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Abstract
Rabi oscillation has been proven to be one of the cornerstones of quantum mechanics, triggering substantial
investigations in different disciplines and various important applications both in the classical and quantum regimes. So far,
two independent classes of wave states in the Rabi oscillations have been revealed as spin waves and orbital waves, while
a Rabi wave state simultaneously merging the spin and orbital angular momentum has remained elusive. Here we report
on the experimental and theoretical observation and control of spin–orbit-coupled Rabi oscillations in the higher-order
regime of light. We constitute a pseudo spin-1/2 formalism and optically synthesize a magnetization vector through light-
crystal interaction. We observe simultaneous oscillations of these ingredients in weak and strong coupling regimes, which
are effectively controlled by a beam-dependent synthetic magnetic field. We introduce an electrically tunable platform,
allowing fine control of transition between different oscillatory modes, resulting in an emission of orbital-angular-
momentum beams with tunable topological structures. Our results constitute a general framework to explore spin–orbit
couplings in the higher-order regime, offering routes to manipulating the spin and orbital angular momentum in three
and four dimensions. The close analogy with the Pauli equation in quantum mechanics, nonlinear optics, etc., implies that
the demonstrated concept can be readily generalized to different disciplines.

Introduction
Rabi oscillation expresses a phenomenon that a quan-

tum wave packet initially nested in a ground state of a
two-level system can be excited by an external magnetic
field to another state and then returns to its origin after a
circle evolution1. It has been proven to be one of the
cornerstones of quantum mechanics, triggering various
applications ranging from nuclear magnetic resonance
imaging and spectroscopy to quantum information pro-
cessing2. Even though it has been known for a long time
since its discovery in 1937, its study remains to uncover
new physics3–5. Substantial investigations on the Rabi
oscillations have been carried out over the years in dif-
ferent settings, including atomic and molecular physics6,7,

acoustics8, and optics9–11, by taking advantage of the
analogous spin–orbit couplings12–14. In optics, spin–orbit
coupling refers to an interaction between the spin and
orbital angular momentum (SAM and OAM)14. While the
SAM is associated with circular polarization characterized
by a spin number ϱ15, the OAM is generally related to a
helical wavefront featured by a topological charge ‘16. The
SAM–OAM interplays have induced striking phenomena,
including the optical Hall effects17–25 and mutual con-
versions between SAM and OAM26–29. In this article, we
exploit the spin–orbit coupling, unraveling the Rabi
oscillating state of light that simultaneously merges the
spin and orbital angular momentum. This new form of
Rabi oscillations with both SAM and OAM remains
unknown to our knowledge. We study this effect through
an optically synthesized magnetic field, acting on a mutual
beam comprising the superposition of both the spin and
orbital angular momentum.
In this context, the spin–orbit coupling for the Rabi

oscillations is closely related to the synthesized magnetic
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field. This is even highlighted by other dynamical spin–orbit
phenomena in systems driven by the synthesized magnetic
fields30–35. The concept of what constitutes the magnetic
field has expanded over the years. However, such an
expansion maintains the fact that the spin–orbit coupling
process is described by the pseudo spin-1/2 model. Among
others, we remind the spin dynamics of exciton-polaritons
in microcavity structures, where transverse splitting of
polaritons constitutes the effective magnetic field20,30,31.
The three-wave-mixing process in nonlinear optics emu-
lates the spin-1/2 system, where nonlinear coupling and
inherent phase mismatch constitute the magnetic field
equivalent32–35. It is indicated that the synthesized magnetic
fields are merely associated with structured materials30–37.
The material dependence of the magnetic field provides
limited degrees to control the spin–orbit coupling.
We present a distinct pseudo spin-1/2 formalism in the

higher-order optical regime and constitute the magnetic
field through light-crystal interaction. The synthesized
magnetic field is fully controlled by either structuring the
light beam or engineering the crystal. Using a beam-
dependent synthetic magnetic field, we demonstrate the
concept of spin–orbit Rabi oscillations both in the strong
and weak coupling regimes. The beam comprises the
superposition of two spin–orbit eigenstates, which are
defined as spin-up and spin-down equivalents of the two-
level system38. We demonstrate a tunable platform,
enabling electrically engineering of the spin–orbit Rabi
oscillations in the phase mismatching regime. This electrical
knob permits to finely tune the magnetic field and hence
controls transitions between different modes, allowing a
vertical emission of OAM beam with tunable topological
structures. The formalism constitutes a general framework
for spin–orbit dynamics with the synthesized magnetic
fields. Since the setting is equivalent to those described by
the Pauli equations, such as in quantum mechanics and
nonlinear optics, our results open new possibilities for
spinor manipulation in the higher-order regime. Since
structured light carrying the SAM and OAM has attracted
attention in a broad range39–43, our results can find
potential applications in classical and quantum optics44,45.

Results
Observations of spin–orbit Rabi oscillations
We start by performing experiments to observe these

phenomena. We hence constitute the pseudo spin-1/2
model in the higher-order regime by defining a mutual
beam comprising the superposition of two eigenstates23

R̂ ¼ exp þilϕð Þ x̂� iŷð Þ= ffiffiffi
2

p

L̂ ¼ exp �ilϕð Þ x̂þ iŷð Þ= ffiffiffi
2

p ð1Þ

where x̂ and ŷ are unit vectors with respect to coordinates
x and y, respectively, and ϕ ¼ arctanðy=xÞ. The eigenstates

couple with both the intrinsic spin and orbital angular
momentum. A superposition of R̂ and L̂ leads to a mutual
beam which is, therefore, spin–orbit coupled and is
featured by a spatially varying polarization with distribu-
tion determined by weights ΦR and ΦL, respectively

