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Abstract

Background: Neuroimaging-based connectome studies have indicated that major depressive disorder (MDD) is associated with dis-
rupted topological organization of large-scale brain networks. However, the disruptions and their clinical and cognitive relevance are
not well established for morphological brain networks in adolescent MDD.

Objective: To investigate the topological alterations of single-subject morphological brain networks in adolescent MDD.

Methods: Twenty-five first-episode, treatment-naive adolescents with MDD and 19 healthy controls (HCs) underwent T1-weighted
magnetic resonance imaging and a battery of neuropsychological tests. Single-subject morphological brain networks were constructed
separately based on cortical thickness, fractal dimension, gyrification index, and sulcus depth, and topologically characterized by
graph-based approaches. Between-group differences were inferred by permutation testing. For significant alterations, partial correla-
tions were used to examine their associations with clinical and neuropsychological variables in the patients. Finally, a support vector
machine was used to classify the patients from controls.

Results: Compared with the HCs, the patients exhibited topological alterations only in cortical thickness-based networks character-
ized by higher nodal centralities in parietal (left primary sensory cortex) but lower nodal centralities in temporal (left parabelt complex,
right perirhinal ectorhinal cortex, right area PHT and right ventral visual complex) regions. Moreover, decreased nodal centralities of
some temporal regions were correlated with cognitive dysfunction and clinical characteristics of the patients. These results were
largely reproducible for binary and weighted network analyses. Finally, topological properties of the cortical thickness-based net-
works were able to distinguish the MDD adolescents from HCs with 87.6% accuracy.

Conclusion: Adolescent MDD is associated with disrupted topological organization of morphological brain networks, and the disrup-
tions provide potential biomarkers for diagnosing and monitoring the disease.

Keywords: adolescent major depressive disorder; structural MRI; morphological brain network; cortical thickness; support vector
machine

Introduction veals that MDD is related to disrupted topological organization

Major depressive disorder (MDD) is one of the most prevalent psy-
chiatric disorders worldwide (Brometetal., 2011; Ferrariet al., 2013;
Otte et al.,, 2016), which imposes significant economic and cogni-
tive costs (Gotlib & Joormann, 2010; Greenberg et al., 2015). More-
over, MDD is the leading cause of disability around the world (Vos
et al.,, 2016). In view of the global prevalence and burden of MDD,
itis worthwhile working out the neural mechanism of the disease
to help its diagnosis, prevention, and prognosis.

Benefiting from advances in noninvasive neuroimaging tech-
niques and sophisticated analytical methods, great progress has
been made in the last decade in mapping brain structural and
functional alterations in MDD. In particular, connectomics anal-
ysis of multimodal magnetic resonance imaging (MRI) data re-

of large-scale brain networks (Chen et al.,, 2017; Jiang et al., 2019;
Korgaonkar et al, 2020; Li et al., 2022; Shin et al., 2018; Yao et
al., 2019; Zhang et al, 2021), prompting a conceptual proposal
to view MDD as a network dysfunctional syndrome (Gong & He,
2015). However, these studies mainly focus on adult patients.
Compared with adult MDD, adolescent MDD is associated with
an increased risk for the recurrence of MDD during adulthood
(Nardi et al,, 2013) and a higher rate of suicide (Johnson et al.,
2018). Moreover, since adolescence is a period of marked physi-
cal, mental and brain development (Balvin & Banati, 2017; Belcher
et al, 2021; Lenroot & Giedd, 2006), MDD in this period could
lead to serious social and educational impairments and misbe-
haviors (Thapar et al., 2012). Therefore, researchers have begun to
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turn their attention to brain network dysfunction in adolescent
MDD.

Currently, several studies have been conducted to examine
functional brain networks derived from functional MRI or struc-
tural brain networks constructed with diffusion MRI in adoles-
cents with MDD (Chu et al., 2018; Ho et al., 2017; Sacchet et al., 2016;
Tymofiyeva et al., 2019; Wu et al., 2020). In addition to these two
types of brain network, single-subject morphological brain net-
works based on structural MRI provide another important way to
study human brain networks (for a recent review, see Cai et al,
2023). A major advantage of single-subject morphological brain
networks is their high test-retest reliability (Jiang et al., 2017; Kong
etal., 2015; Lietal, 2017, 2021c; Tijms et al., 2012; Wang et al., 2016,
2018;Yinetal., 2023; Yuetal., 2018; Zhao et al., 2021), which confers
the potential to establish reliable biomarkers in brain diseases.
More importantly, single-subject morphological brain networks
are increasingly demonstrated to have biological underpinnings
by revealing their associations with various properties of corti-
cal microarchitecture, such as gene expression, cytoarchitectonic
classification, and myelin content (Li et al.,, 2022; Sebenius et al.,
2023; Seidlitz et al., 2018; Yang et al., 2021; Zhao et al., 2021). Thus,
single-subject morphological brain networks are a reliable, bio-
logically plausible approach to study cortical organization from
an integrated perspective. To date, single-subject morphological
brain networks have been used to study various brain diseases,
including adult MDD (Chen et al., 2017; Gao et al., 2023; Li et al.,
2021, 2023), stroke (Lv et al., 2021), and multiple sclerosis (Casas-
Roma et al., 2022; Collorone et al., 2020; Yang et al., 2023). With re-
spect to adolescent MDD, however, it is largely unknown regard-
ing whether single-subject morphological brain networks are dis-
rupted and whether the alterations (if observed) are related to
clinical manifestations and cognitive deficits of patients.

