		46	47, 76	97, 99	55	98
2006–2007	1	16, 55, <mark>8</mark> 1		44, 46	47, 58, 76	97		98
2007–2008		55			47	102		
2008–2009					47, 92			
2009–2010					79, 122	120		

b) Network Structure Analysis

We detected modularity in all three social networks (denning, pairing, and parentage), but no network was nested. Specifically, the denning network was modular (Q = 0.73; 95% CI $Q_{null} =$ 0.63–0.72) presenting six modules, including one to six individuals sharing a den, while there was no evidence of nestedness (NODF = 12.80; NODF_{null} = 7.47-15.57). The pairing network was modular (Q = 0.77; 95% CI $Q_{null} = 0.64-0.72$) presenting 11 modules including one to four males and one to four females, and there was no evidence of nestedness (NODF = 6.10; NODF_{null} = 5.13–9.23). The parentage network was modular (Q = 0.74; 95% CI $Q_{null} = 0.61$ – 0.73; analysis based on quantitative matrix) presenting 10 modules including one to five males and one to three females and there was no evidence of nestedness (WNODF = 8.21; 95% CI $WNODF_{null} = 6.70-12.42$). In all three networks, few interactions were recorded outside the modules (n = 0 in the denning network, n = 5 in the pairing network and n = 12 in the parentage network; Fig. 4).

Figure 4. Modularity of individuals' A) denning network, B) pairing network, and C) parentage network of *Crotalus atrox* subjects in this study. Inner boxes indicate subsets of individuals interacting preferentially with each other (i.e., modules). In A), individuals of both sexes can be at the x and y axis since multiple males and females may share a communal den. In C) color intensity indicates the number of offspring sired. In C), UM indicates "unidentified male" (sampled but not radio-tracked; see text). Nine unidentified males were genotyped in the analysis: UM 1–4, 7–9, and 10, 13. See [46].

329 GLMMs indicated that individuals' CC in the denning, pairing, and parentage networks were not 330 associated with individuals' morphology (SVL) and home range (MCP) (Table A1–A6). Sex was 331 a significant predictor only in the parentage network, with females having slightly higher CC than 332 males ($\beta = -0.016$, 95% CI: -0.034, -0.002; Table A6).

 $\begin{array}{rrrr} 39 \\ 40 \\ 41 \\ 42 \end{array}$ $\begin{array}{r} 333 \\ 41 \\ 42 \end{array}$ $\begin{array}{r} 333 \\ 42 \end{array}$ $\begin{array}{r} 333 \\ 433 \\ 42 \end{array}$ $\begin{array}{r} 333 \\ 433 \\ 42 \end{array}$ $\begin{array}{r} 333 \\ 433 \\ 433 \\ 433 \end{array}$ $\begin{array}{r} 333 \\ 433 \\ 433 \\ 433 \end{array}$ $\begin{array}{r} 333 \\ 433 \\ 433 \\ 433 \end{array}$ $\begin{array}{r} 333 \\ 433 \\ 433 \\ 433 \end{array}$ $\begin{array}{r} 333 \\ 433 \\ 433 \\ 433 \\ 433 \end{array}$ $\begin{array}{r} 333 \\ 433 \\ 433 \\ 433 \\ 433 \end{array}$ $\begin{array}{r} 333 \\ 433 \\ 433 \\ 433 \\ 433 \\ 433 \\ 433 \\ 433 \end{array}$ $\begin{array}{r} 333 \\ 433$

43		
44	336	Mantel tests revealed no significant correlations between genetic relatedness and denning ($r = -$
45	337	0.138, p = 0.938), pairing (r = 0.135, p = 0.297), or parentage (r = -0.150, p = 0.775) networks,
46	338	which suggests that individuals interacting in modules were unlikely to be closely related.

48 339 4 Discussion

⁴⁹ 340 4.1 Overview

⁵⁰ 341 In our long-term study of the behavioral ecology of adult western diamondback rattlesnakes, all

 $\frac{31}{52}$ 342 three bipartite networks tested were modular and lacked nestedness [17, 21, 53]. Accordingly,

focal animals formed subsets of individuals interacting more frequently with one another than

with other individuals [43, 46, 54]. The lack of nestedness indicates that no single individual
 add engaged in interactions with all others, not that less socially connected individuals tend to

Ecology and Evolution

interact with more socially connected individuals [42, 43]. Our results mirror, to some extent,

those of the first and only other study to incorporate social network analysis for a wild snake, the

Arizona black rattlesnake, Crotalus cerberus [29, 38]. Adult male and female C. cerberus

exhibited non-random association and formed multiple subgroups at communal dens and

shelters, yet few dyads had strong associations. More studies are needed to understand the

structure of social networks of snakes in general, but we suspect most would not show nested structure. In sharp contrast, the social networks (particularly related to mating) of other terrestrial

vertebrates including African lions [55], equids and other ungulates [56], great apes and other

- primates [57] and several squamates [31, 58, 59], are characterized by one or several males that dominate a group of females and likely are the only ones to interact with most or all partners in a group [21].

The low CC values obtained reinforces the lack of nestedness and existence of modularity. indicating that each focal subject interacted only with a few other individuals in the three social networks examined. Furthermore, centrality was not significantly predicted by body size, home range, sex, or genetic relatedness. In this social environment, individuals with large bodies or large home ranges do not den, pair with more sexual partners, or produce more offspring than smaller and/or spatially restricted individuals [46, 58]. Nonetheless, we found females had greater centrality than males in the parentage network-meaning that they produce more offspring with a greater number of partners than males—yet this effect, though statistically significant, is not robust [39].

Genetic relatedness of our focal group was not correlated with denning, pairing, or parentage. Spatial analyses revealed that home range overlap also was not significantly correlated with relatedness; thus, social structure between pairs of individuals during the active season was not based on kin associations [29, 33; Supplemental Material]. Increasingly, studies of other terrestrial vertebrates demonstrate that group living and stable paired associations, for example, are not necessarily kin-biased or correlated with genetic relatedness [42, 60; but see 31, 61]. In network studies involving lizards, for example, relatedness and group living varies depending on the species (system) being investigated. Group living involves close relatives in some cases [8, 58, 62], yet in others, even in strongly connected individuals, social interactions are not defined by relatedness [30; but see 61]. As we discuss later, however, when a larger sample of subjects included unmarked adults (e.g., no radio-transmitters) was analyzed, the relationship of communal denning and relatedness of C. atrox showed mixed results, with multiple communal dens containing related occupants [29, pp. 196-198. See Supplemental Information, Tables S1-S8].

- 4.2. Social network structure
- a. Annual cycle of communal denning and associated behaviors

The modular and non-nested structure of the denning network emerged likely via several components of the species' behavior. Communal denning in rattlesnakes has continued to be documented [28, 29, 34, 63], most extensively in timber rattlesnakes (*Crotalus horridus*) in the northeastern United States. Adult and juvenile C. horridus typically use communal dens (termed hibernacula), exhibiting high levels of natal den philopatry. In the western US, numerous rattlesnake species are known to use communal dens in winter, but sometimes are active year-round [28, 29, 37, 38, 63–65]. These species that den communally often show high fidelity to

dens [reviewed in 29]. However, studies lasting >5 years on individual occupancy and behavioral activities at communal dens remain rare [28, 29, 89, 64, 66].

The social ecology of adult male and female C. atrox at the Suizo Mountain site represents fission-fusion dynamics, per Aureli and colleagues [35], associated with annual migrations to spring-summer home range areas and fidelity to communal winter shelters [28, 29, 33, 37]. In this system adults occupy specific microhabitats throughout their respective spring-summer home ranges of the Sonoran Desert landscape. During spring and summer, mating, shedding, and hunting prey are the primary behavioral activities [28, 29, 33], with generally little contact observed among adults (especially males) despite substantial overlap in home ranges. On several occasions, females were found together on the ground's surface, or inside a mammal burrow or midden, and sometimes this is associated with birthing [28, 29]. However, birthing rookies described in other rattlesnakes, which sometimes consist of a dozen or more females [65], were never observed in C. atrox, nor were communal dens used as birthing sites in this study (Fig. 3). Furthermore, neonates and juveniles were never observed at communal dens; thus, we presume they were isolated in rodent middens, small mammal burrows, or similar types of shelters during winter.

b. Communal denning and relatedness

Based on Hamilton's foundational insights [5, 6], and others' subsequent work [7, 8, 14], we have a robust understanding of the evolutionary benefits and costs of group living [12, 67]. Benefits for both kin- and non-kin based social groups include increased vigilance to predators and enemies, protection from the environment, increased opportunities for reproduction, and the expression of social behaviors including grooming and parental duties (e.g., uniparental, biparental, and helpers). Living in exclusive kin-based groups, such as families [68] offers individuals opportunities for increasing their inclusive fitness, among other benefits [6]. Under these conditions cooperative and altruistic behaviors can evolve, such as forsaking reproduction and caring for the progeny of relatives [5]. Such tight kin-based groups are known for certain groups of lizards [18, 58, 69, 70] but not in snakes [18]. Living in groups also has costs, which can be severe, and include the spread of parasites and disease, limited numbers of mates, and competition for food and space itself [12, 67, 71].

Our bipartite analysis of the focal group of adult C. atrox showed that relatedness was not a significant component of the social structure of occupants at communal dens. Only 23 of 50 focal subjects were associated with communal dens (Fig. 4A). However, using a larger sample of individuals derived from previous analyses [29, 33], overall genetic relatedness among dens was significantly greater than random [Supplemental Material, Tables S1-S8]. Although kin recognition has not been documented in C. atrox, it has been documented in other pitvipers, including rattlesnakes [72, 73]. Thus, we suspect that C. atrox shares this capacity for kin recognition, even if it does not appear to be a major driver of its social networks. Empirical studies could determine if kin recognition is operating at the communal dens and expressed in social preferences [74]. In the only other study of rattlesnakes where relatedness of occupants of communal dens has been measured, juveniles and pregnant females preferentially associate with kin under certain conditions, yet communal denning was not kin-based [74].

c. Social groups vs. aggregations

Ecology and Evolution

Communal denning is a type of clumped spacing behavior often defined as "aggregation" [29].

However, with respect to C. atrox in this study, and likely other rattlesnake species, we abandon

use of the term "aggregation" and alter the lexicon by defining communal denning as the formation of social groups or colonies by individual preference. We suggest that these groups

form and evolve through mutual attraction of individuals (regardless of members' relatedness)

for cooperative benefits to survival and reproduction [6, 71, 75]. These social groups we

observed, whether kin- or non-kin-based, occur seasonally in a predictable manner. Importantly,

these social groups involve only a subset of adult individuals, occurring in microhabitats that are not limited in the local population. These traits indicate that social groups are not just a result of

- attraction to particular microhabitats. It is likely that communal denning behavior, such as in C. *atrox* and other snakes, may be coordinated by way of conspecific attraction or familiarity,
- resulting in social (communication) networks which ultimately leads to the partitioning of individuals into subgroups and to the observed network modularity [17, 21, 75].

Remarkably, over the 15-year period of study, the focal group of adults showed near absolute fidelity to communal den sites. Several females, however, alternated year-to-year from communal dens to overwintering singly in shelters such as rodent middens and small mammal burrows [28, 29]. Adult males in our population, on the other hand, never occupied these kinds of temporary structures during the cooler months (November through March). This sexually dimorphic behavior related to den use in winter has not been described, to our knowledge, for any snake species [37, 38, 63]. Furthermore, because we never observed neonates or juveniles of C. atrox at the communal dens used by the adults; we presume they were isolated and alone in rodent middens or small mammal burrows during winter. This also contributes to the high level of modularity observed of the denning network.

c. Pairing network

Emerging research on the social environment increasingly reveals that sexual selection is dynamic, varying both temporally and spatially. Moreover, individuals frequently select for specific social environments, with direct implications on fitness [59, 76, 77] as social conditions (e.g., population density, opportunities for interaction, etc.) provide critical contexts for sexual selection [78, 79]. However, this can be buttressed by relatedness as related individuals may be less likely to harm conspecifics [80] or more likely to disperse to avoid harm [81], ostensibly improving individuals' inclusive fitness.