39,46.
We unravel the similarity between the spin–orbit state of
light and the spinning of a quantum particle in the spin-1/
2 model38 by mapping dynamic states onto the higher-
order Poincaré sphere39 and Bloch sphere (both spheres
share SU(2) structure), respectively. The north and south
poles of the Bloch sphere represent two eigenstates,
corresponding to opposite spinnings of a quantum particle
known as the purely spin up ðϱ ¼ þ1=2Þ and spin down
ðϱ ¼ �1=2Þ in system subjected to a magnetic field
(Fig. 1a). In the higher-order framework, we similarly
define R̂ and L̂ as the pseudo spin up �ϱ þ lð Þ and spin
down ðþϱ�lÞ states located at the poles of the Poincaré
sphere (Fig. 1b). Note that the constituted pseudo spin
system is distinct from conventional spin settings by a
higher-order topological charge and is driven by a
synthesized magnetic field. The spinor state ðΦR;ΦLÞ of
the mutual beam can be mapped onto the higher-order
sphere (Fig. 1c), with parameters θ and φ denoting polar
and azimuthal angles of the sphere, respectively. In this
case, ΦR and ΦL are written in a normalized form as ΦR ¼
sin θ=2ð Þexp ðþiφ=2Þ and ΦL ¼ cos θ=2ð Þexpð�iφ=2Þ.
Figure 1d depicts typical spinors at a longitude of the
first-order sphere, showing simultaneous variations of the
spin (polarization) and orbital (phase) states with θ.
We implement experiments to reveal the beam-

dependent spin–orbit Rabi oscillations. This requires
generating propagation-invariant spin–orbit light with
tunable beam size. Figure 2a depicts an experimental
setup for measuring the spin–orbit Rabi oscillations.
Specifically, a space-variant q-plate with a topological
number of q= 1/2 is used to transform an incident line-
arly polarized He–Ne laser beam (λ= 632.8 nm) into a
diffracting spin–orbit Laguerre–Gaussian (LG) beam, see
upper inserts in Fig. 2a. Details for initial spinor pre-
paration and manipulation refer to materials and meth-
ods. The generated LG beam then passes through a self-
created sharp-edge element (SEO), resulting in the first-
order (l ¼ 1) Bessel beam denoted as Jlðr=r0Þ, where Jl is
the Bessel function of order ‘, r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

and r0 fea-
tures the Bessel beam size. It maintains the same
spin–orbit state (see insets at the bottom in Fig. 2a), and
its size can be flexibly controlled by the radius ρ of the
element. More details about the SEO element refer to the
materials and methods, as well as Supplementary Section
A. In order to characterize the Bessel beam, a microscopic
system comprising an objective lens, a tube lens, and a
charge-coupled device (CCD) with a pixel size of 1.4 μm is
utilized to properly magnify the beam. The objective lens
is mounted onto a precise electric-control stage that can
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be moved along the distance. The nondiffracting property
of the generated Bessel beam by a typical SEO of radius
ρ= 400 μm is observed both experimentally and
numerically, see Fig. 2b. Note that in practice, a Gaussian
window is utilized to truncate the ideal Bessel beam,
resulting in a Bessel-Gaussian beam which exhibits weakly
diffracting property during propagation (Fig. 2b). How-
ever, considering serious diffraction of the LG beam with
identical beam width (see the bottom panel in Fig. 2b), as
well as relatively small coupling length of the crystal, the
diffracting of the Bessel–Gaussian beam is negligible. To
observe the Rabi oscillations, a number of crystals used to
couple the two eigenstates are appropriately prepared and
aligned such that the light travels along their optical axis,
denoted as the z-axis. Detail about the experimental
alignment of the crystal refers to materials and methods.
We define anisotropic degree of the crystal as γ ¼ ðγx þ
γyÞ=2, where γ j ¼ 1� ϵj=ϵz (here j= x or y) with ϵ̂ being a
dielectric tensor of the crystal. The parameter γ is either
positive or negative, allowing control of the spin–orbit

coupling by engineering polarity in the crystal. Owing to
spin–orbit coupling, the mutual beam emerging from the
crystal is expected to accumulate a z-dependent helical
wavefront carrying nonzero OAM. We hence use a
reference plane-wave beam to interfere with it, measuring
the orbital angular momentum oscillations.
The first experiment is performed with a c-cut yttrium

vanadate bulk crystal (positive polarity γ ¼ 0:19). We
choose a typical beam parameter as r0 ’ 3:5 μm, corre-
sponding to a ring size of about 14 μm. The initial beam
intensity is measured by the objective lens (Nikon, Plan
Fluor 40×, NA= 0.75), as shown in Fig. 2c. The measured
interferograms at different coupling lengths are presented
in Fig. 3a. At the beginning (z= 0), the spinor stays at the
equatorial position ðθ ¼ π=2;φ ¼ π=2Þ of the sphere with
zero orbital angular momentum, see a measurement
showing regular interference fringes. After a coupling
length of z= 5mm, it accumulates a helical wavefront
with a topological charge of l ¼ 1, as indicated by a dis-
location in the fringes. Afterward, a detection at
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Fig. 1 The equivalent two-level system in the higher-order regime. a The original spin-1/2 setting describes the spinnings of a quantum particle
in a driven magnetic field, where the spin up ðϱ ¼ þ1=2Þ and spin down ðϱ ¼ �1=2Þ constitute the two-level eigenstates. b In the higher-order

optical regime, the eigenstates R̂ and L̂ simultaneously coupling with the SAM and OAM are defined as the spin up ð�ϱþlÞ and spin down ðþϱ�lÞ
equivalents in a pseudo spin-1/2 system, respectively. These pseudo spin up and spin down are coupled by a synthetic magnetic field. c The higher-
order Poincaré sphere is introduced to represent the spin–orbit states, with two poles denoting the eigenstates. d Typical states mapped on the
sphere (marked points in c) showing spatial variations of polarization (upper panels) and phase (bottom panels) distributions with polar angle. The
arrows in the upper panels denote polarizations; while the black lines in the bottom panels represent the phase contours
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z= 10mm monitors the state that maintains the same
topological wavefront. The measurements at z= 5 and
10mm signify a forward process for a cycle evolution,
while the measurements at z= 15 and 20 mm suggest a
reverse process since the orientation of the dislocation is
opposite to that forward process. The measurements at
z= 25 and 30mm suggest a repeated process after a cycle
evolution. These observations manifest the emergence of
a spinor oscillation along with the coupling length with a
coupling period estimated as Λ ≈ 20mm.
In addition to the OAM oscillation, the spin–orbit cou-