In this study, we aimed to disclose topological alterations of
single-subject morphological brain networks in adolescent MDD,
and further examine clinical and cognitive relevance of the al-
terations. To this end, we collected structural MRI and neuropsy-
chological data from 25 first-episode, treatment-naive adoles-
cent MDD patients and 19 age-, sex-, and education-matched
healthy controls (HCs). Single-subject morphological brain net-
works were constructed using our previous surface-based single-
subject method (Li et al., 2021c; Lv et al., 2021). Topological orga-
nizations of the networks were characterized by graph-based net-
work measures, whose between-group differences were examined
with permutation testing. Between-group differences in regional
morphology and interregional morphological similarity were also
compared. For observed alterations, their associations with clin-
ical and neuropsychological variables were further examined in
the patients. Finally, we tested whether the alterations can be used
to classify the adolescent MDD patients from HCs using support
vector machine (SVM). We hypothesized that single-subject mor-
phological brain networks were disrupted in adolescent MDD pa-
tients, and the disruptions could account for clinical features and
cognitive disturbances of the patients and distinguish the patients
from HCs.

Materials and Methods

Participants

A total of 46 participants were recruited in the current study, in-
cluding 25 first-episode, treatment-naive adolescents with MDD
and 21 age-, sex-, and education-matched HCs. The MDD pa-
tients were recruited from the Department of Mental Health at the

First Affiliated Hospital, College of Medicine, Zhejiang University.
Matched healthy volunteers were recruited from the local com-
munity via advertisements. MDD was diagnosed according to the
Diagnostic and Statistical Manual of Mental Disorders, IV Edition
(DSM-1V) criteria for first-episode current unipolar MDD, which
was assessed by two professional psychiatrists using structured
clinical interviews based on the DSM-IV. The inclusion criteria in-
cluded: (i) aged 13 to 18; (ii) right handedness; (iii) Han ethnic-
ity; (iv) IQ > 80; and (v) scored at least 40 on the Children’s De-
pression Rating Scale-Revised (CDRS-R) (Poznanski et al., 1984) for
the patients. The exclusion criteria were as follows: (i) MDD pa-
tients with any form of treatment prior to the study; (ii) significant
medical illness; (iii) a history of neurological and psychiatric dis-
orders; (iv) abnormal signals in conventional MRI imaging; (v) any
other current psychiatric axis-I or axis-II disorders (except MDD
in the patients); (vi) current alcohol and drug abuse; (vii) pregnant
women; and (viii) contraindications for MRI scanning, including
metallic implants, retractors or braces, and claustrophobia. Two
HCs were excluded due to poor image quality. Finally, 44 adoles-
cents (25 MDD and 19 HCs) were included.

The study was approved by the ethics committee of the First Af-
filiated Hospital of the College of Medicine of Zhejiang University
and conducted in accordance with the Code of Ethics of the World
Medical Association (Declaration of Helsinki). To make sure that
the adolescent participants felt respected and thus better engaged
in this study, they were informed of some details beforehand and
gave their consent as well as their parents or legal guardians be-
fore the study began.

Clinical and neuropsychological measurements

In the current study, all participants underwent a battery of clin-
ical and neuropsychological tests. Specifically, clinical tests, as-
sessing the severity of depressive symptoms, included the 17-item
Hamilton Depression Rating Scale (HAMD) (Hamilton, 1967) and
the Children’s Depression Rating Scale, revised version (CDRS-
R) (Poznanski et al., 1984). Neuropsychological tests included the
Wisconsin Card Sorting Test (WCST) (Monchi et al., 2001), Contin-
uous Performance Test (CPT) (Rosvold et al., 1956), Trail-making
test (TMT) (Arnett & Labovitz, 1995), and Stroop Color Word Test
(Stroop, 1935). These tests were chosen since they had been fre-
quently used in previous studies of adult and/or adolescent MDD,
and were of good practicability (Doom et al., 2021; Huang et al,,
2012; Pan et al., 2020).

Image acquisition

All MRI data were acquired using a Philips Achieva 3.0 T TX MRI
system (Philips Healthcare, Netherlands) with an eight-channel
head coil array. The 3D high-resolution T1-weighted images were
acquired axially using a fast field echo sequence with the fol-
lowing imaging parameters: 150 slices, repetition time (TR) = 7.5
ms, echo time (TE) = 3.7 ms, flip angle (FA) = 8°, slice thick-
ness/gap =1/0mm,voxelsize=1x1x 1 mm?, matrix = 240 x 240
and field of view (FOV) = 240 x 240 mm?.