Although some interactions related to mating behavior were likely not observed because snakes were intermittently located with radiotelemetry, in our study we revealed that the pairing network is modular and largely driven by focal females interacting via reproduction-linked behaviors with multiple males, and often during fusion events at winter shelters. Perhaps more interestingly, some female C. atrox in this network occasionally leave communal dens they historically occupied, overwinter solitarily, and then return to their preferred communal dens in subsequent years. The mechanism behind this phenomenon is unclear, but it suggests that females are modulating their participation in the social environment, perhaps with considerable fitness consequences. We speculate that because pitvipers are generally capital breeders, conditions might arise in which lack of resources would render reproducing risky in the following season. Thus, by modulating their social environment, females may exert some control over reproductive output. And while we did not find a positive association between pairing and

relatedness among focal (i.e., radio-telemetered) animals, positive relatedness among all individuals in communal dens was revealed in previous studies of this system [28, 29].

d. Parentage network

Recent studies show that the social environment itself may influence the pattern of paternity levels in general, and multiple paternity among individuals specifically [59, 60]. Furthermore, the social environment can effectively modulate the degree of multiple paternity based on the structure of the social network itself [45, 59, 84, 85]. Concomitant with the results of the pairing network, we recover a similar modular pattern that features several focal females, each one producing offspring with a subset of males, and often exhibiting multiple paternity. This is reflective of both the social environment and the biology of C. atrox. First, the two distinctly different annual mating periods present decidedly different reproductive contexts. The first mating period occurs late in the active season and out on the landscape, where snakes in this population are seldom observed interacting and are less likely to encounter large numbers of conspecifics. Conversely, the second mating period occurs at or near communal dens shortly after spring egress. In this context, the opportunity for multiple matings increases, ostensibly elevating the probability of multiple paternity. In addition, despite data that indicate communal denning (social groups) in this population show some level of relatedness [28, 29], the parentage network of our focal animals was not positively correlated with relatedness, which is indicative of some degree of either assortative mating or inbreeding avoidance. Ultimately, the social environment coupled with the species biology appears to promote elevated levels of multiple paternity but depress the degree of inbreeding among males and those females acting as nodes in the social network.

e. Conclusions

Nearly three decades ago the first theoretic analysis of snake mating systems was proposed [86] which identified, characterized, and quantified snake mating systems within formal selection theory [87]. Over the years a wealth of new information on population genetics, behavior, reproduction, sexual selection, and parental care of snakes has emerged [28, 29, 39, 39, 40, 88– 91]. We contend that the incorporation of social network analysis into studies documenting spatial ecology, habitat use, and genetic relatedness represents another major methodological advance that can provide novel insights and directions for future research [28, 29]. Specifically, we demonstrated strong fission-fusion dynamics, particularly with respect to annual migrations to spring-summer home ranges and use of communal dens during winter by a combination of social preference and experience; relatedness (kin-association) also may play a role. Although this fission-fusion behavior has not been formally reported for other snake species, we suggest it may be more common than currently recognized and urge researchers to leverage myriad existing similar datasets to further quantify social network structures for such cryptic and understudied species. Arguably, our study advances the understanding of individuals' reproductive strategies within populations and between the sexes by identifying determinants of social interaction patterns and individual fitness and lays the foundation for additional research into the social ecosystem of cryptic taxa.

Despite this substantial progress in our understanding of snake mating systems, several important issues are problematic and remain unresolved. We conclude with four intriguing examples. Our

4

5

6	531	
7	532	First, perha
8	533	seasons. w
9	534	theoretical
10	535	distinct and
11	536	distinct ma
12	527	ann artunit
13	537	opportunit
14	538	93, 94]. W
15	539	geographic
16	540	
17	541	Second, the
18	542	reconcile.
19	543	mating par
20	544	single litter
21	545	[86]. as in
22	546	have vet to
23	547	likelihood
25	548	nhenotynic
26	540	which coul
27	550	in assessed by
28	550	incurred by
29	551	T1 · 1 · C
30	552	Third, info
31	553	their home
32	554	For instance
33	555	thus is acq
34 25	556	might be fu
35 26	557	chemosens
30	558	technologi
38	559	understand
39	560	snakes from
40	561	51111105 1101
41	562	Finally we
42	563	at the Suiz
43	561	tune of lon
44	504	
45	565	population
46	566	analyses. F
47	567	communal
48	568	be a potent
49 50	569	ecology an
50	570	[105].
52	571	
53	572	Ethics. All
54	573	(IACUC)
55	574	accordance
56		
57		
58		

59 60 view is that social networking analyses similar to those we have employed here will be a critical
method necessary for addressing all of these questions.

First, perhaps the most perplexing issue in our system is the presence of two distinct mating
seasons, which is rarely present in other reptiles [28, 29, 33, 92]. To date there has been little
theoretical research into this phenomenon. The two annual reproductive periods are temporally
distinct and present decidedly different socio-ecological contexts. Furthermore, because these
distinct mating periods occur prior to ovulation in late spring [28, 29; Fig. 1], increased mating
opportunities for both sexes provide a possible adaptive explanation for their occurrence [86, 87,
93, 94]. Whether or not *C. atrox* has two distinct mating seasons across its expansive
geographical range in the United States and Mexico is unknown.
Second, the adaptive significance of polyandry in *C. atrox*, as in other animals, is difficult to
reconcile. Female *C. atrox* (and females in many other viperids) can have several different
mating partners per annum Why should females mate with multiple partners for fartilization of a

mating partners per annum. Why should females mate with multiple partners for fertilization of a single litter, especially in cases where female fecundity does not increase with multiple mating [86], as in this system [28, 29, 33]? Numerous adaptive explanations have been proposed, but have yet to be investigated empirically. For example, by having several partners per annum the likelihood of multiple paternity increases and thus the possibility for greater genetic and phenotypic diversity per litter (including, perhaps, diversity of social behaviors) [33, 93, 94], which could result in higher overall lifetime reproductive success despite the inherent costs

550 incurred by mating multiply (e.g., increased energetic investment and exposure to disease).

Third, information on how individual *C. atrox* and other snakes first come to learn and delineate their home range and other preferred spatial locations (such as communal dens) is sparse, at best. For instance, is a snake's home range inherited from, or part of, their mother's home range, and thus is acquired and learned via maternal social transmission [95–97]? We envision this process might be further facilitated by behavioral (kin- and self-recognition, individuality) and chemosensory (pheromones) social information gleaned from conspecifics [98–103]. As technological advances debut, particularly the miniaturization of tracking devices [104], understanding the ontogeny of home range development, social networks, and space use in snakes from birth to adulthood will be important to explore [28, 29].

Finally, we are aware of populations of *C. atrox*, even within several kilometers of our study site at the Suizo Mountains that do not exhibit communal denning [28, 29]. To a large extent, the type of landscape (e.g., geology) appears to dictate whether communal denning is present in a population, and thus could be a critical additional data layer to incorporate into social network analyses. For example, we have noted that igneous rock formations are not used by *C. atrox* for communal denning [28, 29]. Though vastly understudied, landscape configuration is showing to be a potent driver of and context for the social environment of animals, thereby shaping the ecology and evolution of societies and their cultures including those of snakes and other reptiles [105].

572 Ethics. All procedures were approved by The Institutional Animal Care and Use Committee
 573 (IACUC) of Arizona State University (protocol 98-429R), and all methods were performed in
 574 accordance with the relevant guidelines and regulations. Other appropriate scientific permits

were obtained from the Arizona Game and Fish Department [Clark et al. 2014; Levine et al. 2021].

Data accessibility. The data used in the present analysis are available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.3xsj3txjr

Authors' contributions. GS and RR: conceptualization, investigation, data collection and curation, methodology, project administration, and visualization. ST, JVB, GS, MD, and RC: data analysis, visualization, writing original draft, and editing. JS: writing original draft and editing. All authors gave their final approval for publication and agreed to be held accountable for the work performed therein.

Competing interests. We declare we have no competing interests.

Funding. This study was funded by a Research Incentive Award (US National Science Foundation) and a Research Creative Activities Award (Arizona State University West) to GS. Arizona State University, Zoo Atlanta, Georgia State University, San Diego State University,

The University of Tulsa, and David L. Hardy Sr contributed funding support.

Acknowledgements. Numerous individuals provided assistance in the field and radio-tracking but most noteworthy is Rvan Sawby. Over the years we have greatly benefitted by discussions with M. Amarello, S. Arnold, S. Beaupre; D. Beck, W. Booth, M. Cardwell, D. DeNardo, D. Duvall, M. Feldner, H. Greene, R. Hansen, D. Hardy Sr, H.-W. Herrmann, S. Hoss, B. Levine, T. Madsen, J. O'Leile, R. Reiserer, J. Slone, C. Smith, and E. Taylor. Many of the radio-transmitter implantation surgeries were performed by Dale DeNardo, for which we are most thankful. Dijon Davis graciously assisted in graphic design.

2		
3	601	References
4	602	1. Darwin C. 1859 On the origin of species by means of natural selection. John Murray.
5	603	London. United Kingdom.
0 7	604	
, 8	605	2. Lorenz K. 1937 On the formation of the concept of instinct. Nat. Sci. 25, 289–300.
9	606	1 ,
10	607	3. Tinbergen N. 1963 On aims and methods of ethology. Zeitschrift für Tier psychologie 20,
11	608	410–433.
12	609	
13	610	4. Goodall J. 2010 In the shadow of man. 50th anniversary of Gombe edition. Boston, MA:
15	611	Mariner Books.
16	612	
17	613	5. Hamilton WD. 1963 The evolution of altruistic behavior. Am. Nat. 97, 354-356.
18	614	
19	615	6. Hamilton WD. 1964 The genetical evolution of social behaviour. I, II. J. Theor. Biol 7, 1–52.
20 21	616	
22	617	7. Trivers RL. 1972 Parental investment and sexual selection. In Sexual selection and the
23	618	descent of man, 1871-1971 (ed. B Campbell), pp. 136–179. Chicago, IL: Aldine.
24	619	
25	620	8. Alexander RD. 1974 The evolution of social behavior. Ann. Rev. Ecol. Syst. 5, 325–383.
26 27	621	
28	622	9. Brown JL. 1975 The evolution of behavior. New York, NY: W.W. Norton & Company.
29	623	
30	624	10. Hinde RA. 1976 Interactions, relationships and social structure. Man 111, 1e17.
31	625	
32	626	11. Gowaty PA 1996 Battle of the sexes and origins of monogamy. In <i>Partnerships in birds: the</i>
33 34	627	study of monogamy (ed. JM Black), pp. 21–52. Oxford, UK: Oxford University Press.
35	628	
36	629	12. Dugatkin LA. 1997 Cooperation among animals: an evolutionary perspective. New York,
37	630	NY: Oxford University Press.
38	631	12 Stamma I 2002 Bahavioural managers offecting developments Tinkenson's fourth question
39 40	032 622	15. Stamps J. 2005 Benavioural processes affecting development. Timbergen's fourth question
41	624	comes of age. Anim. Denav. 00, 1–15.
42	635	14 Wilson EQ 1975 Sociabiology: the new synthesis Cambridge MA: Harvard University
43	636	Press
44	637	11055.
45 46	638	15 Burghardt GM 2005 The genesis of animal play: testing the limits Cambridge MA: MIT
40	639	Press
48	640	11000.
49	641	16 Dugatkin LA 2020 Principles of animal behavior 4 th ed Chicago. University of Chicago
50	642	Press.
51 52	643	
52 53	644	17. Croft DP, James R, Krause J. 2008 Exploring animal social networks. Princeton, NJ:
54	645	Princeton University Press.
55	646	
56		
57		
28 59		1