pling process also suggests a simultaneous SAM oscillation
at the mercy of total angular momentum conservation law.
We observe this phenomenon by inserting a circular
polarization analyzer in front of the CCD. The analyzer
consists of a quarter wave plate and a horizontal linear
polarizer, see the setup in Fig. 2a. With this configuration,
we obtain the SAM oscillation as illustrated in Supple-
mentary Section B, where we show the oscillations of the
left- and right-handed circularly polarized components of
light with the coupling length. These results, together with
those in Fig. 3a, confirm a spin–orbit Rabi oscillation.
A subsequent experiment with a significant decrease in

the beam width reveals the Rabi oscillation with a large
Rabi frequency. We consider using a deep-subwavelength

nondiffracting light beam. So far, it remains a challenge to
generate the well-defined nondiffracting spin–orbit state
on such an extremely small scale since its topological
structure is usually unsustained in tightly focusing. Our
self-created element is able to overcome this challenge
(see Materials and Methods). We slightly modify the setup
by using a high-numerical-aperture objective lens (Nikon,
CFI EPI 150×, NA= 0.9) to characterize the Bessel beam
at the subwavelength scale. The ring size of the doughnut
beam is measured as 430 nm, approximately corre-
sponding to a beam parameter of r0= 110 nm; see the
measured intensity distribution in Fig. 2d. Figure 4 pre-
sents the results obtained with a c-cut barium metaborate
film (negative polarity γ ¼ �0:16). In this scenario, the
state starts from the same equatorial position, evolving
along an opposite path. The initial spinor evolves into a
nearly pure spin-down state (ΦR; ΦL) ≃ (0; 1) for an
extremely short coupling length of z= 5 μm; see the result
in Fig. 4b. It means that the right-handed component is
converted to its counterpart. Slightly increasing the cou-
pling length to z= 15 μm, we observe the spinor located
at the spin-up state (ΦR; ΦL) ≃ (1; 0), causing the sub-
wavelength beam to have a reversed topological wave-
front. Such a reciprocal topology is indicated by an
opposite dislocation in the interference fringes (Fig. 4c).
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Fig. 2 Experimental configuration for measuring the spin–orbit Rabi oscillations. a Experimental setup. BS beam splitter, Q q-plate, SEO sharp-
edge obstacle (see Materials and methods for more details); M mirror, OB objective lens, TL tube lens, QWP quarter wave plate, P polarizer, CCD
charge-coupled device. The upper inserts display the LG beam that carries a typical spin–orbit state located at θ;φð Þ ¼ ðπ=2;π=2Þ. The inserts at the
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comparison, the bottom panel shows the numerical intensity distribution of the diffracting LG beam with the same initial beam width.
c, d Experimental and simulated intensity distributions of the generated Bessel beams at the input ends of the crystals for two parameters:
c r0= 3.5 μm; d r0= 110 nm. In the color bars, L: low; and H: high
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Again, the spinor becomes spin down (ΦR; ΦL) ≃ (0; 1)
when the coupling length gradually increased to
z= 25 μm (Fig. 4d). The experimental data indicates a

rather small coupling period, confirming a harmonic
oscillation of the spinor with a considerably large Rabi
frequency.
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Fig. 3 Observation of the spinor oscillation in the weak coupling regime. The spinor starts from an equatorial position ðθ ¼ π=2;φ ¼ π=2Þ
where the spin and orbital angular momentum are zeros. A typical parameter of the nondiffracting mutual beam is chosen as r0= 3.5 μm. In the
presence of synthetic magnetization (γ ¼ 0:19), the spinor evolves adiabatically from the equator toward the north pole, giving rise to a separation
between the spin and orbital angular momentum. The Rabi oscillation is manifested partially by the separated orbital-angular-momentum oscillation
along with the coupling length. a, b The interferograms recorded at different coupling lengths: a experiments; b simulations. c Simulated phase
distributions of the light field at the corresponding coupling lengths. Panels in a (b, c) share the same scale, with a scale bar of 200 μm (5 μm)
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rapidly along an opposite path due to the reversed crystal polarity (γ ¼ �0:16). a–d The resulting interferograms are recorded at different coupling
lengths, whereas e–h shows the corresponding simulations. i–l The simulated phase distributions of light at the corresponding positions. All panels
share the same scale. Scale bar: 0.2 μm
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A theoretical model of beam-dependent synthesized
magnetic field
We present a pseudo spin-1/2 formalism to explain the

beam-dependent spin–orbit Rabi oscillations. We syn-
thesize a magnetic field equivalent that drives the spin-
orbit coupling process. Specifically, we investigate the
vector-wave equation ∇ ´ ½μ�1 � ð∇ ´ eEÞ� ¼ �ϵ̂ � ∂2eE=∂t2,
where eE represents a light field, μ denotes the perme-
ability of the crystal, and t is elapsed time. Considering a
wave form: eE ¼ Eexpð�iωtÞ, where Ej x; y; zð Þ ¼
Aj x; y; zð ÞexpðiβjzÞ (j ¼ x; y; z) is a component of E, we
separate the time and space variables in the wave equation
(see materials and methods). Here ω is a carrier frequency
of light and βj ¼ ω

ffiffiffiffiffiffi
μϵj

p
denotes a propagation constant of

wave component in the crystal. We assume the complex
envelope varies slowly with propagation distance z and
consider transforming Ax and Ay to a rotating frame.
Hence, we define Ax ¼ expði4β � z=2ÞeAx and Ay ¼
expð�i4β � z=2ÞeAy, respectively, where 4β ¼ βy � βx is a
phase mismatch parameter arising from the beating
between Ax and Ay during propagation. In the rotating
frame, a general equation governing the spin-orbit cou-
pling is obtained as

i
∂

∂z

eAx zð ÞeAy zð Þ

" #
¼ H0 þHð Þ

eAx zð ÞeAy zð Þ

" #
ð2Þ

where H0 ¼ ð2βÞ�1½�∇2
? þ γ∇xx; 0; 0;�∇2

? þ γ∇yy� and
H ¼ ½H11;H12;H21;H22� represent equivalents of the
intrinsic and interactive Hamiltonians, respectively, with
H11 ¼ 4β=2, H12 ¼ γ∇yx=ð2βÞ, H21 ¼ γ∇xy=ð2βÞ, and
H22 ¼ �4β=2, respectively. Here we define β ¼ ðβx þ
βyÞ=2, and ∇2