Data preprocessing

Data preprocessing of structural images was performed using
the Computational Anatomy Toolbox (CAT12, http://www.neuro.
uni-jena.de/cat) based on Statistical Parametric Mapping soft-
ware (SPM12, http://www.fil ion.ucl.ac.uk/spm/software/spm12/).
CAT12 offers a fast and reliable approach for analysis of cere-
bral surface-based morphometry, such as cortical thickness (CT),
fractal dimension (FD), gyrification index (GI), and sulcus depth
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(SD). Briefly, individual structural images were first segmented
into gray matter, white matter, and cerebrospinal fluid. During
the segmentation process, we used the standard tissue probability
maps as provided in the SPM12 to initialize the segmentation, the
ICBM space template (East Asian brains) for affine regularization,
and an optimized shooting approach for spatial registration (Ash-
burner & Friston, 2011). According to the CAT12 manual, we did
not use customized tissue probability maps, which are only rec-
ommended for data obtained in young children. Then, estimation
of CT and reconstruction of the central surface were conducted
based on the projection-based thickness method, which allows
the handling of partial volume information, sulcal blurring, and
sulcal asymmetries (Dahnke et al., 2013). FD, GI, and SD were fur-
ther calculated with default parameter settings based on the con-
structed central surface. Finally, individual morphological maps
of CT, FD, GI, and SD were resampled into the common fsaverage
template and smoothed using a Gaussian kernel with 12-mm full-
width at half-maximum for the CT maps and 25-mm full -width at
half-maximum for the other maps. According to the recommen-
dations of the CAT12 manual, the usage of larger smoothing ker-
nel sizes for the FD, GI, and SD maps was due to the underlying na-
ture of these folding measures that reflected contributions from
both sulci and gyri. Therefore, the smoothing kernel size should
exceed the distance between a gyral crown and a sulcal fundus.

Construction of morphological brain networks

In this study, morphological brain networks were constructed us-
ing our previous method (Li et al., 2021c; Lv et al., 2021). First,
the Human Connectome Project multi-modal parcellation atlas
(Glasser et al., 2016) was used to parcel the cerebral cortical sur-
face into 360 regions of interest (ROI), each of which represented
a node. Then, for each morphological index, all values within
each ROI were extracted and used to estimate regional probabil-
ity density function by the kernel density estimation (MATLAB
function: ksdensity). Subsequently, the probability density func-
tions were converted to corresponding probability distribution
functions (PDFs). For two regions with PDFs P and Q, respectively,
the Jensen-Shannon divergence (JSD), a variation of the Kullback-
Leibler divergence (KLD), was calculated as:

JSD (P 1| Q) = KD (P || M) + QKLD @M

KLD (P P(i)lo

1Q) = Z gQ
where M = } (P + Q), and n is the number of sample points (2% in
the current study) (H. Wang et al., 2016). Finally, the morphological
connectivity (MC) between two regions was defined as:

MCpoy=1-JSD(P Q)

These procedures resulted in four sets of 360 x 360 MC matri-
ces [i.e. CT-based networks (CTNs), FD-based networks, GI-based
networks, and SD-based networks].

Network analysis of morphological brain
networks

Threshold selection

For the MC matrices derived here, a sparsity-based thresholding
procedure was employed to convert each of them to a set of bi-
nary networks, wherein sparsity is defined as the number of ac-
tual edges divided by the total number of possible edges in a net-
work. By applying a subject-specific MC threshold to individual
MC matrices, the sparsity-based thresholding procedure ensures

the same number of edges or network cost for the resultant net-
works across participants. As there are no definitive ways to de-
termine a single sparsity value, the MC matrices were repeatedly
thresholded over a consecutive sparsity range from 0.02 to 0.4
(interval of 0.02). The sparsity range was selected to ensure that
the resultant networks have sparse properties (Achard, 2006; He
et al., 2007; Wang et al., 2009) and are estimable for small-world
attributes (Watts & Strogatz, 1998). In addition to the binary net-
works, we also derived their corresponding weighted networks to
examine the reproducibility of our findings by taking the MC of
supra-threshold edges into account.

Network measure calculation

In this study, 4 (morphological index: CT/FD/GI/SD) x 2 (network
type: binary/weighted) x 20 (sparsity level: 0.02-0.4) morpholog-
ical networks were constructed for each participant. For each
network, we calculated graph-based global (clustering coefficient,
Cp, characteristic path length, L,, normalized Cp, and normalized
Lp) and nodal (degree, efficiency, betweenness, eigenvector, and
PageRank) properties with the GRETNA toolbox (Wang et al., 2015).
Detailed formulas and interpretations of these measures can be
found elsewhere (Rubinov & Sporns, 2010). Given that all graph-
based network measures were calculated as functions or curves
of sparsity, we further computed the area under the curve for
each measure to provide sparsity-independent summary scalars
for subsequent statistical analysis.

Statistical analysis

Between-group differences in demographic, clinical and neu-
ropsychological variables

For discrete sex data, a x? test was used to examine between-
group differences. For other continuous variables, Lilliefors tests
were first used to determine whether they followed normal distri-
bution within each group. For variables conforming to normal dis-
tribution within both the patient and control groups, two-sample
t-tests were used to test their between-group difference; other-
wise, Wilcoxon rank sum tests were used instead.