2		
3	647	18. Doody SJ, Dinets V, Burghardt GM. 2021 The secret social lives of reptiles. Baltimore, MD:
4 5	648	Johns Hopkins University Press.
6	649	
7	650	19. Allison PD, Liker JK. 1982 Analyzing sequential categorical data on dyadic interaction: a
8	651	comment on Gottman. Psychol. Bull. 91, 393–403.
9	652	
10	653	20. Bakeman R. 1997 Observing interaction: an introduction to sequential analysis. New York,
11	654	NY: Cambridge University Press.
12	655	
13	656	21. Krause J. James R. Franks DW. Croft DP. 2015 Animal social networks. Oxford, UK: Oxford
14	657	University Press
16	658	
17	659	22 Pinter-Wollman N Hobson EA Smith JE Edelman AJ Shizuka D de Silva S Waters
18	660	IS Prager SD Sasaki T Wittemver G Fewell I McDonald DB 2014 The dynamics of
19	661	animal social networks: analytical concentual and theoretical advances <i>Behav Ecol</i> 25
20	662	242_{P}
21	663	
22	66 <i>1</i>	23 Croft DP Darden SK Wey TW 2016 Current directions in animal social networks Curr
23 24	665	Opinions, Bahay, Sai 12, 52, 58 (doi org/10.1016/j. ooboba.2016.00.001)
24 25	666	$Opinions \ Benav. \ Sci. 12, \ 52-58.$ (doi.org/10.1010/j.cobena.2010.09.001)
26	667	24 Webber OMB Vender Wel E 2010 Trends and perspectives on the use of animal social
27	00/	24. webbel QIVIR, vandel wal E. 2019 Hends and perspectives on the use of animal social network englying in behavioral apple we hibliometric engraped. Aviv, Behavioral 2017 27, 27
28	008	network analysis in benavioral ecology. a bibliometric approach. Anim. Benav. 149, 77–87.
29	009 (70	25 Famine DD. Whitehead II. 2015 Constructing and intermedian animal assist
30	670	25. Farme DR, whitehead H. 2015 Constructing, conducting and interpreting animal social
31	6/1	network analysis. J. Anim. Ecol. 84, 144–1163. (doi: 10.1111/1365-2656.12418)
32 22	6/2	
33	673	26. Farine DR. 2017. A guide to null models for animal social networks. <i>Methods Ecol. Evol.</i> 8,
35	674	1309–1320.
36	675	
37	676	27. Fortin M-J, Dale MRT, Brimacombe C. 2021 Network ecology in dynamic landscapes. <i>Proc.</i>
38	6//	<i>R. Soc. B</i> 288 , 20201889. (doi: org/10.1098/rspb.2020.1889)
39	678	
40	679	28. Schuett GW, Repp RA, Spencer CL, Beamann K, Painter CW. 2016a Crotalus atrox.
41 42	680	Western Diamond-backed Rattlesnake. In <i>Rattlesnakes of Arizona</i> , vol. 1 (eds. GW Schuett,
43	681	MJ Feldner, CF Smith, RS Reiserer), pp. 333–394. Rodeo, NM: ECO Publishing.
44	682	
45	683	29. Schuett GW, Clark RW, Repp RA, Amarello M, Smith CF, Greene HW. 2016b Social
46	684	behavior of rattlesnakes: a shifting paradigm. In Rattlesnakes of Arizona, vol. 2 (eds. GW
47	685	Schuett, MJ Feldner, CF Smith, RS Reiserer), pp. 161–244. Rodeo, NM: ECO Publishing.
48	686	
49 50	687	30. Godfrey SS, Anasri TH, Gardner MG, Farine DR, Bull CM. 2014 A contact-based social
50	688	network of lizards is defined by low genetic relatedness among strongly connected
52	689	individuals. Anim. Behav. 97, 35–43.
53	690	
54	691	31. Godfrey SS. 2015. Linking lizards: social networks in reptiles. In Animal social networks
55	692	(eds. J Krause, R James, DW Franks, DP Croft), pp. 197-207. Oxford, UK: Oxford
56		
57		
50 50		2
60		

2		
3	693	University Press.
4	694	
5 6	695	32. Amarello M. 2012 Social Snakes? Non-random association patterns detected in a population
7	696	of Arizona black rattlesnakes (Crotalus cerberus). Unpublished thesis. Arizona State
8	697	University, Tempe, AZ: USA.
9	698	
10	699	33. Clark RW, Schuett GW, Repp RA, Amarello M, Smith CF, Herrmann H-W. 2014 Mating
11	700	systems, reproductive success, and sexual selection in a secretive species: a case study of the
12	701	western diamond-backed rattlesnake, Crotalus atrox. PLoS ONE 9, e90616.
13 14	702	
14	703	34. Klauber LM, 1956 Rattlesnakes, Their habits, life histories, and influence on mankind, 2
16	704	<i>vols</i> . Berkeley and Los Angeles CA [•] University of California Press
17	705	
18	706	35 Aureli F. Shaffner C. Boesch C. Bearder S. Call J. Chapman C. Connor R. Di Fiore A
19	707	Dunbar RIM Henzi SP 2008 Fission-fusion dynamics: new research frameworks <i>Curr</i>
20	708	Anthropol 49 627–654
21	709	
22	710	36 Levine BA GW Schuett RW Clark RA Repp. H-W Herrmann W Booth 2020 No evidence
23	711	of male-biased sexual selection in a snake with conventional Darwinian sex roles <i>Royal Soc</i>
25	712	Open Sci 7: 201261
26	713	
27	714	37 Repp RA 1998 Wintertime observations on five species of reptiles in the Tucson area:
28	715	shelter site selections/fidelity to shelter sites/notes on behavior <i>Bull Chicago Hernetal Soc</i>
29	716	33 49–56
30 31	717	
32	718	38 Amarello M Nowak FM Taylor FN Schuett GW Repp RA Rosen PC Hardy DL 2010
33	719	Potential environmental influences on variation in body size and sexual size dimorphism
34	720	among Arizona populations of the western diamond-backed rattlesnake (<i>Crotalus atrox</i>) I
35	721	Arid Environs 74 1443–1449
36	722	
3/ 20	723	39 Levine BA GW Schuett W Booth 2021 Exceptional long-term sperm storage by a female
39	724	vertebrate <i>PLoS ONE</i> 16 e0252049
40	725	
41	726	40 Greene HW May PG Hardy DL Sciturro IM T M Farrell TM 2002 In <i>Biology of the</i>
42	727	viners (eds GW Schuett M Höggren ME Douglas HW Greene) nn 179–206 Fagle
43	728	Mountain UT: Fagle Mountain Publishing
44	729	Mountain, 61. Lagie Mountain Fuonsining.
45 46	730	41 Beckett SI 2016 Improved community detection in weighted bipartite networks R Soc
40	731	Open Sci 3 140536
48	732	<i>Open bet.</i> 0 , 110050.
49	733	42 Almeida-Neto M. Guimaraes P. Guimarães Ir PR. Lovola RD. Ulrich W. 2008 A consistent
50	734	metric for nestedness analysis in ecological systems: reconciling concent and measurement
51	735	Oikos 117 1227–1239
52	736	00000 11 7, 1227 1257.
53 51	737	43 Almeida-Neto M Ulrich W 2011 A straightforward computational approach for measuring
55	738	nestedness using quantitative matrices <i>Environmental Modelling and Software</i> 26 173_178
56	150	nesterness using quantitative matrices. Environmental modelling and software 20, 175–176.
57		
58		2
59		

60

1		
2 3 4 5	739 740 741	44. Freeman LC. 1979 Centrality in social networks: conceptual clarification. <i>Social Networks</i> 1, 215–239.
6 7 8 9	741 742 743 744	45. Martín González AM, Dalsgaard B, Olesen JM. 2010 Centrality measures and the importance of generalist species in pollination networks. <i>Ecol. Complex.</i> 7 , 36–43.
10 11 12	744 745 746 747	 Dormann CF, Fründ J, Blüthgen N, Gruber B. 2009. Indices, graphs and null models: analyzing bipartite ecological networks. <i>Open Ecol. Journal</i> 2, 7–2.
13 14 15 16	748 749 750	47. R core team 2022. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. URL https://www.R-project.org
17 18 19	751 752 753	48. Zuur AF, Ieno EN, Walker, NJ, Saveliev AA, Smith GM. 2009 Mixed effects models and extensions in ecology with R. New York, NY: Springer.
20 21 22 23	754 755 756	 Skaug AH et al. 2018. glmmADMB - Generalized linear mixed models using AD Model Builder. R package v0.8.3.4 http://glmmadmb.r-forge.r-project.org.
23 24 25 26	757 758 759	 Barton K. 2019 MuMIn: multi-model inference. R package version 1.43.6. https://CRAN.R-project.org/package=MuMIn.
27 28 29	760 761 762	51. Burnham KP, Anderson DR. 2002. Model <i>selection and multimodel inference: a practical information-theoretic approach</i> . 2 nd edn. Berlin: Springer.
30 31 32 33 34	763 764 765	 Thioulouse J, Dray S, Dufour A, Siberchicot A, Jombart T, Pavoine S. 2018 Multivariate analysis of ecological data with ade4. New York, NY: Springer. (doi: 10.1007/978-1-4939- 8850-1)
35 36 37 38	766 767 768 769	 Newman MEJ. 2006 Modularity and community structure in networks. <i>Proc. Natl. Acad. Sci.</i> USA. 103, 8577–8582.
39 40 41 42	770 771 772	54. Cantor M, Pires MM, Marquitti FMD, Raimundo RLG, Sebastián-González E, Coltri PP, Perez SI, Barneche DR, Brandt DYC, Numes K, et al. 2017 Nestedness across biological scales. <i>PLoS ONE</i> 12, e0171691.
43 44 45 46	774 775 776	55. Mbizah MM, et al. 2020. Effects of ecological factors on fine-scale patterns of social structure in African lions. <i>J. Anim. Ecol.</i> 89, 2665–2676.
47 48 49 50 51	777 778 779 780	56. Rubenstein DI, Sundaresan SR, Fischhoff IR, Tantipathananandh C, Berger-Wolf TY. 2015 Similar but different: dynamic social network analysis highlights fundamental differences between the fission-fusion societies of two equid species, the Onager and Grevy's zebra. <i>PLoS ONE</i> 10, e0138645.
52 53 54 55 56	781 782 783 784	 Macdonald S, Voelkl B. 2015. Primate social networks. In <i>Animal social networks</i> (eds. J Krause, R James, DW Franks, DP Croft), pp. 125-138). Oxford, UK: Oxford University Press.
57 58 59		2

2			
3	785		
4	786	58 O'Connor D Shine R 2003 Lizards in 'nuclear families': a novel rentilian social system in	
5	700	<i>Ecorrig aquatilia</i> (Scincideo) <i>Mol. Ecol.</i> 12 , 742, 752	
6	/0/	Egernia saxaiiiis (Schichae). Mol. Ecol. 12, 745–752.	
7	/88		
8	789	59. Bull CM, Godfrey SS, Gordon DM 2012 Social networks and the spread of Salmonella in a	
9	790	sleepy lizard population. Mol. Ecol. 21, 4386–4392.	
10	791		
11	792	60. Baden A, Webster TH, Bradley BJ. 2020 Genetic relatedness cannot explain social	
12	793	preferences in black-and white ruffed lemurs Varecia variegata Anim Rehav 164 73–82	
13	794	preferences in cluck and white funce femals, " a cour varies and in bound in the start of the second s	
14	705	61 Dize Deep C. Strickland V. Kent N. Erère, CH. 2010 Dregence of kin hiered geziel	
15	795	01. Fiza-Roca C, Sufekialia K, Kent N, Fiele, CH. 2019 Fiesence of Kin-blased Social	
16	/96	associations in a lizard with no parental care: the eastern water dragon (Intellagama	
1/	/9/	lesueurii). Behav. Ecol. 30, 1406–1415.	
10	798		
20	799	62. Whiting MJ, While GM. 2017 Sociality in lizards. In Comparative social evolution (eds. DI	R
20	800	Rubenstein, P Abbot), pp. 390–426. Cambridge, UK: Cambridge University Press.	
21	801		
22	802	63 Sexton O Jacobson JP Bramble JE 1992 Geographic variation in some activities associate	d
23	803	with hibernation in Neartic nitviners. In <i>Biology of the nitviners</i> (eds. IA Campbell FD	••
25	804	Brodie Ir) pp 337 346 Tyler TV: Selva	
26	804 805	broule, <i>J</i> 1. <i>)</i> , pp. <i>J</i> 57–540. Tylef, <i>T</i> X. Selva.	
27	805		
28	806	64. Brown WS. 2016 Lifetime reproduction in a northern metapopulation of timber rattlesnakes	\$
29	807	(Crotalus horridus). Herpetologica 72, 331–342.	
30	808		
31	809	65. Graves BM, Duvall D. 1995 Aggregation of squamate reptiles associated with gestation,	
32	810	oviposition, and parturition. <i>Herpetol. Monogr.</i> 9, 102–119.	
33	811		
34	812	66 Loughran CL, Beck DD, Weaver RE, 2015 Use of communal shedding sites by the Norther	'n
35	813	Pacific Pattlesnake (Crotalus oroganus oroganus) in central Washington State Northwest	
36	013	Nat OC 156 160	
37	814	Nal. 90, 130–100.	
38	815		
39	816	67. Wittenberger JF. 1981 Animal social behavior. Boston, MA: Duxbury Press.	
40	817		
41	818	68. Emlen ST. 1995 An evolutionary theory of the family. Proc. Natl Acad. Sci. USA 92, 8092-	-
42	819	8099.	
43	820		
44 45	821	69 Davis AR Corl A Surget-Groba Y Sinervo B 2011 Convergent evolution of kin-based	
45 46	822	sociality in a lizard Proc Riol Sci 278 1507-1514	
40 17	872	sociarity in a fiziala. 1766 Diol Sel. 276, 1567–1514.	
47 78	023	70 Cardwar MC Daarsen SK. Jahresten CD Saharsen MD 2016 Career lining in anomate	
40 49	824	70. Gardner MG, Pearson SK, Jonnston GR, Schwarz MP. 2016 Group hving in squamate	
50	825	reptiles: a review of evidence for stable aggregations. <i>Biol. Rev.</i> 91, 925–936.	
51	826		
52	827	71. Evans JC, Votier SC, Dall SRX. 2015 Information use in colonial living. <i>Biol. Rev.</i> 91,	
53	828	658–672.	
54			
55	829	72. Clark RW. 2004 Kin recognition in rattlesnakes. <i>Biol. Lett.</i> 271, S243–S245.	
56	-	<u> </u>	
57			
58		2	
59			
60			