? represents a transverse momentum
operator. We find that the interactive Hamiltonian
coupling the two components is closely related to spatial
gradient operators: ∇xy ¼ ∂2=ð∂x∂yÞ and ∇yx ¼ ∂2=ð∂y∂xÞ
(∇xy ¼ ∇yx). That means the spin-orbit coupling can be
spatially engineered by shaping the beam. This finding of
beam-dependent spin–orbit coupling is fundamentally
different from those being material-dependent30–37. Even
though optical spin–orbit couplings have been extensively
investigated in anisotropic crystals, see47–51 among others,
this beam-dependent phenomenon is not reported. We
express the mutual beam as eA x; y; zð Þ ¼ eA0ðx; y; zÞ½ΦR

zð ÞR̂þΦL zð ÞL̂�, where ΦR zð Þ and ΦL zð Þ denote the z-
dependent coefficients of weights on R̂ and L̂, respectively.

Equation (2) is transformed to a spin-1/2 form using the
pseudo spin description. Hence we rewrite the Hamilto-
nian equivalent according to a transformation from the
Cartesian basis to the circular basis. Note that while the
index of x, y, z denotes spatial coordinates in the Cartesian
system, the subscript index of 1–3 is adopted to represent
three components in the circular basis. The resulting
intrinsic Hamiltonian is then given by: H0

0 ¼ TH0T�1 ¼

ðγ � 2Þ=ð4βÞ½∇2
?; 0; 0;∇

2
?�, where T ¼ ½1;�i;1; i� is a

transformation matrix; whereas the resulting interactive
Hamiltonian (H0 ¼ THT�1) takes the following forms:
H 0

11 ¼ 0; H 0
12 ¼ Δβ=2� iγ∇yx=ð2βÞ, H 0

21 ¼ Δβ=2þ
iγ∇yx=ð2βÞ and H 0

22 ¼ 0. A spin-1/2 model is therefore
obtained as

i
∂

∂z

ΦR zð Þ
ΦL zð Þ

� �
¼ 1

2M
∇2

?eA0 � 1
2
σ � B

� �
ΦR zð Þ
ΦL zð Þ

� �
ð3Þ

where M ¼ 2βeA0=ðγ � 2Þ � I is the equivalent mass of the
spinor, with I being the 2 × 2 identity operator and B is
the synthetic magnetic field. σ is the Pauli matrix vector
σ ¼ ðσ1; σ2; σ3Þ. In the circular basis, it is expressed as
σ1 ¼ ½0;�i; i; 0�, σ2 ¼ ½1; 0; 0;�1�, and σ3 ¼ ½0; 1; 1; 0�,
respectively. Equation (3) exhibits an identical form to
the Pauli equation: i _Ψ ¼ ð∇2

?=2m� σBÞΨ52, where _Ψ
defines the wavefunction of a spin particle of mass m
being evolution as the time axis. The resulting magnetiza-
tion vector B ¼ ðB1;B2;B3Þ is given by B1 ¼ �Ω, B2 ¼ 0,
B3 ¼ �Δβ, where

Ω ¼ γ

β

RR
∇xy
eA0 x; yð Þ

��� ���dxdyRR eA0 x; yð Þ
��� ���dxdy ð4Þ

The averaged strength of the synthesized magnetic field
is therefore obtained as Bj j ¼ ðΩ2 þ Δβ2Þ1=2. Clearly,
while the two eigenstates R̂ and L̂ define the equivalents of
the spin-up and spin-down states in the two-level system,
the spatial gradient of the light field, together with the
inherent phase mismatch Δβ and linear coupling γ, con-
stitutes an optical equivalent of the magnetic field. Note
that the wave nature of diffraction not only breaks the
spin–orbit state during propagation but also substantially
weakens the spin–orbit coupling strength; see Supple-
mentary Section C for more details about the influence of
diffraction on the spin–orbit coupling. To address this
issue, we exploit a nondiffracting mutual beam interacting
with the crystal. In this scenario, Eq. (3) emulates a perfect
process for the spin-orbit-coupled Rabi oscillations. The
finding is essential in that, while the spin-orbit coupling is
usually nonadjustable in the light-matter interaction, the
synthesized magnetic field presented here can be arbi-
trarily controlled either by engineering the phase mis-
match Δβ in the crystal or by structuring the light fieldeA0ðx; yÞ in space. These different degrees of freedom allow
full control of the spin–orbit couplings, leading to intri-
guing phenomena analogous to those reported with the
Pauli equation32,33,52,53. The presented formalism con-
stitutes a general theoretical framework for exploring the
spin-orbit couplings in the higher-order regime.
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In the following, we use the controllable synthetic
magnetic field to address the observed spin–orbit Rabi
oscillations, by spatially structuring the light beam, for
the fixed crystals. Particularly, under phase matching
conditions (Δβ= 0), the synthetic magnetization vector
B is mainly determined by the spatial gradient of the
beam structure. We calculate the strength of B through
a Bessel envelope structure eA0 rð Þ ¼ Jlðr=r0Þ. Figure 5a
presents the relationship between B1 and r0 for the
positive (γ ¼ 0:19) and negative (γ ¼ �0:16) crystals.
Depending on the value of |B|, we classify the
spin–orbit coupling into two prominent regimes: the
strong and weak couplings separated by a critical line
at r0 ’ λ.
This result indicates that the strong coupling necessi-

tates a subwavelength light beam which exhibits a pro-
minent spatial gradient. The strength of B increases
dramatically with a slight decrease of r0. When increasing
r0 exceeding the wavelength, |B| becomes much smaller
than those in the subwavelength cases and approximately
invariant with r0. Figure 5a suggests a new mechanism,
namely considering structured light rather than struc-
tured materials, to effectively control the strength of
spin–orbit coupling.