Between-group differences in MRI-based variables

For each morphological index, between-group differences were
examined for the mean morphological value within each ROI,
MC between each pair of ROIs and each graph-based network
measure with non-parametric permutation test (10 000 times)
based on the t statistics derived from two-sample t-tests. Dur-
ing the comparisons, age, sex, and education were treated as co-
variates. A false discovery rate (FDR) procedure was used to cor-
rect for multiple comparisons for intraregional mean morpholog-
ical value (across 360 ROI), for each nodal property (across 360
ROI), and for global network properties (across four properties).
For interregional MC, a threshold-free network-based statistics
(TENBS) method (Baggio et al., 2018) was used to correct for mul-
tiple comparisons across all connections. These corrections were
performed within each type of single-subject morphological brain
networks. For the FDR procedure, the first step involved the sorting
of the original P values (e.g. 360 P values derived from between-
group comparisons of nodal degree for binary CTNs) in ascend-
ing order. Then, the kth element in the ascending P values (py)
was determined according to the following formula, which was
the threshold that would restrict the expected proportion of type
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Ierrors to g < 0.05:

k=max{i: pi < % x 0.05/ (Zl/j)]
=1

where n denotes the number of tests. All tests with a P value equal
or smaller than p, were considered significant.

Relationships between MRI-based measures and clinical and
neuropsychological variables

For MRI-based measures showing significant alterations in the
adolescent MDD patients, Spearman partial correlation was used
to examine their relationships with clinical variables (age of on-
set, course of illness, HAMD, and CDRS-R) in the patients. Ef-
fects of sex, age, and education were controlled for the MRI-
based measures. Similarly, Spearman partial correlation analy-
ses were performed between the MRI-based measures and neu-
ropsychological tests showing significant alterations in the ado-
lescent MDD patients with sex, age, and education as covariates.
The FDR procedure was used to correct for multiple comparisons
across all correlation analyses between 17 MRI-based measures
showing significant alterations in the patients and eight clini-
cal and neuropsychological variables (17 x 8 = 136 correlation
analyses).

Classification

A linear kernel SVM algorithm was implemented to distinguish
the adolescent MDD from HCs with all network properties de-
rived from both the binary and weighted CTNs as initial features.
A 10-fold cross-validation procedure was used to evaluate the
out-of-sample prediction performance. The ratio of the sample
size in the training set to the test set was ~9:1. More specifi-
cally, the sample sizes were 40 versus 4 in 6 out of the 10 folds
and 39 versus 5 in the other folds. In each fold, a SVM classifier
was trained based on features that exhibited significant between-
group differences (P < 0.05; permutation test) in the training set.
The classifier was then applied to the unseen test set to predict the
group labels of left-out participants. The predictive ability of the
SVM classifier was assessed by means of accuracy, sensitivity, and
specificity:

Accuracy = TP+ TN
V= TP+ TN £ FP+FN
ity —
Sensitivity TP FN +NFN
Speci ficity = TN P

where TP, TN, FP, and FN represent true positive, true negative,
false positive, and false negative, respectively. To robustly assess
these measures, the 10-fold cross-validation procedure was re-
peated 100 times and the resultant mean accuracy, sensitivity, and
specificity were calculated. Meanwhile, features that were con-
sistently selected across all folds and repeats were recorded to-
gether with their weights in contributing to the SVM classifiers av-
eraged across the folds and repeats. Finally, to evaluate whether
the trained SVM classifiers performed by chance, a P value was
separately estimated for the accuracy, sensitivity, and specificity
by generating corresponding empirical null distributions based on
the initial features with reshuffled group labels (1000 times). No-
tably, before the classification procedures, effects of age, sex, and
education were regressed out from all the features via multiple
linear regression.

Table 1: Demographic and clinical characteristics.

MDD HCs P value
Gender (M/F) 8/17 6/13 0.976%
Age (years) 16 (2.25) 16 (1) 0.250°
Education (years) 9 (2.25) 9.32+167 0.961°
HAMD 2556 £5.11 0(2) <0.001°
CDRS-R 71.63 4+ 12.59 17 (2.75) <0.001°
Age of onset (years) 16 (3.25) - -
Course of illness (months) 6 (10) - -

Data are presented as mean =+ standard deviation or median (interquartile
range) depending on whether the variables are normally distributed (Lilliefors
test). M, male; F, female; HAMD, Hamilton Depression Scale; CDRS-R, Children’s
Depression Rating Scale-Revised.

2The P value was obtained by a chi-square test.

®The P values were obtained by Wilcoxon rank sum tests.

Results

Demographic, clinical, and neuropsychological
variables

The demographic and clinical characteristics of all participants
are shown in Table 1. There were no significant differences in age,
sex, or education between the two groups (all P > 0.05). However,
compared with the HCs, the adolescent MDD patients had signifi-
cantly higher HAMD and CDRS-R scores (both P < 0.001). For neu-
ropsychological variables, the adolescent MDD patients showed
worse performance on the TMT B, SCWT A, SCWT B, and SCWT C
than the HCs (all P < 0.05) (Table 2).

Alternations in intraregional morphological
value in adolescent MDD

No significant differences were found between the patients and
HCs in the mean morphological value within any region regard-
less of the morphological index (P > 0.05, FDR corrected).