1		
2 3	830	73 Hoss SK Deutschman DH Booth W Clark RW 2015 Post-birth separation affects the
4	831	affiliative behaviour of kin in a nitviner with maternal attendance <i>Biol I Linn Soc</i> 116
5	832	637–648
6	833	057 040.
/	033 024	74 Clark DW Prown WS Stachart D. Graana HW 2012 Cruntic sociality in rattlagnalized
8 0	034	(<i>Crotalua harridua</i>) detected by kinghin analysis. <i>Biol. Lett.</i> 9 , 522, 525
9 10	833 826	(Crotatus norritaus) detected by kinship analysis. <i>Biol. Lett.</i> 6 , 525–525.
11	020 027	75 Hatahwall DI 2010 Countie bin gelection, bin structure in wortshrote namylations and
12	83/	75. Hatchwell BJ. 2010 Cryptic kin selection: kin structure in vertebrate populations and $\frac{1}{10}$
13	838	opportunities for kin-directed cooperation. <i>Ethology</i> 116 , 203–216.
14	839	
15	840	76. Wolf JB, Brodie ED III, Moore AJ. 1999 Interacting phenotypes and the
16	841	evolutionary process II: selection resulting from social interactions. Am. Nat. 153, 254–266.
1/	842	
10	843	77. McGlothlin JW, Moore AJ, Wolf JB, Brodie ED III. 2010 Interacting phenotypes
20	844	and the evolutionary process III. Social evolution. <i>Evolution</i> 64: 2558–2574.
21	845	
22	846	78. Oh KP, Badyaev AV. 2010 Structure of social networks in a passerine bird:
23	847	consequences for sexual selection and the evolution of mating strategies. Am. Nat. 176,
24	848	E80–E89.
25	849	
26	850	79. Procter DS, Moore AJ, Miller CW. 2012 The form of sexual selection arising from
27	851	male-male competition depends on the presence of females in the social environment. J.
28	852	Evol. Biol. 25, 803–812.
29 30	853	
31	854	80. Pizzari T, Biernaskie JM, Carazo P. 2015 Inclusive fitness and sexual conflict: how
32	855	population structure can modulate the battle of the sexes. <i>BioEssays</i> 37 , 155–166.
33	856	
34	857	81. Faria NR. Vidal N. Lourenco J. Raghwani J. Sigaloff KCE. Tatem AJ. et al. 2019 Distinct
35	858	rates and patterns of spread of the major HIV-1 subtypes in Central and East Africa. <i>PLoS</i>
36	859	Pathology 15 e1007976
3/ 20	860	
30	861	82 Maldonado-Chanarro AA Alarcon-Nieto G Klarevas-Irby IA Farine DR 2018a
40	862	Experimental disturbances reveal group-level costs of social instability <i>Proc. R. Soc. R</i> .
41	863	<i>Riol Sci</i> 285 (1891) 20181577
42	864	Biot. 5ct. 205(1071), 20101077.
43	865	83 Maldonado Chanarro AA Montiglio PO Forstmaiar W Kampanaars B Farina DP 2018h
44	866	Linking the fine-scale social environment to mating decisions: A future direction for the
45	800 867	study of overa pair poternity. <i>Piol. Pay.</i> 03 , 1559, 1577
46 47	0U/ 860	suuy oi exita-pait paterinty. <i>Diol. Nev.</i> 93, 1550–1577.
47 48	000 960	84 Duadala II Maadagald DW Daga LC Dugla T 2007 Daluarman day autos anoun notamity
49	809	84. Dugaale H, Macdonald DW, Pope LC, Burke T. 2007 Polygynandry, extra-group paternity
50	8/U 071	and multiple-paternity inters in European badger <i>Meles meles</i> social groups. <i>Molecular</i>
51	8/1	<i>Ecology</i> 10, 5294–5306
52	8/2	
53	8/3	85. Cohas A, Allaine D. 2009 Social structure influences extra-pair paternity in socially
54	8/4	monogamous mammals. <i>Biol. Lett.</i> 5, 313–316.
55	875	
50 57		
58		2
59		2

2		
3 4 5	876 877 878	86. Duvall D, Schuett GW, Arnold SJ. 1993 Ecology and evolution of snake mating systems. In Snakes: ecology and behavior (eds. RA Seigel, JT Collins), pp. 165–200. New York, NY: McGraw-Hill.
6 7	879	
7 8	880	87 Arnold SI Duvall D 1994 Animal mating systems: a synthesis based on selection theory
9	881	Am Nat 143 317-348
10	882	<i>IIII.</i> 17 <i>a</i> . 1 <i>b</i> , <i>5</i> 17 <i>b</i> 10.
11	883	88 Rivas IA Burghardt GM 2005 Snake mating systems behavior and evolution: the
12	884	revisionary implications of recent findings <i>I Comp Psychol</i> 119 447–454
13	885	
14	886	89 Booth W. Schuett GW 2011 Molecular genetic evidence for alternative reproductive
15 16	887	strategies in North American nitviners (Sementes: Vineridae): long-term sperm storage and
17	888	facultative parthenogenesis <i>Biol I Linngan</i> Soc 104 934–942
18	889	acutative partitettogenesis. Dioi. 5. Entitean Soc. 104, 954-942.
19	890	90 Booth W. Schuett GW 2016 The emerging phylogenetic pattern of parthenogenesis in
20	891	snakes Riol I Linnagn Soc 118 172–186
21	897	snakes. <i>Divi. 5. Linnean Soc.</i> 116, 172–166.
22	893	91 Jellen BC Aldridge RD 2011 Paternity patterns. In <i>Reproductive hiology and phylogeny</i>
25 24	894	of snakes (eds RD Aldridge RD DM Sever) nn 619-644 Enfield NH: Science
25	895	Publishers
26	896	
27	897	92 Graham SP Earley RI Hoss SK Schuett GW Grober MS 2008 The reproductive biology
28	898	of male cottonmouths (<i>Agkistrodon niscivorus</i>): do plasma steroid hormones predict the
29	800	mating season? Gan Comp. Endocrinol 159, 226-235
30 21	900	maning season? Gen. Comp. Endocrinol. 139, 220-255.
32	901	93 Parker GA Birkhead TR 2013 Polyandry: the history of a revolution Philos Trans R Soc
33	902	Biol Sci 368 1–8
34	903	
35	904	94 Shuster SM Briggs WR Dennis PA 2013 How multiple mating by females affects sexual
36	905	selection <i>Phil Trans R Soc</i> B 368 20120046
37 38	906	
39	907	95 Hobaiter C. Poisot T. Zuberbühler K. Hoppitt W. Gruber T 2014 Social network analysis
40	908	shows direct evidence for social transmission of tool use in wild chimpanzees. <i>PLoS Biol</i>
41	909	12 , e1001960.
42	910	,,,,,
43	911	96. Ilany A. Akcay E. 2016 Social inheritance can explain the structure of animal social
44 45	912	networks. Nat. Comm. 7, 12084.
45 46	913	,,, _,
47	914	97. Szabo B. Noble DWA, Whiting MJ. 2021 Learning in non-avian reptiles 40 years on:
48	915	advances and promising new directions. <i>Biol. Rev.</i> 96 , 331–356.
49	916	
50	917	98 Ford NB 1986 The role of pheromone trails in the sociobiology of snakes. In <i>Chemical</i>
51	918	signals in vertebrates 4 (eds. D.Duvall. D.Müller-Schwarze, RM Silverstein), pp. 261–
52 52	919	278 Boston MA: Springer
55 54	920	
55	921	99. Cobb VA. Green JJ. Worrall T. Pruett J. Glorioso B 2005 Initial den location
56		······································
57		
58		2
59 60		
~ ~		

1		
2 3	000	
4	922	behavior in a litter of neonate <i>Crotalus horridus</i> (Timber Rattlesnake). Southeast. Nat. 4,
5	923	723-730.
6	924	
7	925	100. Mason RT, Parker MR. 2010 Social behavior and pheromonal communication in reptiles. J.
8	926	Comp. Physiol. A, Neuroethol., Sensory, Neural, and Behav. Physiol. 196 , 729–749.
9	927	
10	928	101. Waters RM, Bowers BB, Burghardt GM. 2017 Personality and individuality in reptile
11	929	behavior. In Personality in nonhuman animals (eds. J Vonk, A Weiss, SA Kuczaj), pp.
12	930	153–184. New York, NY: Springer.
13 14	931	
15	932	102. Muellman PJ. Da Cunha O, Montgomery CE. 2018. Crotalus horridus (Timber
16	933	Rattlesnake) maternal scent trailing by neonates. Northeast. Nat. 25, 50–55.
17	934	
18	935	103. Burghardt GM, Partin AM, Pepper HE, Steele JM, Liske SM, Stokes AE, Lathan AN,
19	936	Springer CM Jenkins MS 2021 Chemically mediated self-recognition in sibling invenile
20	937	common gartersnakes (<i>Thamnophis sirtalis</i>) reared on same or different diets: evidence for
21	938	a chemical mirror? <i>Behaviour</i> 158 1169–1191
22	939	
23	940	104 Beaupre SI 2016 Novel tracking and remote monitoring technologies: applications to
25	941	studying wild rattlesnakes. In <i>Rattlesnakes of Arizona</i> vol 2 (eds. GW Schuett MI Feldner
26	947	CE Smith RS Reiserer) nr. 58-91 Rodeo NM: ECO Publishing
27	0/3	er Sinnur, KS Keiserer), pp. 56-51. Rodeo, NWI. Leo Tublishing
28	04J	105 He P. Maldonado-Chaparro AA. Farine DR 2019 The role of habitat configuration in
29	945	shaping social structure: a gap in studies of animal social complexity. <i>Rehav Ecol Sociabiol</i>
30 21	945 946	73 0
32	740	
33		
34		
35		
36		
37		
38		
39 40		
41		
42		
43		
44		
45		
46		
47 78		
49		
50		
51		
52		
53		
54		
55		
50 57		
58		2
59		-

1		
2		
3	947	Appendix
4	9/8	<u>repondix</u>
5	040	Definitions of important terms in social network applage that were used in the present
6	949	Demitions of important terms in social network ecology that were used in the present
7	950	study.
8	951	
9	952	Association index – Any measure of the strength of association between two species [23, 30].
10	953	<i>Centrality</i> – The extent to which a given node (e.g., individual) occupies a position that is
11	954	important in the structure of the network [23, 30].
12	955	
13	956	Closeness centrality – A measure of centrality that quantifies the proximity of a node (e.g.
14 17	957	individual) to all other nodes in the network and thus indicates nodes that are more connected
15	058	and highly influential in the social network and thus indicates nodes that are more connected
10	930	<i>Edge</i> A line between two nodes (e.g. individuals) representing a social interaction [22, 20]
12	939	<i>Eage</i> – A line between two nodes (e.g., individuals) representing a social interaction [25, 50]
19	960	
20	961	Fission-Fusion Dynamics – The extent of variation in spatial cohesion and individual
21	962	membership in a group over time [47].
22	963	
23	964	<i>Modularity</i> – A measure of subsets (groups, clusters, or communities) of entities (e.g.,
24	965	individuals) that interact with each other more frequently than with other individuals in a
25	966	population: groups or modules of highly connected individuals. High modularity networks have
26	967	dense connections between nodes within modules but few connections (between nodes) in
27	968	different modules [30, 60]
28	060	unterent modules [50, 00].
29	909	Nexteducer Interactions of loss connected elements (a.g. individuale) that form proper subsets
30	970	<i>Thesteaness</i> – Interactions of less connected elements (e.g., individuals) that form proper subsets
31	9/1	of the interactions of more connected elements, e.g., individuals [30, 61, 62, 73].
32 22	972	
27	973	<i>Node</i> – An object in a network, such as an individual $[23, 30]$.
24 25	974	
36	975	Social Preference – Selection of one element (e.g., individual) more frequently over another
37	976	element (e.g., individual) in the context of a social environment. Nonrandom, repeated
38	977	interactions with certain individuals that are the foundation of social relationships. Also termed
39	978	preferred association [20, 21 23, 30].
40	979	
41	980	Network Analysis Details
42	981	
43	082	In an interaction matrix, each node (column i or row i) represents an individual and each social
44	002	interaction absorved between two individuals (aii) is an edge. Modulerity ecourts when subsets of
45	903	individuals (<i>ay</i>) is an edge. Modulatly occurs when subsets of
46	984	individuals interact more among themselves than with other individuals in the population,
4/	985	forming modules of highly connected individuals.
48	986	
49 50	987	Nestedness occurs when highly connected individuals interact with each other, while the less
50 51	988	connected individuals only interact with a subset of the partners of the most connected
52	989	individuals.
53		$\frac{n}{d}$
54	990	$CC_i = \sum_{i=1}^{n} \frac{\alpha_{ij}}{1-\alpha_{ij}}$
55		$\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} n-1$
56		$j = 1, c \neq j$
57		
58		2
59		

2 3 4 5 6 7 8	991 992 993 994 995	where <i>n</i> is the number of individuals in the network and d_{ij} is the shortest distance between individuals <i>i</i> and <i>j</i> . <i>CC_i</i> ranges from 0 to 1 with values closer to 1 indicating higher connectivity of an individual in relation to all others in the population [66].
9	996	Table A1. Model selection results (encompassing 95% of the total model weight) for predicting
10	997	the effects of snout-vent length (SVL), home range size (MCP), and sex on closeness centrality
11	998	(CC) for western diamondback rattlesnakes (Crotalus atrox) in a network based on observations
12	999	of adult pairs overwintering in the same den shelter. Referred to as the "denning network" in
13 14	1000	main text. Δ AICc is the difference in AICc values from a given model to the top-ranked model.
15	1001	AICc weight shows the relative likelihood a given model is the most supported. + indicates an
16	1002	additive effect.