The Rabi oscillation is a consequence of the magnetization
vector acting on the spinor. The spinor evolution is realized
as a precession of the state vector around the magnetic field,
which is written as dS=dz ¼ B ´ S, where S ¼ ðS1; S2; S3Þ
denotes the spin-orbit state vector and is defined as Sν ¼
ΦyσνΦ (with ν= 1, 2, 3 andΦ ¼ ðΦR;ΦLÞ). The state vector
evolves adiabatically in a direction perpendicular to the
vectors B and S. Since the magnetization orientation is purely
antiparallel (γ > 0) or parallel (γ < 0) to S1 axis, we consider
an initial state with equal weight on R̂ and L̂, while the state
vector being parallel to S3 axis ðθ ¼ π=2;ϕ ¼ π=2Þ. Under
the action of the magnetic field, it evolves along a longitude
line and toward the north pole of the higher-order sphere if
the crystal polarity is positive (γ > 0), see the left panel in
Fig. 5b. In the case of γ < 0, the state vector evolves in the
opposite direction along the south pole (right panel). The
geometrical representations indicate resonant (phase-match)
spin–orbit Rabi oscillations. Figure 5c, d depicts spinor har-
monic oscillations along with z, represented by S2 zð Þ ¼
ΦRðzÞj j2 � ΦLðzÞj j2, in the weak and strong coupling
regimes, respectively. The value of S2 is between −1 and 1,
which is not shown in the panels. We observe that whereas
in the weak coupling regime, the relatively small synthetic
magnetism leads to an oscillating period of the spinor in the
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order of centimetre, the giant magnetism in the strong
coupling regime significantly reduces the coupling period
that is three orders of magnitude smaller than the former
one. We take the experimental beam parameters r0= 3.5 μm
and r0= 110 nm as examples of the weak and strong cou-
pling regimes. The corresponding oscillation periods are
calculated as Λ= 22.3mm and Λ= 23.1 μm, which are
approximately in accordance with the experimental results,
see experimental data of coupling lengths indicated by stars
in Fig. 5c, d, respectively. To further test the experimental
results, we perform simulations based on Eq. (2); see Fig. 3b,
c for weak coupling and Fig. 4e–l for strong coupling. In both
cases, the simulated fringes and phase mappings at the cor-
responding coupling lengths agree well with the experiments.
This, in turn, verifies the validity of our theoretical model.
By varying the azimuthal angle φ in the sphere, we

further obtain different spin–orbit Rabi oscillatory modes
with relatively lower oscillating amplitudes in the same
system (Fig. 5b). This is because the two vectors B and S
are no longer perpendicular to each other. Particularly, if
the state vector S is initially parallel to B [e.g., see the state
vector at (θ ¼ π=2;φ ¼ 0 orπ)], it does not undergo any
precession, and eventually, Rabi oscillation disappears
completely.

Electrically controlled synthetic magnetic field
We introduce another tunable degree, allowing us to

engineer the synthesized magnetic field by electrically
modulating the phase mismatch in the crystal. This offers
another knob to flexibly manipulate the spin–orbit Rabi
oscillations. To demonstrate this possibility, we consider
electrically tuning the phase mismatch quantity in a c-cut
electro-optic lithium niobate (LN) crystal (γ ¼ �0:08).
Considering a transverse modulation, the principal
refractive index is given by54 nx ¼ no þ 0:5n3oγ22V=d,
ny ¼ no � 0:5n3oγ22V=d, and nz ¼ ne, respectively, where
no and ne denote the ordinary and extraordinary refractive
indexes of the LN crystal, respectively, in the absence of
an electrical field, V is the applied voltage, and d is the
thickness of the crystal. Here γ22= 6.8 pm/V is an electro-
optic coefficient. In this platform, the knob V is utilized to
finely tune the phase mismatch parameter 4β ¼
�k0n3oγ22V=d and the synthetic magnetic field B is
changed accordingly. We, therefore, obtain a voltage-
dependent transition between different Rabi oscillatory
modes in the phase mismatching regime. Given a beam
width r0= 4 μm, we present two oscillatory modes at the
voltages V= ±50 V, corresponding to phase mismatch
quantities 4β ¼∓40:4m�1 (Fig. 6a). The system supports
phase mismatching Rabi oscillations with less pronounced
amplitudes than those in the phase matching condition.
As the voltage is increased to V= ±200 V (4β ¼
�161m�1), the strong detuned effect enhances the Rabi
frequency but decreases the oscillation amplitude

(Fig. 6b). This is due to the fact that the Rabi frequency
only depends on the magnetic field strength; whereas the
spin-orbit coupling relies on both the magnetization
orientation and strength.
We employ this property and demonstrate an output of

an orbital-angular-momentum beam with electrically
tunable topological structures. We set the coupling length
of the LN crystal to 30mm. When there is no voltage
applied to it, the effect of phase matching (resonant)
driving field causes the original spinor to evolve to a
certain point A on the higher-order Poincaré sphere
(Fig. 6c). The state situated at point A generally exhibits a
noncanonical vortex with non-zero orbital angular
momentum. As the voltage is slowly increased from 0 to
1000 V, the system becomes phase mismatching, and the
resulting quantity Δβ varies gradually from 0 to
−807m−1. As a result, the output state begins to move
slowly with the voltage from point A toward its origin,
following a spiral motion trajectory on the sphere
(Fig. 6c). Altering the sign of the voltage leads to a sym-
metric trajectory about a longitude line at φ ¼ π=2.
Similar voltage-dependent spinor behavior is observed for
another beam width r0= 5 μm (Fig. 6d). Based on this,
gradually varying V can effectively shift the spinor back
and forth between the northern and southern hemi-
spheres, resulting in a variation of the wavefront chirality
with the topological charge being either 1 or −1. Note
that our tunable system is not limited to the first-order
sphere. A similar result for the higher-order topological
structures is expected; see Supplementary Section D.
Therefore, it is readily extended to the higher-order
sphere, leading to OAM beam emissions with larger
tunable topological charges. This external control knob
allows us to observe the transition between different
topological structures of light. Figure 6e, f presents the
relationships between the topological charge and the
voltage for the two different beam parameters.
We perform experiments to observe this dynamic pro-