Alternations in interregional MC in adolescent
MDD

No significant differences were found between the patients and
HCs in the MC between any pair of regions regardless of the mor-
phological index (P > 0.05, TENBS corrected).

Alternations in topological organization of
single-subject morphological brain networks in
adolescent MDD

Topological alterations in the adolescent MDD patients were ob-
served only in the CTNs (q < 0.05). Specifically, compared with
the HCs, the adolescent MDD patients exhibited significantly
higher nodal degree (tss = 4.097, P = 2.3 x 107, ¢ = 0.037) and
eigenvector (tsg = 3.743, P = 3.3 x 1074, q = 0.034) in the left
primary sensory cortex, lower nodal eigenvector (tsg = —4.345,
P =13 x 1074, q = 0.034) in the left parabelt complex, lower
nodal degree (t3g = —4.134, P = 1.5 x 107%, q = 0.037) and effi-
ciency (to = —4.211, P = 1.0 x 107%, 9 = 0.018) in the right area
PHT, and lower nodal eigenvector (tsg = —3.854, P = 2.2 x 1074,
q = 0.034) in the right ventral visual complex for the binary CTNs
(Fig. 1). Analysis of the weighted CTNs generated largely simi-
lar results (Fig. 2). That is, the adolescent MDD patients showed
significantly higher nodal efficiency (t3o = 4.061, P = 2.3 x 1074,
q = 0.026) and eigenvector (t3s = 3.724, P = 3.2 x 107%, q = 0.033)
in the left primary sensory cortex, lower nodal eigenvector (tsg =
—4.360, P = 0.8 x 107, q = 0.025) and efficiency (t3y = —3.587,
P=5.2x 107, q=0.029) in the left parabelt complex, lower nodal
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MDD HCs P value

Wisconsin Card Sorting Test

Total number of trials 48 (2.5) 48 (3) 0.7022

Number of correct trials 35 (9.75) 36 (8) 0.6732

Total number of errors 15.30 & 10.50 14.39 £ 8.51 0.765P

Number of perseverative errors 10.00 +7.33 8.94+7.70 0.657°

Number of random errors 4(3) 5.72 +£3.27 0.3392

Number of completed categories 5(3) 5(2) 0.3732
Continuous Performance Test

1 11 (1.75) 11 (0) 0.4232

2 9(3) 9.28 £2.82 0.894?

3 11 (3) 12 (1) 0.1132
Trail Making Test

A 42.30 + 13.09 32 (10.53) 0.0572

B 82 (27.25) 68.93 £+ 15.36 0.0017
Stroop Color-Word Test

A 46.30 + 10.22 40.19 + 8.59 0.049°

B 72 (17.5) 62.41 £ 13.29 0.0082

C 120 (41.25) 93.29 £ 27.87 0.008?

Interference 45 (27.75) 30.88 + 23.08 0.0952

Data are presented as mean + standard deviation or median (interquartile range) depending on whether the variables are normally distributed (Lilliefors test). Of
note, data of the neuropsychological tests were missing for two patients and one control.

2The P values were obtained by Wilcoxon rank sum tests.
PThe P values were obtained by two-sample t-tests.

eigenvector (t3g = —3.768, P = 5.5 x 107%, q = 0.041), efficiency
(tsg = —4.210, P = 0.6 x 1074, q = 0.013) and betweenness (t3o =
—4.316,P=0.3 x 107*, 9 = 0.011) in the right area PHT, and lower
nodal eigenvector (tsg = —3.845, P = 2.9 x 107*, q = 0.033) and
efficiency (tsg = —3.662, P = 6.8 x 1074, q¢ = 0.030) in the right
ventral visual complex. In addition, lower nodal eigenvector (tsg
= —3.678, P =6.5 x 1074, q = 0.041) and efficiency (t39 = —3.827,
P=4.9 x 107*, q = 0.029) were observed in the patients in the right
perirhinal ectorhinal cortex. No significant between-group differ-
ences were found in any global properties for either the binary or
weighted CTNs (q > 0.05).

Relationships between altered nodal centralities
and clinical/neuropsychological variables in
adolescent MDD

No significant correlations were observed for altered nodal cen-
tralities in the CTNs with any clinical or neuropsychological vari-
ables in the adolescent MDD patients (q > 0.05). Using a uncor-
rected significance level of P < 0.05, nodal eigenvector (binary
CTNs: rho = —0.565, P = 0.010, q = 0.623; weighted CTNs: rho
= —0.550, P = 0.012, q = 0.593) and efficiency (weighted CTNs:
rho = —0.535, P = 0.015, q = 0.593) of the left parabelt complex
were negatively correlated with the SCWT A, nodal eigenvector
(binary CTNs: rho = 0.425, P = 0.043, q = 0.593; weighted CTNs:
rho = 0.436, P = 0.038, q = 0.602) of the left parabelt complex was
positively correlated with the onset age of illness, nodal eigen-
vector (weighted CTNs: rho = 0.548, P = 0.008, q¢ = 0.602) and
efficiency (weighted CTNs: rho = 0.549, P = 0.008, q = 0.602) of
the right perirhinal ectorhinal cortex were positively correlated
with the course of illness, and nodal betweenness (weighted CTNs:
rho = 0.532, P = 0.016, q = 0.602) of the right area PHT was posi-
tively correlated with the SCWT C (Fig. 3).