Model	df	logLik	AIC _c	ΔAIC _c	Weigh t
Sex	5	89.11	-166.82	0	0.31
Sex + MCP	6	90.24	-166.47	0.35	0.26
(Intercept)	4	87.43	-165.95	0.88	0.20
Sex + SVL	6	89.16	-164.33	2.50	0.09
SVL	5	87.73	-164.06	2.77	0.08
Sex + MCP + SVL	7	90.25	-163.77	3.05	0.07

Table A2. Model averaged parameter estimates (β) and estimates of their precision for predicting closeness centrality (CC) for adult western diamondback rattlesnakes (Crotalus atrox) in a network based on observations of adult pairs overwintering in the same den shelter. Referred to as the "denning network" in main text. MCP = home range size minimum convex polygon. SVL = snout-vent length. The 95% confidence interval (CI) includes zero for all predictors.

Predictor	β	Adjuste d S.E.	Lower 95% CI	Upper 95% CI
(Intercept)	0.018	0.013	-0.007	0.043

Sex	0.026	0.014	-0.001	0.054
МСР	-0.010	0.007	-0.022	0.003
SVL	0.001	0.007	-0.014	0.014

Table A3. Model selection results (encompassing 95% of the total model weight) for predicting the effects of snout-vent length (SVL), home range size (minimum convex polygon, MCP), and sex on closeness centrality (CC) for western diamondback rattlesnakes (Crotalus atrox) in a network based on observations of adult pairs engaging in behaviors related to reproduction. Referred to as "pairing network" in the main text. $\Delta AICc$ is the difference in AICc values from a given model to the top-ranked model. AICc weight shows the relative likelihood a given model is the most supported. + indicates an additive effect.

Model	df	logLik	AIC _c	ΔAIC_{c}	Weight
SVL	5	107.22	-203.05	0	0.63
SVL + MCP	6	107.72	-201.43	1.62	0.28
MCP + Sex	6	106.54	-199.08	3.97	0.09

Table A4. Model averaged parameter estimates (β) and estimates of their precision for predicting closeness centrality (CC) for adult western diamondback rattlesnakes (Crotalus atrox) in a network based on observations of adult pairs engaging in behaviors related to reproduction. Referred to as "pairing network" in the main text. SVL = snout-vent length and MCP = home range minimum convex polygon. The 95% confidence interval (CI) includes zero for all predictors.

Predictor	β	Adjusted SE	Lower	Upper
			95% CI	95% CI
(Intercept)	0.037	0.012	0.014	0.060
SVL	-0.008	0.006	-0.019	0.005

МСР	0.004	0.004	-0.005	0.011
Sex	-0.004	0.009	-0.022	0.014

Table A5. Model selection results (encompassing 95% of the total model weight) for predicting the effects of sex and home range size (MCP) on closeness centrality (CC) for a network describing the number of offspring produced between pairs of western diamondback rattlesnakes (Crotalus atrox). Referred to as "parentage network" in the main text. $\Delta AICc$ is the difference in AICc values from a given model to the top-ranked model. AICc weight shows the relative likelihood a given model is the most supported. + indicates an additive effect. Snout-vent length (SVL) is not presented as it did not contribute models with weight.

Model	df	logLik	AIC _c	ΔAIC_{c}	Weight
Sex	5	109.15	-206.90	0	0.61
Sex + MCP	6	109.29	-204.58	2.31	0.20
МСР	5	107.76	-204.12	2.77	0.18

Table A6. Model averaged parameter estimates (β) and estimates of their precision for predicting closeness centrality (CC) for a network describing the number of offspring produced between pairs of western diamondback rattlesnakes (Crotalus atrox). Referred to as "parentage network" in the main text. MCP = home range minimum convex polygon. Bold indicates the 95% confidence interval (CI) did not cross zero for sex.

	Predictor	β	Adjusted SE	Lower	Upper
				95% CI	95% CI
(I	ntercept)	0.037	0.008	0.020	0.054
	МСР	-0.002	0.004	-0.013	0.005
٤	Sex (male)	-0.016	0.010	-0.034	-0.002

54 l

1034 Table A7. Closeness centrality (CC) for each male and female *C. atrox* on the pairing, parentage,
 1035 and denning networks. See main text for additional details.

	Pairing n	etwork	Pa	arentage n	etwork	Denning network			
ID	Sex	CC	ID	Sex	CC	ID	Sex	CC	
CA001f	female	0.11196229	CA001f	female	0.08057908	CA001f	female	0.14285714	
CA002f	female	0.08986447	CA002f	female	0.05285441	CA002f	female	0.00000000	
CA003f	female	0.05362404	CA003f	female	0.00000000	CA014f	female	0.00000000	
CA008f	female	0.00000000	CA008f	female	0.00000000	CA016f	female	0.09523810	
CA010f	female	0.00000000	CA010f	female	0.00000000	CA029f	female	0.00000000	
CA011f	female	0.09870359	CA011f	female	0.00000000	CA030f	female	0.00000000	
CA012f	female	0.00000000	CA012f	female	0.00000000	CA039f	female	0.00000000	
CA014f	female	0.00000000	CA014f	female	0.00000000	CA042f	female	0.00000000	
CA015f	female	0.00000000	CA015f	female	0.00000000	CA044f	female	0.00000000	
CA016f	female	0.06923984	CA016f	female	0.08057908	CA046f	female	0.00000000	
CA017f	female	0.00000000	CA017f	female	0.00000000	CA047f	female	0.04761905	
CA019f	female	0.00000000	CA019f	female	0.00000000	CA049f	female	0.00000000	
CA029f	female	0.00000000	CA029f	female	0.00000000	CA058f	female	0.04761905	
CA030f	female	0.08986447	CA030f	female	0.05422016	CA059f	female	0.00000000	
CA039f	female	0.00000000	CA039f	female	0.00000000	CA061f	female	0.00000000	
CA042f	female	0.00000000	CA042f	female	0.07784758	CA062f	female	0.00000000	
CA044f	female	0.00000000	CA044f	female	0.05941000	CA064f	female	0.00000000	
CA046f	female	0.03535651	CA046f	female	0.05531276	CA066f	female	0.00000000	
CA047f	female	0.02651738	CA047f	female	0.07716471	CA077f	female	0.00000000	
CA049f	female	0.02651738	CA049f	female	0.00000000	CA081f	female	0.00000000	
CA051f	female	0.00000000	CA051f	female	0.00000000	CA093f	female	0.00000000	
CA056f	female	0.00000000	CA056f	female	0.00000000	CA094f	female	0.00000000	
CA058f	female	0.00000000	CA058f	female	0.06487299	CA095f	female	0.00000000	
CA059f	female	0.06393636	CA059f	female	0.00000000	CA100f	female	0.00000000	
CA060f	female	0.00000000	CA060f	female	0.00000000	CA102f	female	0.04761905	
CA061f	female	0.08544490	CA061f	female	0.05053264	CA120f	female	0.00000000	
CA062f	female	0.00000000	CA062f	female	0.00000000	CA121f	female	0.00000000	
CA063f	female	0.00000000	CA063f	female	0.00000000	CA124f	female	0.00000000	
CA064f	female	0.05303477	CA064f	female	0.00000000	CA004m	male	0.00000000	
CA065f	female	0.03535651	CA065f	female	0.00000000	CA005m	male	0.14285714	
CA066f	female	0.00000000	CA066f	female	0.05462988	CA007m	male	0.00000000	
CA070f	female	0.00000000	CA070f	female	0.00000000	CA013m	male	0.07142857	
CA071f	female	0.00000000	CA071f	female	0.00000000	CA031m	male	0.00000000	
CA077f	female	0.00000000	CA077f	female	0.00000000	CA032m	male	0.00000000	
CA081f	female	0.00000000	CA081f	female	0.06487299	CA033m	male	0.14285714	
CA085f	female	0.00000000	CA085f	female	0.00000000	CA034m	male	0.00000000	
CA086f	female	0.00000000	CA086f	female	0.00000000	CA037m	male	0.00000000	
CA087f	female	0.00000000	CA087f	female	0.00000000	CA038m	male	0.00000000	
CA089f	female	0.00000000	CA089f	female	0.00000000	CA041m	male	0.14285714	
CA090f	female	0.00000000	CA090f	female	0.00000000	CA050m	male	0.00000000	
CA093f	female	0.07218621	CA093f	female	0.05285441	CA055m	male	0.07142857	

2									
3	CA094f	female	0.04419564	CA094f	female	0.00000000	CA006m	male	0.00000000
4	CA095f	female	0.00000000	CA095f	female	0.00000000	CA076m	male	0 00000000
5	CA100f	female	0.00000000	CA100f	female	0.00000000	CA079m	male	0.00000000
7	CA101f	female	0.00000000	CA101f	female	0.00000000	CA092m	male	0.00000000
8	CA102f	fomale	0.04410564	CA102f	famala	0.00000000	CA096m	male	0.00000000
9	CA1021	formala	0.04419304	CA1021	formala	0.07784738	$C \land 097m$	male	0.00000000
10	CATIZI CA1120		0.0000000	CATIZI CA1120		0.00000000	CA008m	male	0.04701203
 12	CATI3f	female	0.0000000	CAT13f	female	0.05462988	CA096III	male	0.00000000
12	CA114f	female	0.00000000	CA114f	female	0.00000000	CA099m	male	0.00000000
14	CA115f	female	0.00000000	CA115f	female	0.00000000	CAIT/m	male	0.00000000
15	CA116f	female	0.00000000	CA116f	female	0.00000000	CA122m	male	0.00000000
16	CA120f	female	0.00000000	CA120f	female	0.00000000			
17	CA121f	female	0.00000000	CA121f	female	0.00000000			
18	CA124f	female	0.00000000	CA124f	female	0.04179186			
20	CA125f	female	0.00000000	CA125f	female	0.00000000			
21	CA131f	female	0.00000000	CA131f	female	0.00000000			
22	CA133f	female	0.00000000	CA133f	female	0.00000000			
23	CA001m	male	0.000000000	CA001m	male	0.00000000			
24	CA002m	male	0.000000000	CA002m	male	0.00000000			
25	CA003m	male	0.000000000	CA003m	male	0.00000000			
27	$C \Delta 004 m$	male	0.000000000	$C \Delta 004m$	male	0.00000000			
28	CA005m	mala	0.071111111	CA005m	malo	0.00000000			
29	CA005III	male	0.0/1111111	CA005III	male	0.04490277			
30	CA006m	male	0.045555556	CA006m	male	0.00000000			
31	CA00/m	male	0.00000000	CA00/m	male	0.00000000			
33	CA009m	male	0.000000000	CA009m	male	0.00000000			
34	CA013m	male	0.042222222	CA013m	male	0.00000000			
35	CA018m	male	0.000000000	CA018m	male	0.00000000			
36	CA020m	male	0.000000000	CA020m	male	0.03606364			
3/	CA021m	male	0.025555556	CA021m	male	0.00000000			
30	CA022m	male	0.006666667	CA022m	male	0.00000000			
40	CA023m	male	0.045555556	CA023m	male	0.02934590			
41	CA024m	male	0.006666667	CA024m	male	0.00000000			
42	CA025m	male	0.000000000	CA025m	male	0.00000000			
43	CA026m	male	0.000000000	CA026m	male	0.00000000			
44 45	CA027m	male	0.061111111	CA027m	male	0.04301709			
46	CA028m	male	0.000000000	CA028m	male	0.00000000			
47	CA031m	male	0.000000000	CA031m	male	0.00000000			
48	$C \Delta 032m$	male	0.04444444	$C \Delta 032m$	male	0.00000000			
49	$C \Lambda 022m$	male	0.000000000	$C \Lambda 022m$	male	0.00000000			
50 51	CA024	mala	0.000000000	CA024	mala	0.00000000			
52	CA034m	male	0.000000000	CA034m	male	0.00000000			
53	CAU35m	male	0.000000000	CA035m	male	0.0000000			
54	CA036m	male	0.00000000	CA036m	male	0.0000000			
55	CA037m	male	0.000000000	CA037m	male	0.00000000			
56	CA038m	male	0.000000000	CA038m	male	0.00000000			
5/									