cess. We hence prepare the tunable system (Supplementary
Section E) and gradually increase the voltage at an interval
of ΔV= 10 V. The topological wavefront of light is experi-
mentally identified by the interferogram between light
emitting from the crystal and the reference plane wave.
Figure 6e, f shows the measured voltage-dependent topo-
logical charges (black data points) both for r0= 4 μm and
r0= 5 μm, respectively, which approximately match the
theoretical results (blue lines). Both results reveal periodic
transitions between two different topological structures
with nearly the same transition period. The interpretation
of the similar period is the flat (weak) spin-orbit coupling
regime where the magnetic field is slowly varying with r0.
Figure 6g shows a transition of topological structures of
light from a negative charge (l ¼ �1) to a positive charge
(l ¼ þ1) by sweeping the voltage from 330 to 380 V. It is
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important to note that this significant topological transition
is a result of a slight change of refractive index modulation
4n ¼ ny � nx

�� �� ¼ 2:44 ´ 10�6 induced by a voltage change
of ΔV= 30 V. This ultrahigh sensitivity near the transition
points might find relevant applications in precision mea-
surements with the ‘two-level’ platform.

Discussion
To summarize, we reported the first demonstration of

spin–orbit-coupled Rabi oscillations in an effective two-
level system driven by an engineered synthetic magnetic
field. We constituted the pseudo spin-1/2 model in the
higher-order regime, where the right- and left-handed
circularly polarized vortex beams represent the spin-up
and spin-down equivalents, respectively. Different degrees
of freedom were exploited to fully engineer the synthetic
magnetic field and hence to control the Rabi oscillations

both in the phase matching and mismatching regimes.
Particularly, we introduced the beam structure to effec-
tively engineer the magnetization vectors, opening up
efficient ways to control Rabi oscillations in the weak and
strong coupling regimes. This is fundamentally different
from those relying on material structures30–37. We further
demonstrated electrically controlled synthetic magnetism,
allowing us to finely control the Rabi transitions between
different oscillatory modes. This enables an output of an
orbital-angular-momentum beam with electrically tunable
topological structures. We believe the presented formal-
ism constitutes a general framework to explore the spin-
orbit couplings using the synthesized magnetic field.
We note that manipulating structured light with both the

spin and orbital angular momentum has drawn consider-
able interest27,39,41. Previous work mainly concentrates on
two-dimensional transverse light fields. Manipulating the
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spin-orbit angular momentum beams in three or even
higher dimensions is still challenging39. Our demonstration,
however, allows full control of the spin–orbit state of light
not only in the transverse plane but also along the propa-
gation direction. It hence provides routes to simultaneously
manipulating the spin and orbital angular momentum in
(2+ 1)D configuration. If considering a spatiotemporally
modulated crystal, the spacetime-dependent magnetization
vector enables four-dimensional control of spin–orbit light
beams, which we have discussed. Hence this work offers a
new platform for three or even higher-dimensional
manipulation of structured light.
Finally, our system is equivalent to the settings described

by the Pauli equation, allowing us to study intriguing ana-
logous phenomena accompanied by spinor evolution, such
as the topological Hall effect and Stern–Gerlach effect, as
already demonstrated with the Pauli equation in quantum
mechanics52,53 and its equivalent in nonlinear optics32–35.
These are possible in our higher-order platform driven by
an appropriately designed magnetization vector, which can
originate from a controllable light-crystal detuning or the
laser beam’s structures. The presented framework connects
the field of spintronics, nonlinear optics, and higher-order
optics studied here, opening new possibilities for spinor
manipulation in the higher-order regime, which can find
applications in information processing.

Materials and methods
Initial spinor preparation
We consider using a standard q-plate to experimentally

generate an initial spinor that is mapped onto the equator of
the first-order (l ¼ 1) Poincaré sphere. In our experiments,
a nematic liquid crystal is used to construct the q-plate with
a topological charge of q ¼ 1=2. Specifically, the nematic
liquid crystal is sandwiched between two planar glasses,
forming a 2 × 2mm planar cell. The liquid crystal thickness
is chosen as 6 μm such that the half-wave retardation
between two orthogonal polarization components is rea-
lized at the working wavelength of λ= 632.8 nm. A square
signal with a voltage of 4.6 V and an AC frequency of 1 kHz
is applied to modulate the liquid crystal. The constructed
q-plate is used to convert a linearly polarized incident beam
into the spin–orbit (vector–vortex) light beam. The con-
version efficiency is about 97% at λ= 632.8 nm. Since the
initial spinor contains equal weights on R̂ and L̂, both the
spin and orbital angular momentum of the spinor are zeros,
which facilitates the observation of the spin–orbit Rabi
oscillations. The Jones matrix of the q-plate is written as

Q ¼ cosð2ϑÞ sinð2ϑÞ
sinð2ϑÞ �cosð2ϑÞ

� �

where ϑ ¼ qϕþ ϑ0 denotes the orientation angle of the
optical axis of the q-plate, with ϑ0 being a relatively initial

angle. ϑ0 can be precisely controlled by rotating the
q-plate with respect to the beam propagation direction.
Here ϕ ¼ arctanðy=xÞ. The q-plate is normally illumi-
nated by a monochromatic laser beam whose polarization
state can be expressed as η ¼ ðηx; ηyÞ. The output state of
light from the q-plate takes the following form

Φ ¼ cos 2ϑð Þηx þ sin 2ϑð Þηy
sin 2ϑð Þηx � cos 2ϑð Þηy

" #

It is characterized by a topological number q and is
featured by a spatial distribution with varying polariza-
tion. Since the topological number of the q-plate is chosen
as q ¼ 1=2, a complex spinor mapping in the first-order
Poincaré sphere is achieved. Particularly, considering the
incident beam with horizontal polarization, i.e., η= (1; 0),
Φ is reduced to

Φ ¼ cos ϕþ φð Þx̂þ sinðϕþ φÞŷ
where we have defined φ ¼ 2ϑ0. Clearly, this result is in
accordance with Eq. (1) when letting θ ¼ π=2. Changing
the orientation angle ϑ0, all possible spinors mapped on
the equator of the first-order Poincaré sphere is
achievable.