Classification results

The SVM classifiers based on all network properties from both
the binary and weighted CTNs exhibited good performance in

distinguishing the adolescent MDD patients from HCs (accu-
racy = 0.876, P < 0.001; sensitivity = 0.963, P < 0.001; speci-
ficity = 0.762, P < 0.001; AUC = 0.958, P < 0.001). Out of all net-
work properties, 73 were consistently selected to train the SVM
classifiers across all folds and repeats (Fig. 4). The properties were
mainly involved in frontal and parietal regions in addition to those
showing significant between-group differences as mentioned be-
fore.

Discussion

In this study, we explored the topological alterations of morpho-
logical brain networks in adolescents with MDD. Compared with
the HCs, the adolescents with MDD showed increased nodal cen-
tralities in parietal but decreased nodal centralities in temporal
regions in the CTNs. The alterations were related to cognitive im-
pairments and clinical characteristics of the patients, and could
distinguish the patients from HCs. These findings provide prelim-
inary evidence for network dysfunction in adolescent MDD from
the perspective of morphological brain networks, and may help
clinical diagnosis of the disease and monitor cognitive deficits as
the disease progresses. Nevertheless, we highlight that the find-
ings observed in this study should be explained with cautions ow-
ing to the small sample size and uncorrected nature of the corre-
lating results.

We found that the adolescent MDD patients exhibited in-
creased nodal centralities in the left primary sensory cortex. The
primary sensory cortex is located in the postcentral gyrus, the
primary somatosensory cortex that responds to somatosensory
stimuli specifically (Glasser et al., 2016). MDD is known to cause
alterations in various sensorimotor functions, such as reduced vi-
sual contrast sensitivity (Bubl et al., 2010), altered pain tolerance
(Thompson et al., 2016), and reduced heartbeat perception accu-
racy (Pollatos et al., 2009). In a recent study, Ray and colleagues
showed that altered effective connectivity in sensorimotor re-
gions might act as a promising and quantifiable candidate marker
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Figure 1: Between-group differences in nodal properties derived from the binary CTNs. Four regions were identified to show altered nodal centralities
in the adolescent MDD patients. Values in the violin plots are residuals of the nodal centralities after removing the effects of age, sex, and education

via multiple linear regression.

of depression severity and treatment response (Ray et al., 2021).
Here, our finding implies that network dysfunction of sensori-
motor components may occur in adolescent MDD as well. More
specifically, our finding suggests a more interactive state of the
left primary sensory cortex in adolescent MDD as the higher nodal
centralities mean more central roles in maintaining the integrity
of and coordinating information flow within a network. Presum-
ably, this might be the consequence of compensatory adaption to
ensure global function of patients’ brains, and is consistent with a
previous study showing increased functional homogeneity in the
postcentral gyrus in adolescent MDD (Mao et al., 2020). However,
morphological comparisons revealed cortical thinning in the post-
central gyrus in adolescent MDD (Fallucca et al, 2011), and the
thinning was linked to enhanced vulnerability to future depres-
sion during the adolescent-young adulthood transition (Meruelo
et al.,, 2021). The discrepancy may suggest different mechanisms
between structural and functional and between local and connec-
tive alterations of sensorimotor regions in adolescent MDD.

In addition to the increased nodal centralities, the adolescent
MDD patients were found to show decreased centralities in four

temporal regions (the left parabelt complex, right area PHT, right
ventral visual complex and right perirhinal ectorhinal cortex). The
parabelt complex, located in the superior temporal gyrus, con-
tributes to the early auditory cortex as the higher-order field sur-
rounding the primary auditory core region and belt areas (Kaas
& Hackett, 2000; Saenz & Langers, 2014), and is activated in overt
reading paradigm (Zachlod et al., 2020). A previous study showed
that patients with MDD exhibited a lower overt reading speed (Ah-
ern & Semkovska, 2017). Thus, the decreased nodal centralities
in the parabelt complex may be related to the impairments of
overt reading in adolescent MDD. This speculation sounds plau-
sible given the negative correlation between nodal centralities
in the parabelt complex and the reaction time in the Stroop
Color Word Test (word reading condition) in the adolescents with
MDD, although the correlation did not pass multiple compari-
son correction. Notably, a previous gray matter covariance net-
work study in adult MDD found lower nodal centrality in the su-
perior temporal gyrus, in which the parabelt complex is located
(Singh et al.,, 2013). The consistency may imply a common neu-
ral mechanism shared by adult and adolescent MDD that under-
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education via multiple linear regression.

lies dysfunctional visual stimuli processing and overt reading in
patients.