CA040m	male	0.000000000	CA040m	male	0.04136712
CA041m	male	0.000000000	CA041m	male	0.00000000
CA043m	male	0.000000000	CA043m	male	0.05038303
CA045m	male	0.006666667	CA045m	male	0.04725987
CA048m	male	0.000000000	CA048m	male	0.00000000
CA050m	male	0.000000000	CA050m	male	0.04655274
CA052m	male	0.000000000	CA052m	male	0.00000000
CA053m	male	0.018888889	CA053m	male	0.00000000
CA054m	male	0.000000000	CA054m	male	0.00000000
CA055m	male	0.067777778	CA055m	male	0.00000000
CA057m	male	0.061111111	CA057m	male	0.00000000
CA067m	male	0.04444444	CA067m	male	0.00000000
CA068m	male	0.030000000	CA068m	male	0.04213318
CA069m	male	0.000000000	CA069m	male	0.00000000
CA072m	male	0.00000000	CA072m	male	0.00000000
CA073m	male	0.047777778	CA073m	male	0.02934590
CA074m	male	0.006666667	CA074m	male	0.03099588
CA075m	male	0.000000000	CA075m	male	0.00000000
CA076m	male	0.030000000	CA076m	male	0.04625810
CA078m	male	0.000000000	CA078m	male	0.00000000
CA079m	male	0.000000000	CA079m	male	0.02863877
CA080m	male	0.061111111	CA080m	male	0.03170301
CA082m	male	0.030000000	CA082m	male	0.00000000
CA083m	male	0.000000000	CA083m	male	0.00000000
CA084m	male	0.030000000	CA084m	male	0.03022982
CA088m	male	0.000000000	CA088m	male	0.03606364
CA091m	male	0.000000000	CA091m	male	0.00000000
CA092m	male	0.000000000	CA092m	male	0.00000000
CA096m	male	0.039444444	CA096m	male	0.00000000
CA097m	male	0.006666667	CA097m	male	0.00000000
CA098m	male	0.006666667	CA098m	male	0.00000000
CA099m	male	0.000000000	CA099m	male	0.00000000
CA103m	male	0.070000000	CA103m	male	0.00000000
CA104m	male	0.05444444	CA104m	male	0.00000000
CA105m	male	0.000000000	CA105m	male	0.00000000
CA106m	male	0.000000000	CA106m	male	0.00000000
CA107m	male	0.00000000	CA107m	male	0.00000000
CA108m	male	0.00000000	CA108m	male	0.02333530
CA109m	male	0.03944444	CA109m	male	0.00000000
CA110m	male	0.00000000	CA110m	male	0.00000000
CA111m	male	0.00000000	CA111m	male	0.00000000
CA117m	male	0.00000000	CA117m	male	0.00000000
CA118m	male	0.000000000	CA118m	male	0.00000000

0.0000000 0.00000000 0.000000000.000000000.0000000 0.0000000 0.0000000 0.000000000.000000000.000000000.00000000 0.04949912 0.000000000.0000000 0.03170301 0.04301709 0.043017090.05332940 0.0000000 0.000000000.04136712 0.00000000 0.00000000 0.04684738 0.05362404

1						
2						
3		CA119m	male	0.000000000	CA119m	male
4 5		CA122m	male	0.000000000	CA122m	male
6		CA123m	male	0.000000000	CA123m	male
7		CA126m	male	0.000000000	CA126m	male
8		CA127m	male	0.000000000	CA127m	male
9 10		CA128m	male	0.000000000	CA128m	male
11		CA129m	male	0.000000000	CA129m	male
12		CA130m	male	0.000000000	CA130m	male
13 14		CA132m	male	0.000000000	CA132m	male
14		CA134m	male	0.000000000	CA134m	male
16					UM1m	male
17					UM10m	male
18					UM11m	male
20					UM12m	male
21					UM13m	male
22					UM14m	male
23 24					UM15m	male
24 25					UM2m	male
26					UM3m	male
27					UM4m	male
28					UM5m	male
29 30					UM6m	male
31					UM7m	male
32					UM8m	male
33 24					UM9m	male
34 35	1036					
36						
37						
38						
39 40						
41						
42						
43 11						
44						
46						
47						
48						
49						

58 59

60

³ 1038 4	Table A8. I	Predictor	variable	e measur	ed for each (C. atrox subj	ect of the present study
5	ID	Sev	SVL	DUUY	length	MCr (ha)	nonitored
6 7	$\frac{10}{C \wedge 100f}$	female	835	560	1/70 76	<u>6 95</u>	2
8	CA101f	female	895	300 452	NΛ	0.75 NA	0
9	CA1011	fomale	850	432	17/2 58	10.01	3
10	CA1021	fomala	850 850	202 246	1/42.30 NA	10.01 NA	5
11	CA0101 CA112f	formale	830 705	262	INA NA	INA NA	0
12	CA1121	famala	/93	505	INA NA		0
14	CAII3I CAII46	female	912	558 255	NA NA		0
15	CA1141	remale	640	255	NA	NA	0
16	CAIISI	temale	620	1//	NA	NA	0
17	CAIl6f	temale	650	180	NA	NA	0
18 19	CA011f	female	860	370	NA	NA	0
20	CA120f	female	690	240	714.34	3.08	2
21	CA121f	female	655	300	701.94	2.83	2
22	CA124f	female	880	541	925.4	5.03	1
23	CA125f	female	770	394	NA	NA	0
24 25	CA012f	female	950	430	NA	NA	0
26	CA131f	female	865	546	NA	NA	0
27	CA133f	female	835	593	NA	NA	0
28	CA014f	female	815	404	1378.31	8.96	4
29	CA015f	female	710	291	NA	NA	0
30	CA016f	female	840	461	683.83	2.16	5
32	CA017f	female	815	334	NA	NA	0
33	CA019f	female	840	372	NA	NA	0
34	CA001f	female	885	348	1511.80	7.77	7
35	CA029f	female	850	413	1429 85	6 26	2
37	CA002f	female	780	339	781.08	3.08	6
38	CA030f	female	860	418	712.34	2.58	6
39	CA039f	female	910	486	1929	13.91	2
40	CA003f	female	870	395	NA	NA	0
41 42	CA042f	female	845	359	611 94	2 34	3
43	$C \Delta 044 f$	female	830	534	907.04	3 29	5 4
44	CA0441	female	800	307	708.07	2.36	5
45	$C \wedge 0401$	famala	830	308	1267.35	2.50	5 7
46	CA04/1	fomala	830 825	261	526.91	1.00	2
47 48	CA0491	famala	010	260	330.81 NIA	1.90 NA	5
49	CAUSII		910	360	INA NA	INA	0
50	CA056f	temale	880	365	NA 5(1.01	NA 1.04	0
51	CA058f	temale	790	305	561.01	1.94	4
52	CA059f	temale	770	441/	1354.99	8.08	2
53 54	CA060f	temale	825	354	NA	NA	0
55	CA061f	female	840	503	2173.52	20.60	5
56	CA062f	female	866	403	465.63	0.49945	1
57							
58					3		

1 2

1							
2	G 4 6 (2 6	C 1	010	206			0
4	CA063f	female	910	386	NA	NA 0.02725	0
5	CA064I	female	940 700	513	407.71	0.93725	3
6 7	CAUGSI	female	/90	347	NA 501.00	NA 1.40	0
8	CA0001	remaie	845	393	501.89	1.40	2
9	CA0/0f	female	910	485	NA	NA	0
10	CA0/If	female	940	454	NA	NA	0
11	CA07/f	female	850	379	963.32	4.41	1
12	CA081f	temale	845	419.5	2085.79	7.23	3
14	CA085f	temale	775	243	NA	NA	0
15	CA086f	female	350	18.5	NA	NA	0
16	CA087f	female	705	257.3	NA	NA	0
1/	CA089f	female	310	21	NA	NA	0
18	CA008f	female	845	347	NA	NA	0
20	CA090f	female	298	19	NA	NA	0
21	CA093f	female	825	399	944.4	3.35	3
22	CA094f	female	775	370	633.28	1.87	2
23 24	CA095f	female	905	476	648.33	1.82	1
25	CA103m	male	910	505	NA	NA	0
26	CA104m	male	900	429	NA	NA	0
27	CA105m	male	1003	625	NA	NA	0
28	CA106m	male	700	265	NA	NA	0
30	CA107m	male	1040	905	NA	NA	0
31	CA108m	male	810	405	NA	NA	0
32	CA109m	male	1004	816	NA	NA	0
33	CA110m	male	780	386	NA	NA	0
34 35	CA111m	male	875	451	NA	NA	0
36	CA117m	male	965	535	1326.72	6.02	2
37	CA118m	male	875	453	NA	NA	0
38	CA119m	male	1020	604	NA	NA	0
39 40	CA122m	male	864	433	1351.75	9.18	1
40	CA123m	male	786	384	NA	NA	0
42	CA126m	male	900	632	NA	NA	0
43	CA127m	male	935	600	NA	NA	0
44	CA128m	male	1070	842	NA	NA	0
45	CA129m	male	1060	775	NA	NA	0
47	CA130m	male	1045	859	NA	NA	0
48	CA132m	male	1015	740	NA	NA	0 0
49	CA134m	male	738	243	NA	NA	Ő
50 51	CA013m	male	1060	673	1723.93	17.85	3
52	$C\Delta 018m$	male	950	470	ΝΔ	ΝΔ	0
53	$C \land 001 m$	male	NA	ΠΛ	NA	ΝA	0
54	$C \land 0.00 \text{ m}$	male	11A 850	<u>117</u> <u>45</u> 2	NA NA	NA	0
55	$C \wedge 020 m$	mala	020	752 562	INA NA		0
57	CA021111		200	505	INA		U
58					3		
59							

CA022m	male	880	NA	NA	NA	0
CA023m	male	820	NA	NA	NA	0
CA024m	male	950	642	NA	NA	0
CA025m	male	800	333	NA	NA	0
CA026m	male	840	456	NA	NA	0
CA027m	male	1010	520	NA	NA	0
CA028m	male	875	443	NA	NA	0
CA002m	male	NA	NA	NA	NA	0
CA031m	male	1000	472	3626.49	38.62	3
CA032m	male	1100	745	1841.04	18.71	3
CA033m	male	1105	694	1324.75	9.44	3
CA034m	male	855	277	1404.21	6.09	2
CA035m	male	810	404	NA	NA	0
CA036m	male	1040	806	NA	NA	0
CA037m	male	1095	665	1412.81	9.52	1
CA038m	male	815	372	857.19	1.59	1
CA003m	male	NA	NA	NA	NA	0
CA040m	male	1030	726	NA	NA	0
CA041m	male	935	537	1177.65	7.33	3
CA043m	male	740	273	NA	NA	0
CA045m	male	905	456	NA	NA	0
CA048m	male	880	452	NA	NA	0
CA004m	male	NA	NA	502.15	0.92945	1
CA050m	male	940	531	2839.73	27.44	2
CA052m	male	1040	746	NA	NA	0
CA053m	male	850	493	NA	NA	0
CA054m	male	860	368	NA	NA	0
CA055m	male	760	339	2264.72	26.38	3
CA057m	male	1140.5	973	NA	NA	0
CA005m	male	820	374	1198.27	8.19	3
CA067m	male	900	556	NA	NA	0
CA068m	male	1050	736	NA	NA	0
CA069m	male	915	631	NA	NA	0
CA006m	male	795	342	1592.53	14.05	4
CA072m	male	850	512	NA	NA	0
CA073m	male	695	284	NA	NA	0
CA074m	male	920	582	NA	NA	0
CA075m	male	721	295	NA	NA	0
CA076m	male	958	656	1239.26	5.83	2
CA078m	male	1015	831	NA	NA	0
CA079m	male	925	650	1337.83	11.46	2
CA007m	male	870	456	1163.76	5.18	2
CA080m	male	945	547	NA	NA	0
				2		
				3		

Figure A1. Minimum convex polygons (MCP) showing home ranges for females CA-02 and CA-77 that alternated between communal dens (den ID: AD-1 and AD-5) and private winter shelters in different years. Note the consistency in CA-02's annual home range size and shape. See main text for additional details.