Self-created element for generating the Bessel beams
In experiments, we utilize a self-created sharp-edge

element for generating the nondiffracting Bessel-
structured light beam. This requires that the diffractive
waves coming from the sharp-edge element should be in
phase, i.e., their high-spatial-frequency wavevectors
exhibit circular symmetry in the reciprocal space. We
realize this phase distribution of the diffractive wavevec-
tors using an ultrathin metallic disc with a radius denoting
as ρ. The disc is deposited onto a glass substrate. In ele-
ment fabrication, we use a 50-nm-thick gold film initially
deposited onto a 0.3-mm-thick substrate. A chromium
film of 10 nm thickness is deposited as an adhesion layer.
The UV lithography, together with the ion beam, is then
used to form a disc on the metallic surface. Supplemen-
tary Section A provides a detailed fabrication procedure of
the metallic disc. The incident beam is truncated sharply
at the element edge, which induces significant in-phase
diffractive waves, generating the nondiffracting
Bessel beam.
We mention that there are many techniques, such as

using conventional axicons or circular rings (together
with a Fourier lens) to generate the nondiffracting Bessel
beams. Regarding this issue, our technique has the fol-
lowing advantages. Firstly, the generated Bessel beam size
is closely related to the radius ρ, enabling us to realize the
Bessel beam with tunable width. This is more convenient
for us to study the beam-dependent spin–orbit couplings.
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Secondly, the sharp-edge diffraction of the element
induces significant high-spatial-frequency waves, allowing
to generation of the spin–orbit Bessel beam at the deep-
subwavelength scale. According to a definition of the
numerical aperture for the nondiffracting first-order
Bessel beam, i.e., NA ¼ 0:292λ=W (see ref. 55), where W
represents the full width at half maximum of the main
lobe, we calculate the resulting numerical aperture of the
element as NA ≈0.8 (here W= 0.36λ). Such a high NA
remains difficult to be achieved with conventional axicon
devices and other techniques. Therefore, our self-created
element provides a practicable method to generate the
nondiffracting spin–orbit beams, enabling us to observe
the spin-orbit Rabi oscillations both in the strong and
weak coupling regimes.

Experimental alignment of the crystal
The alignment of the crystal is essential in the experi-

ment since the spin–orbit Rabi oscillation requires that
the propagation direction of the spin–orbit light beam
should coincide with the optical axis of the crystal. To
address the alignment, firstly, the laser beam is precisely
collimated by moving the CCD along the optical axis over
a sufficient distance. We then use the collimated laser to
align the crystal that is placed onto a stage. The position
of the stage can be precisely adjusted in three dimensions.
If the crystal is aligned, the extraordinary and ordinary
beams overlap during propagation, resulting in a sym-
metric doughnut-shape distribution; If the crystal is not
aligned, due to the birefringent effect, these two beams
slightly separate in space, resulting in a distorted light
pattern. These processes can be monitored using a high-
resolution (pixel size is 1.4 μm) CCD. The alignment
precision depends on the maximum separation Δr and the
crystal length L. Note that Δr is relevant to the choice of
beam width. For example, considering a Bessel–Gaussian
beam width r0= 3.5 μm, the maximum separation can be
calculated as Δr= 8 μm after a coupling length of
L= 30 mm. As a result, the corresponding angle between
the two beams is estimated as Δr/L= 8 μm/30mm.
Whereas for a beam width of r0= 15 μm, the angle
increases to Δr/L= 30 μm/30mm.

Derivation of the Pauli equation
We constitute an equivalent of the two-level system in

the higher-order regime of light and introduce the analo-
gous Pauli equation in the presence of a synthetic mag-
netic field. We achieve this by studying light-crystal
interaction in the linear regime, with a spatially structured
mutual beam comprising the superposition of two pure
spin–orbit states R̂ and L̂, as defined in Eq. (1) of the
manuscript. It is represented geometrically by the higher-
order Poincaré sphere. Owing to the vectorial nature of the
spin–orbit light beam, the crystal plays as a space-varying

retarder in the realm of spin–orbit coupling56. We inves-
tigate this problem using the Maxwell theory. Specifically,
we start by considering the following vector-wave equation

�∇ ´ μ�1 � ∇ ´ eE� 	h i
¼ ϵ̂ � ∂

2eE
∂t2

where eE is the spatiotemporal light field, ϵ̂ and μ denote
the dielectric tensor and the permeability of the crystal,
respectively. t is elapsed time. We concentrate on the
spatial effect of spin–orbit coupling and hence separate
the space and time variables in the spatiotemporal
Maxwell equation by expressing the complex light field
in a form like Ê x; y; z; tð Þ ¼ E x; y; zð Þexpð�iωtÞ, where ω
is the carrier-wave frequency and E ¼ Exx̂þ Eyŷþ Ezẑ
denotes the complex amplitude. In this case, a three-
component coupled-wave equation represented in the
Cartesian coordinate system is obtained, written as
follows:

∇2Ex þ β2xEx ¼ ∂
∂x ð∇ � EÞ

∇2Ey þ β2yEy ¼ ∂
∂y ð∇ � EÞ

∇2Ez þ β2zEz ¼ ∂
∂z ð∇ � EÞ

where βj ¼ ω
ffiffiffiffiffiffi
μϵj

p
(j= x, y, z) is a propagation constant of

wave component Ej in the crystal. Note that we have
assumed that light propagates along the optical axis of the
crystal, which is denoted as the z-axis. Owing to the non-
zero term ∇ � E≠ 0 in the crystal, the spin–orbit coupling
takes place and has a nontrivial influence on beam
propagation. We further write the solution of the
coupled-wave equation as follows:

Ex x; y; zð Þ ¼ Ax x; y; zð ÞexpðiβxzÞ
Ey x; y; zð Þ ¼ Ay x; y; zð ÞexpðiβyzÞ
Ez x; y; zð Þ ¼ Az x; y; zð ÞexpðiβzzÞ

where A ¼ Axx̂þ Ayŷþ Azẑ is a spatially distributed
complex envelope varying slowly along with z, i.e.,
∂2Ax=∂z2 � βx

∂Ax
∂z and ∂2Ay=∂z2 � βy

∂Ay

∂z . With these
conditions, we reduce the coupled-wave equation to

∇2
?Ax þ i2βx

∂Ax
∂z


 �
exp iβxz

 � ¼ ∂

∂x ð∇ � EÞ
∇2

?Ay þ i2βy
∂Ay

∂z

� 	
exp iβyz
� 	

¼ ∂
∂y ð∇ � EÞ

where ∇2
? ¼ ∇xx þ ∇yy is a transverse momentum opera-

tor. It is clear that the crystal’s anisotropy is the origin of
the spin–orbit coupling. We expand the term ∇ � E, and
consider the following constraint condition:

ϵx
∂Ex

∂x
þ ϵy

∂Ey

∂y
þ ϵz

∂Ez

∂z
¼ 0

In this manner, a general Schrödinger-like equation
governing the propagation dynamics of light is obtained
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as

i2β
∂

∂z

Ax

Ay

� �
¼ �∇2

? þ γ∇xx γ∇yxexpðþi4β � zÞ
γ∇xyexpð�i4β � zÞ �∇2

? þ γ∇yy

" #
Ax

Ay

� �

where we have assumed that β ¼ ðβx þ βyÞ=2 and γ ¼
ðγx þ γyÞ=2, for the shallow linear birefringence, with γ j ¼
1� ϵj=ϵz describing the anisotropic degree of the crystal.
4β ¼ βy � βx is a phase mismatch quantity arising from
the beating between the two components. The Hamilto-
nian is related to spatial gradient operators: ∇xy ¼
∂2=ð∂x∂yÞ and ∇yx ¼ ∂2=ð∂y∂xÞ (they have property ∇xy ¼
∇yx). Note that the transverse momentum operator ∇2

?
plays a role in the diffraction effect of the wave, which is
analogous to the temporal decoherence effect appearing
in the quantum system. We further transform Ax and Ay

to the rotating frame by defining

Ax x; yð Þ ¼ expðþi4β � z=2ÞeAxðx; yÞ
Ay x; yð Þ ¼ expð�i4β � z=2ÞeAyðx; yÞ

respectively. In the rotating frame, the Schrödinger-like
equation is modified as

i2β
∂

∂z

eAxeAy

 !
¼ �∇2

? þ γ∇xx

 �þ β4β γ∇yx

γ∇xy �∇2
? þ γ∇yy


 �� β4β

" # eAxeAy

 !

To obtain an equivalent of the Pauli equation, which
describes the spinnings of a quantum particle in a driven
magnetic field, it is relevant to transform the present
setting from the Cartesian basis to a circular basis by
employing a pseudo spin description. We therefore
identify R̂ and L̂ as the pseudo-spin-up and pseudo-spin-
down components of a spin-orbit-coupled spinor,
respectively. The complex spinor carried by the envelopeeAðx; y; zÞ

eA x; y; zð Þ ¼ eA0 x; y; zð Þ½ΦR zð ÞR̂þΦLðzÞL̂�

comprises a superposition of R̂ and L̂ with different
weights, which can be expressed in a normalized form as
ΦR zð Þ ¼ sin θ zð Þ=2½ �exp½þiφ zð Þ=2� and ΦL zð Þ ¼ cos θ zð Þ=½
2�exp½�iφ zð Þ=2�, respectively. Substituting the expression
of eA x; y; zð Þ into the Schrödinger-like equation and using
a transformation matrix T ¼ ½1;�i; 1; i�, we obtain the
equivalent of the Pauli equation written as a spin-1/2
form

i
∂

∂z

ΦR zð Þ
ΦL zð Þ
� �

¼ 1
2M

∇2
?eA0 � 1

2
σ � B

� �
ΦR zð Þ
ΦL zð Þ
� �

where M ¼ 2βeA0=ðγ � 2Þ � I is the equivalent mass of the
spinor with I being the 2 × 2 identity operator and σ is the
Pauli matrix vector σ ¼ ðσ1; σ2; σ3Þ, defined in the

circular basis as

σ1 ¼
0 �i

i 0

� �
; σ2 ¼

1 0

0 �1

� �
; σ3 ¼

0 1

1 0

� �
Here B is a magnetic field equivalent presented in the
rotating frame. It can be expressed as B ¼ ðB1;B2;B3Þ,
where

B1 ¼ �Ω;B2 ¼ 0;B3 ¼ �4β

and

Ω ¼ γ

β

RR
∇xy
eA0 x; yð Þ

��� ���dxdyRR eA0 x; yð Þ
��� ���dxdy

Clearly, the synthetic magnetic field is closely related to
a spatial gradient of the light field and the inherent phase
mismatch quantity. It indicates that the synthetic mag-
netic field can be controlled either by engineering the
phase mismatch Δβ in the crystal or by structuring the
light field eA0 x; yð Þ in space. This engineered magnetiza-
tion vector B leads to observations and controls of a new
form of spin–orbit Rabi oscillations, as demonstrated in
this work.
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