Area PHT is located in the posterior middle temporal gyrus, and
is strongly associated with the task positive network, wherein re-
glons show consistent activations across different tasks particu-
larly those involving attention (Blumenfeld, 2016; Glasser et al,
2016). The decreased nodal centralities in the area PHT thus may
reflect distraction and difficulty of adolescents with MDD in focus-
ingon targets. This finding is consistent with a previous functional
brain network study showing decreased nodal centralities in the
middle temporal gyrus in first-episode adolescents with MDD (Wu
et al., 2020). Thus, it seems that the middle temporal gyrus, in par-
ticular the area PHT, may play an important role in understanding
why adolescents with MDD typically fail to orient their attention
to important environmental cues.

Finally, the ventral visual complex and the perirhinal ectorhi-
nal cortex are both located in the fusiform gyrus, with the for-
mer activated in place- and tool-related working memory tasks
(Glasser et al., 2016; Weiner et al., 2014), whereas the latter is ac-
tivated in the face-related working memory tasks (Glasser et al,,
2016). Despite diverse responses to different types of visual stim-
uli, both the sub-regions of the fusiform gyrus contribute to vi-
sual working memory (Glasser et al., 2016), which requires pro-
cessing of visual information (Baddeley, 1992). Thus, we spec-
ulate that the decreased nodal centralities in the entral visual
complex and the perirhinal ectorhinal cortex may suggest im-
paired visual working memory in adolescent MDD. These find-
ings are consistent with a previous functional MRI study showing
hypo-activation in the fusiform gyrus in facial emotion identifi-
cation task in adolescent MDD (Ho et al., 2016). However, in adult

MDD a voxel-based meta-analysis of functional MRI studies re-
vealed stronger response in the fusiform gyrus in working mem-
ory tasks, and the increased response became more evident in
patients with more severe depression symptoms (X. Wang et al.,
2021). The discrepancy implies differential roles of the fusiform
gyrus in contributing to impaired visual working memory, in par-
ticular face-related visual processing, between adolescent and
adult MDD. Future direct comparison studies may help clarify
this issue. It should be noted that we found a positive correla-
tion between nodal centralities of the perirhinal ectorhinal cor-
tex and course of illness of the patients. That is, as the course of
illness increases, nodal centralities increase and the deviation to
HCs decreases in the perirhinal ectorhinal cortex. This counter-
intuitive positive correlation need further confirmation in future
studies.

It should be emphasized that all these temporal regions are
engaged in emotional processing. Although the most investigated
brain regions related to emotional processing are prefrontal and
limbic areas (Maletic et al., 2007), temporal regions are increasingly
recognized to involve in the higher stages of emotional process-
ing, such as appraisal and reactivity (Leppédnen, 2006). A recent
study proposed that adolescent MDD was more subject to disrup-
tions in primary emotional processes (e.g. perception) (Li & Wang,
2021), which is mainly related to the primary and secondary vi-
sual cortices, fusiform gyrus, and superior temporal gyrus (Lep-
pénen, 2006; Li & Wang, 2021). In adolescent MDD, hyperactivities
in the superior and middle temporal gyri have been reported dur-
ing emotional processing (Li & Wang, 2021). Therefore, presum-
ably the decreased nodal centralities in the temporal regions as
observed in this study may be relevant to the biased emotional
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patients. Values in the scatter plots were residuals of the nodal centralities and clinical and neuropsychological variables after removing the effects of
age, sex, and education via multiple linear regression. SCWT, Stroop Color-Word Test.

processing in adolescent MDD, Future studies may provide further
insights into this speculation by examining the relationships of
these regions with emotional processing capacity in adolescents
with MDD.

In this study, topological alterations in adolescent MDD were
observed only in the CTNs but not FD-based networks, GI-based
networks, or SD-based networks. This may be partially due to dif-
ferent cellular mechanisms between CT and folding-based mor-
phological indices (i.e. FD, GI, and SD). Specifically, CT reflects the
size, density, and arrangement of cells in the cerebral cortex (Narr
et al., 2005), while the folding-based morphological indices repre-
sent the complexity of the cerebral surface (Luders et al., 2006;
Van Essen et al., 2006; Yotter et al., 2011). Interestingly, our previ-
ous study found that age-related changes in the topological or-
ganization of single-subject morphological brain networks were
also mainly embodied in the CTNs (Ruan et al., 2023). As MDD is
associated with neurodevelopmental abnormalities in large-scale
brain networks (Charlton et al., 2015; Li et al., 2022), it is important
to explore how the CTNs deviate from normal developmental and
aging trajectories in patients with MDD. In addition, we noted that
the topological alterations in the CTNs were observed only nodal
but not global network measures. This might be because the ado-
lescents with MDD recruited in this study were at the early stage
of the disease (median course of illness 6 months), which is not
enough to disrupt the topological organization of single-subject

morphological brain networks at a global level. Finally, our analy-
sis of local cortical morphology revealed no significant alterations
in any regions. This finding lends support to the popular view of
MDD as a network dysfunctional syndrome (Gong & He, 2015), and
highlights the important roles of network analysis in studies of
adolescent MDD.