Supplementary Material from "Fission-Fusion Dynamics in the Social Networks of a North American Pitviper"

Rattlesnakes in social network analysis

Numerous moderate- to large-sized species of rattlesnakes (e.g., *Crotalus atrox, C. cerberus, C. oreganus, C. stephensi*, and *C. viridis*) possess several attributes that allow their study in nature to be manageable and thus good candidate models for longitudinal studies using network analysis. The changing academic milieu and publication stance on social behavior in animals, in general, and rattlesnakes and other reptiles, in particular, is summarized by Schuett and colleagues [1, 2] and inspired by Doody and colleagues [3, 4] and Van Dyke and colleagues [5].

1) In the five rattlesnake taxa mentioned above, individuals often assemble to form highly localized groups (two to several hundred) in communal winter shelters (communal dens) from fall to spring, or even longer [1, 2, 6–9]. Rarely observed in other species of snakes, this attribute permits one not only to observe most adult snakes (and sometimes neonates and juveniles) of a population [1, 2, 8, 10–14], but also to capture them for processing such as inserting permanent PIT tags (identification), performing radio-telemetry surgery (radio-tracking), and procuring tissues (e.g., blood, scale clips) for subsequent DNA analysis [2, 9]. See Schuett and colleagues [1, 2, 11] for a discussion of other attributes of communal shelters in rattlesnakes for studies of social behavior.

2) With the advent of affordable commercial radio-telemetry for terrestrial snakes since the late 1980s, it is now possible to implant radio-transmitters into the body cavity of moderate- to large-sized individuals for long periods (e.g., months to years) before removal or replacement [15]. Radio-telemetry provides a unique radio-signal for each individual. Coupled with the use of PIT tags and other forms of identification methods (e.g., unique painting of rattles, photographs), radio-tracking and locating individuals can be done with high precision.

3) As a group, rattlesnakes tend to be slow-moving, ambush (sit-and-wait) predators [16, 17]. Consequently, their movements are limited and distances traveled per movement session (e.g., evening) tend to be short (e.g. 0.1–1km). Thus, unlike many other organisms such as birds, felids, and ungulates, radio-tracking can be done by foot and managed on a daily basis if needed. Furthermore, when compared to other snake species, rattlesnakes as sit-and-wait predators are often exposed on the ground-surface and visible for observation purposes [17; R. Repp and G. Schuett, pers. observ., 2001–2015].

4) Nearly all large species of rattlesnakes are long-lived, with some attaining lifespans exceeding four decades [18–19]. Longevity is especially desirable in that overlapping generations can be studied simultaneously and by a single researcher. Maturation in females is from 3 to 12 years dependent on the species and location [18–19].

Communal denning and relatedness analysis

The hypothesis of communal denning and relatedness was investigated earlier [2] with a larger number of adult *C. atrox* (Suizo Mountains) than the focal group used in the current study. The focal group in the current study all were fitted with radio-transmitters (N = 50; 22 males, 28 females). The earlier study [2] incorporated animals without radio-transmitters.

A grand total of 191 adult *C. atrox* were genotyped [9; see 2, pp. 196-198]. Of these 191 subjects, 46 (22 \Diamond , 28 \bigcirc) were fitted radio-transmitters and 50 were known to occupy one of seven different communal dens [2]. We used the maximum likelihood method implemented in ML-relate [20]. See Jones and colleagues [21] on methods to calculate pairwise relatedness (R) and estimate the relationship of all pairs [2, 9]. We ascertained relationships among the subjects that shared communal dens, and used bootstrapping to compare mean relatedness between pairs of individuals that shared communal dens with random pairs drawn from the population as a whole.

An initial test pooling all den occupants indicated that individuals that shared dens, although often unrelated, had a higher average relatedness than random pairs (mean R = 0.029, p < 0.001). When individual dens were analyzed separately, however, four of the seven dens in the sample had pairs of subjects that were identified as at least half-sibs, but three dens had no detectable relatives (Supporting Information, Tables S1–S8).

Accordingly, this analysis supports the view that kin-relationships might be drivers, in part, of the dynamics of communal denning in *C. atrox* at this site. Furthermore, even in this analysis, we suspect under-sampling is still at play owing to the difficulty in capturing all of the den occupants [GW Schuett, pers. observ., 2001–2015]. Accordingly, kin-relations may be yet further underestimated, especially in the three dens where no relatives were detected.

Table S1. Genotype results of adult Western Diamond-backed Rattlesnakes (*Crotalus atrox*) from Den AD-1 at the Suizo Mountains, AZ, USA. Site was sampled from 2001 to 2010. HS = half-sibs [2, 9].

Matrix of			CAM	CAS	CAM	CAM	CAM	CAM	CAM	CAM	CAS	CAS	CAS	CAS
Relatedness			D2 S	D-	D2 S	D-	D-	D-	D-					
			1b	002F	10	7	5	6	2b	4b	033	038	080	083
			F	F	М	М	М	М	М	М	М	М	М	М
			CA-1	CA-2	CA-1	CA-2	CA-3	CA-4	CA-5	CA-6	CA-	CA-	CA-	CA-
											33	38	80	83
-														
CAMD2_S1	F	CA-1	x											
b														
CASD 002E	Б	CA 2	0											
CASD-002F	г	CA-2	0	X										
CAMD2 S1	м	CA-1	0.03	0	x									
0			0.02											
CAMD2_S7	Μ	CA-2	0	0	0.06	x								
CAMD2_S5	Μ	CA-3	0.03	0	0.17	0.06	x							

CAMD2_S6	M	CA-4	0	0	0.04	0	0.01	x						
CAMD2_S2	M	CA-5	0.03	0.03	0	0.08	0.03	0.06	x					
b														
CAMD2_S4 b	M	CA-6	0	0.03	0	0	0	0.1	0	x				
CASD-033	M	CA- 33	0.01	0.13	0	0	0	0.12	0	0.03	X			
CASD-038	M	CA- 38	0	0	0	0	0.01	0.03	0	0.09	0.09	X		
CASD-080	M	CA- 80	0.04	0	0	0	0	0	0	0	0.03	0	x	
CASD-083	M	CA- 83	0	0	0.03	0	0.07	0	0	0.06	0	0.39	0	x
			GUY		<u></u>	GUN	GUN	GUN		GUN			010	0.10
Natrix of Relationship			D2 S	D-	D2 S	D2 S	D2 S	D2 S	D2 S	D2 S	D-	D-	D-	D-
Relationship			1b	002F	10	7	5	6	2b	4b	033	038	080	083
			F	F	М	М	М	М	М	М	М	М	М	М
			CA-1	CA-2	CA-1	CA-2	CA-3	CA-4	CA-5	CA-6	CA- 33	CA- 38	CA- 80	CA- 83
CAMD2_S1 b	F	CA-1	x				2							
CASD-002F	F	CA-2	u	x										
CAMD2_S1 0	M	CA-1	u	u	x									
CAMD2_S7	M	CA-2	u	u	u	x								
CAMD2_S5	M	CA-3	u	u	HS	u	x							
CAMD2_S6	M	CA-4	u	u	u	u	u	x						
CAMD2_S2 b	M	CA-5	u	u	u	u	u	u	x					
CAMD2_S4 b	M	CA-6	u	u	u	u	u	u	u	x				
CASD-033	M	CA- 33	u	HS	u	u	u	u	u	u	X			
CASD-038	M	CA- 38	u	u	u	u	u	u	u	u	u	X		
CASD-080	M	CA- 80	u	u	u	u	u	u	u	u	u	u	x	

r															
	CASD-083	M	CA-	u	u	u	u	u	u	u	u	u	HS	u	X
			83												

Table S2. Genotype results of adult Western Diamond-backed Rattlesnakes (*Crotalus atrox*) from Den AD-4 at the Suizo Mountains, AZ, USA. Site was sampled from 2001 to 2010. HS = half-sibs. See Clark et al. (2014) and Schuett et al. (2014).

Matrix of			CASD	CASD	CAM	CASD	CAM	CASD	CASD	CASD	CASD	CASD	CASD
relatedness			-016	-081	D2 S1	-032	D2 S2	-050	-055	-073	-074	-110	-x053
					6		5						
			F	F	М	М	М	M	М	М	M	М	М
			CA-16	CA-81	CA-13	CA-32	CA-37	CA-50	CA-55	CA-73	CA-74	CA-	CA-
												110	X53
CASD-016	F	CA-16	x	Ô									
CASD-081	F	CA-81	0.015	x									
CAMD2_S1	M	CA-13	0	0.01	x								
6													
CASD-032	M	CA-32	0	0	0.058	x							
CAMD2_S2	Μ	CA-37	0	0	0.06	0.13	x						
5							0						
CASD-050	M	CA-50	0	0	0.03	0.1	0.02	Х					
CASD-055	M	CA-55	0	0	0	0	0.02	0.13	х				
CASD-073	M	CA-73	0.12	0.05	0	0.21	0	0.38	0	x			
CASD-074	М	CA-74	0	0	0.03	0	0.14	0	0.09	0	x		
CASD-110	M	CA- 110	0.06	0.08	0	0	0	0	0.03	0	0.05	x	
CASD-x053	М	CA- X53	0	0.04	0.1148	0.0603	0	0.1215	0.1334	0.1405	0	0	X
Matrix of relationship			-016	CASD -081	CAM D2_S1 6	-032	CAM D2_S2 5	-050	CASD -055	-073	CASD -074	CASD -110	CASD -x053
			F	F	М	М	М	М	М	М	М	М	М
			CA-16	CA-81	CA-13	CA-32	CA-37	CA-50	CA-55	CA-73	CA-74	CA- 110	CA- X53
CASD-016	F	CA-16	x										
CASD-081	F	CA-81	u	X									

CAMD2_S1 6	M	CA-13	u	u	x									
CASD-032	M	CA-32	u	u	u	x								
CAMD2_S2 5	M	CA-37	u	u	u	HS	x							
CASD-050	M	CA-50	u	u	u	u	u	X						
CASD-055	M	CA-55	u	u	u	u	u	u		x				
CASD-073	M	CA-73	HS	u	u	HS	u	HS	8	u	x			
CASD-074	M	CA-74	u	u	u	u	HS	u		u	u	x		
CASD-110	M	CA- 110	u	u	u	u	u	u		u	u	u	x	
CASD-x053	M	CA- X53	u	u	HS	u	u	HS	5	HS	HS	0	0	Х
Table S3. (AD-5 at the et al. (2014)	Geno Su) an	otype re izo Mou d Schue	esults c untains ett et a	of adult s, AZ, U 1. (2014)	Western JSA. Site).	Diamo e was s	ond-bacl ampled	ced I from	Rattle n 200	esnakes 1 to 20	(<i>Crota</i> 10. HS	<i>lus atro</i> = half-s	x) from ibs. See	Den Clark
Relatedness m	atrix				CASD-07	77	CASD-034		CASE	D- 043	CAMD	02_825	CASD-0	45

Relatedness matrix			CASD-077	CASD-034	CASD-043	CAMD2_S25	CASD-045
			F	М	М	М	М
			CA-77	CA-34	CA-43	CA-37	CA-45
CASD-077	F	CA-77	X				
CASD-034	М	CA-34	0	x	5		
CASD-043	М	CA-43	0.08	0	x		
CAMD2_S25	М	CA-37	0.1029	0.0444	0.1027	X	
CASD-045	M	CA-45	0.06	0	0.004	0	x
Relatinoship matrix			CASD-077	CASD-034	CASD-043	CAMD2_S25	CASD-045
			F	М	М	М	М
			CA-77	CA-34	CA-43	CA-37	CA-45
CASD-077	F	CA-77	X				
CASD-034	М	CA-34	u	x			
CASD-043	М	CA-43	u	u	x		
CAMD2_S25	М	CA-37	HS	u	HS	Х	
CASD-045	М	CA-45	u	u	u	u	x

				1

Table S4. Genotype results of adult Western Diamond-backed Rattlesnakes (*Crotalus atrox*) from Den AD-6 at the Suizo Mountains, AZ, USA. Site was sampled from 2001 to 2010. HS = half-sibs. See Clark et al. (2014) and Schuett et al. (2014).

Relatedness matrix			CASD-044	CASD-046	CAMD00 7	CASD- 068	CASD- 082	CASD- 084	CASD- 111
			F	F	М	М	М	М	М
			CA-44	CA-46	CA-7	CA-68	CA-82	CA-84	CA-111
CASD-044	F	CA-44	x						
CASD-046	F	CA-46	0.04	x					
CAMD007	М	CA-7	0	0.03	x				
CASD-068	М	CA-68	0.03	0.05	0	x			
CASD-082	М	CA-82	0.06	0	0	0.03	x		
CASD-084	М	CA-84	0.04	0.05	0	0.03	0.05	x	
CASD-111	М	CA-111	0.04	0	0	0.04	0.03	0	x
Relationship ma	atrix		CASD-044	CASD-046	CAMD00 7	CASD- 068	CASD- 082	CASD- 084	CASD- 111
			F	F	М	М	М	М	М
			CA-44	CA-46	CA-7	CA-68	CA-82	CA-84	CA-111
CASD-044	F	CA-44	X						
CASD-046	F	CA-46	u	x					
CAMD007	М	CA-7	u	u	x				
CASD-068	М	CA-68	u	u	u	x			
CASD-082	М	CA-82	u	u	u	u	x		
CASD-084	М	CA-84	u	u	u	u	u	X	
CASD-111	М	CA-111	u	u	u	u	u	u	x

Table S5. Genotype results of adult Western Diamond-backed Rattlesnakes (*Crotalus atrox*) from Den AD-7 at the Suizo Mountains, AZ, USA. Site was sampled from 2001 to 2010. HS = half-sibs. See Clark et al. (2014) and Schuett et al. (2014).

Relate dness matrix			CASD -047	CASD -058	CASD -040	CASD -076	CASD -078	CASD -079	CASD -092	CASD -043	CASD -073	CASD -074	CASD -X057
			F	F	М	М	М	М	М	М	М	М	М
			CA-47	CA-58	CA-40	CA-76	CA-78	CA-79	CA-92	CA-43	CA-73	CA-74	CA- x57
CASD -047	F	CA-47	x										
CASD -058	F	CA-58	0	x									
CASD -040	М	CA-40	0	0	x								
CASD -076	М	CA-76	0	0.02	0.06	x							
CASD -078	М	CA-78	0	0	0.09	0	x						
CASD -079	М	CA-79	0	0.06	0.06	0.03	0	x					
CASD -092	М	CA-92	0.02	0	0	0	0	0	x				
CASD -043	М	CA-43	0	0	0.02	0	0	0.03	0	x			
CASD -073	М	CA-73	0.002	0.01	0	0.06	0	0	0	0	x		
CASD -074	М	CA-74	0	0.007	0.06	0.07	0	0	0	0	0	x	
CASD -X057	М	CA- x57	0	0.02	0	0	0.08	0	0	0.003	0	0.05	x
Relation	ship		CASD -047	CASD -058	CASD -040	CASD -076	CASD -078	CASD -079	CASD -092	CASD -043	CASD -073	CASD -074	CASD -X057
			F	F	М	М	М	М	М	М	М	М	М
			CA-47	CA-58	CA-40	CA-76	CA-78	CA-79	CA-92	CA-43	CA-73	CA-74	CA- x57
CASD -047	F	CA-47	x										
CASD -058	F	CA-58	u	x									
CASD -040	М	CA-40	u	u	x								
CASD -076	М	CA-76	u	u	u	x							
CASD -078	М	CA-78	u	u	u	u	x						

CASD -079	М	CA-79	u	u	u	u	u	x					
CASD -092	М	CA-92	u	u	u	u	u	u	x				
CASD -043	М	CA-43	u	u	u	u	u	u	u	X			
CASD -073	М	CA-73	u	u	u	u	u	u	u	u	x		
CASD -074	М	CA-74	u	u	u	u	u	u	u	u	u	X	
CASD -X057	М	CA- x57	u	u	u	u	u	u	u	u	u	u	x

Table S6. Genotype results of adult Western Diamond-backed Rattlesnakes (*Crotalus atrox*) from Den AD-8 at the Suizo Mountains, AZ, USA. Site was sampled from 2001 to 2010. HS = half-sibs. See Clark et al. (2014) and Schuett et al. (2014).

Relatedness			CASD-064	CASD-101	CASD-102	CASD-097
matrix						
			F	F	F	М
			CA-64	CA-101	CA-102	CA-97
CASD-064	F	CA-64	х			
CASD-101	F	CA-101	0	х		
CASD-102	F	CA-102	0.07	0.04	X	
CASD-097	М	CA-97	0	0.01	0	x
Relationship matri	X		CASD-064	CASD-101	CASD-102	CASD-097
			F	F	F	М
			CA-64	CA-101	CA-102	CA-97
CASD-064	F	CA-64	Х			
CASD-101	F	CA-101	u	Х		
CASD-102	F	CA-102	u	u	х	
CASD-097	М	CA-97	u	u	u	х

Table S7. Genotype results of adult Western Diamond-backed Rattlesnakes (*Crotalus atrox*) from Den-9 at the Suizo Mountains, AZ, USA. Site was sampled from 2001 to 2010. HS = half-sibs. See Clark et al. (2014) and Schuett et al. (2014).

R matrix			CASD-040	CASD-052	CASD-053
			М	М	М
			CA-40	CA-52	CA-53
CASD-040	М	CA-40	X		
CASD-052	М	CA-52	0	X	
CASD-053	М	CA-53	0.24	0.02	X
Relationship ma	atrix		CASD-040	CASD-052	CASD-053
			М	М	М
			CA-40	CA-52	CA-53
CASD-040	М	CA-40	X		
CASD-052	М	CA-52	U	X	
CASD-053	М	CA-53	HS	U	X

Table S8. Genotype results of adult Western Diamond-backed Rattlesnakes (*Crotalus atrox*) from Den 1 at the Suizo Mountains, AZ, USA. Site was sampled from 2001 to 2010. HS = half-sibs. See Clark et al. (2014) and Schuett et al. (2014). There was no relatedness between these two male snakes.

CASD-096	М	CA-96
CASD- x023	М	CA-x23

References

- Schuett GW, Repp RA, Spencer CL, Beamann K, Painter CW. 2016a Crotalus atrox (western diamond-backed rattlesnake). In Rattlesnakes of Arizona, vol. 1 (eds. GW Schuett, MJ Feldner, CF Smith, RS Reiserer), pp. 333–394. Rodeo, NM: ECO Publishing.
- Schuett GW, Clark RW, Repp RA, Amarello M, Smith CF, Greene HW. 2016b Social behavior of rattlesnakes: a shifting paradigm. In *Rattlesnakes of Arizona, vol. 2* (eds. GW Schuett, MJ Feldner, CF Smith, RS Reiserer), pp. 161–244. Rodeo, NM: ECO Publishing.
- 3. Doody JS, Burghardt GM, Dinets V, Hauber M. 2013 Breaking the social-non-social dichotomy: a role for reptiles in vertebrate social behavior research? *Ethology* **119**, 95–103.

c
2
3
4
E
5
6
7
0
0
9
10
11
11
12
13
14
1 1
15
16
17
18
10
19
20
21
22
22
23
24
25
25
26
27
20
20
29
30
21
51
32
33
31
54
35
36
37
57
38
39
40
41
41
42
43
11
44
45
46
47
/ 40
48
49
50
50
51
52
53
55
54
55
56
50
57
58
59
60
011

- Doody SJ, Dinets V, Burghardt GM. 2021 *The secret social lives of reptiles*. Baltimore, MD: Johns Hopkins University Press.
- Van Dyke JU, Thompson MB, Burridge CP, Castelli MA, Clulow S, Dissanayake, DSB, Dong CM, Doody JS, Edwards DL, Ezaz, T, Friesen CR, Gardner MG, et al. 2021 Australian lizards are outstanding models for reproductive biology research. *Aust. J. Zool.* 68, 168–199.
- 6. Klauber LM. 1956 *Rattlesnakes. Their habits, life histories, and influence on mankind, 2 vols.* Berkeley and Los Angeles, CA: University of California Press.
- Sexton O, Jacobson JP, Bramble JE. 1992 Geographic variation in some activities associated with hibernation in Neartic pitvipers. In *Biology of the pitvipers* (eds. JA Campbell, ED Brodie, Jr.), pp. 337–346. Tyler, TX: Selva.
- Amarello M. 2012 Social Snakes? Non-random association patterns detected in a population of Arizona black rattlesnakes (*Crotalus cerberus*). Unpublished thesis. Arizona State University, Tempe, AZ: USA.
- 9. Clark RW, Schuett GW, Repp RA, Amarello M, Smith CF, Herrmann H-W. 2014 Mating systems, reproductive success, and sexual selection in a secretive species: a case study of the western diamond-backed rattlesnake, *Crotalus atrox. PLoS ONE* **9**, e90616.
- Beck DD. 1995 Ecology and energetics of three sympatric rattlesnake species in the Sonoran Desert.
 J. Herpetol. 29, 211–223.
- 11. Repp RA. 1998 Wintertime observations on five species of reptiles in the Tucson area: shelter site selections/fidelity to shelter sites/notes on behavior. *Bull. Chicago Herpetol. Soc.* 33, 49–56.
- Diller LV, Wallace RL. 2002 Growth, reproduction and survival in a population of *Crotalus viridis* in north central Idaho. *Herpetol. Monogr.* 16, 26–45.
- 13. Ashton KG. 2003 Movements and mating behavior of adult male midget faded rattlesnakes, *Crotalus oreganus concolor*, in Wyoming. *Copeia* **2003**, 190–194.
- 14. Repp RA, Schuett GW 2008 Western diamond-backed rattlesnakes, *Crotalus atrox* (Serpentes: Viperidae), gain water by harvesting and drinking rain, sleet, and

snow. Southwest. Nat. 53, 108–114.

- Beaupre SJ 2016 Novel tracking and remote monitoring technologies: Applications to studying wild rattlesnakes. In *Rattlesnakes of Arizona*, vol. 2 (eds. GW Schuett, MJ Feldner, CF Smith, RS Reiserer), pp. 58–91. Rodeo, NM: ECO Publishing
- 16. Nowak EN, Theimer TC, Schuett GW. 2008 Functional and numeric responses of predators: where do vipers fit in the traditional paradigms? *Biol. Rev.* **83**, 601–620.
- 17. Clark RW. 2016 The hunting and feeding behavior of wild rattlesnakes. In *Rattlesnakes of Arizona*, *vol. 2* (eds. GW Schuett, MJ Feldner, CF Smith, RS Reiserer), pp. 91–118. Rodeo, NM: ECO Publishing.
- Brown WS. 1993 Biology, status, and management of the timber rattlesnake (*Crotalus horridus*): a guide for conservation. *Herpetol. Circ.* 22, 1–78.
- 19. Brown WS. 2016 Lifetime reproduction in a northern metapopulation of timber rattlesnakes (*Crotalus horridus*). *Herpetologica* **72**, 331–342.
- 20. Kalinowski ST, Taper ML (2006) Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. *Conserv. Genet.* **7**, 991–995
- 21. Jones A, Clayton M, Small K, Paczolt A, Ratterman N. 2010 A practical guide to methods of parentage analysis. *Mol. Ecol. Res.* **10**, 6–30.

Figure 1. Annual cycle and phenology of behavioral, physiological, reproductive, and life history events for adult Crotalus atrox at Suizo Mountains (Pinal County, Arizona), and nearby areas, based on 15 consecutive years (2001–2015) of research [28, 29, 36–40]. Note: Shed Cycle refers to skin shedding (ecdysis).

254x186mm (300 x 300 DPI)

Figure 2. Examples of interactions used to quantify social network structures for western diamondback rattlesnakes (Crotalus atrox) inhabiting the Suizo Mountains in Arizona, USA: A) Adults occupying a communal den, B) male and female copulating, C) mother with neonates and D) shed skins used to genotype individuals. Photos A, C, and D taken by Roger Repp, and B taken by Brendan O'Connor.

155x93mm (96 x 96 DPI)

Figure 3. Spatial data on our focal group (22 males, 28 females) of adult Crotalus atrox. A) Annual home ranges (minimum convex polygons; MCP) of males (blue) and females (orange) that were observed overwintering in communal dens (AD = den ID). B) Sites where males overwintered in isolation (pink diamonds) or communal dens in relation to their annual home range; C) Home ranges of males and females that were observed engaging in reproductive behaviors. D) Sites where females gave birth (blue triangles) and overwintered privately (pink circles) or in communal dens (white squares) in relation to their home range.

165x128mm (220 x 220 DPI)

Figure 4. Modularity of individuals' A) denning network, B) pairing network, and C) parentage network of Crotalus atrox subjects in this study. Inner boxes indicate subsets of individuals interacting preferentially with each other (i.e., modules). In A), individuals of both sexes can be at the x and y axis since multiple males and females may share a communal den. In C) color intensity indicates the number of offspring sired. In C), UM indicates "unidentified male" (sampled but not radio-tracked; see text). Nine unidentified males were genotyped in the analysis: UM 1–4, 7–9, and 10, 13. See [46].

254x127mm (96 x 96 DPI)