There were several limitations in this study. First, the sample
size was small because it was difficult to recruit first-episode,
treatment-naive adolescents with MDD in China. In addition, our
correlation results were not corrected for multiple comparisons.
Thus, the findings observed in this study should be considered
as exploratory, and need to be validated by independent, large-
sample studies in the future. Second, this study concerned ex-
clusively the topological alterations of morphological brain net-
works in adolescent MDD. To what extent the alterations are simi-
lar to those derived from functional and structural brain networks
should be illustrated by future multimodal studies. In particular,
it is interesting to examine whether combining different types of
brain networks can improve the discriminant accuracy of ado-
lescent MDD. Finally, there are several different methods for con-
structing single-subject morphological brain networks (Seidlitz et
al.,, 2018; Tijms et al., 2012; Wang et al., 2016; Yu et al., 2018). A natu-
ral topic is to test which method is the most sensitive in detecting
adolescent MDD-related alterations to help individualized diag-
nosis of the disease.

€202 JoquianoN €0 uo 1sanb Aq G81£8Z /2 L0PEX/PEIASA/E601 0 L/10p/BloIe/PRIAS /W0 dNoolWapED.)/:Sd)lY WO PapEOjUMOd



Single-subject morphological brain networks in adolescent MDD | 9

00 01 02 03 04 05

Betweenness in Left Area STSd posterior ‘ -
Betweenness in Left Area STSd posterior || -
Pagerank in Right Area 47| —
Pagerank in Right Area 471 |
Eigenvector in Right Inferior 6-8 Transitional Area
Eigenvector in Right Inferior 8-8 Transitional Area —
Betweenness in Right Area 25 —
Betweenness in Left Orbital Frontal Complex —
Pagerank in Left PriMary Sensory Cortex —
Pagerank in Left PriMary Sensory Cortex
Degree in Left PriMary Sensory Cortex — A
Degree in Left PriMary Sensory Cortex ||
Eigenvector in Left PriMary Sensary Cortex —a
Eigenvector in Left PriMary Sensory Cartex || A
Betweenness in Right Area 25
Eigenvector in Right Area 131 =
Eigenvector in Right Area 13|
Efficiency in Left PriMary Sensory Cortex A
Efficiency in Left PriMary Sensory Cortex -
Betweenness in Left Orbital Frontal Complex |
Betweenness in Left Area ventral 23 a+b

Degree in Right Area PF opercular
= Degree in Right Area PF opercular
Pagerank in Right Ventral Visual Complex
H Pagerank in Right Ventral Visual Complex
Efficiency in Right Area PF opercular
[ Efficiency in Right Area PF opercular
Betweenness in Left Third Visual Area
= Efficiency in Left Area IntraParietal 0
Efficiency in Left Area IntraParietal 0
— Eigenvector in Right Area posterior 47r
Eigenvector in Right Area posterior 471
Degree in Right Ventral Visual Complex
= Degree in Right Ventral Visual Complex
- Degree in Left Area IntraParietal 0
A Efficiency in Right Ventral Visual Complex
- Efficiency in Right Ventral Visual Complex
Degree in Left Area IntraParietal 0
L= Degree in Left ParaBelt Complex
Degree in Left ParaBelt Complex
a Eigenvector in Right Ventral Visual Complex
A Eigenvector in Right Ventral Visual Complex
- Efficiency in Left ParaBelt Complex
- Pagerank in Left Area IntraParietal 0
rs Efficiency in Left ParaBelt Complex
Pagerank in Left Area IntraParietal 0
= Pagerank in Left ParaBelt Complex
Pagerank in Left ParaBelt Complex
L Betweenness in Left Third Visual Area
Pagerank in Right Area PHT
= Eigenvector in Left Area IntraParietal 0
= Pagerank in Right Area PHT
Eigenvector in Left Area IntraParietal 0
A Eigenvector in Left ParaBelt Complex
- Eigenvector in Right Area PHT
A Eigenvector in Left ParaBelt Complex
- Eigenvector in Right Area PHT
- Betweenness in Left Area 10d
Degree in Right Area PHT
A Degree in Right Area PHT
Betweenness in Left Area 10d
H Eigenvector in Right Perirhinal Ectorhinal Cortex
A Eigenvector in Right Perirhinal Ectorhinal Cortex
e Degree in Right Perirhinal Ectorhinal Cortex
Degree in Right Perirhinal Ectorhinal Cortex
Le. Betweenness in Right Area PHT
L Pagerank in Right Perirhinal Ectorhinal Cortex
Pagerank in Right Perirhinal Ectorhinal Cortex
L Efficiency in Right Perirhinal Ectorhinal Cortex
- Efficiency in Right Perirhinal Ectorhinal Cortex
A Efficiency in Right Area PHT
A H Efficiency in Right Area PHT
Betweenness in Right Area PHT

-05 04 -0.3 -02 -01 00

Features showing significant difference

Features derived from binary networks ~ [001 Features derived from weighted networks & +—— Standard deviation
in between-group comparisons
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addition to those showing significant between-group differences.

Conclusion regions in the CTNs. The alterations were related to cognitive
deficits and clinical characteristics of the patients and could dis-
tinguish the patients from HCs. These findings may help under-
stand the neuropathology of adolescent MDD and the observed
alterations may serve as potential biomarkers to help diagnose
and monitor the disease.

In this study, we explored the topological alterations of morpho-
logical brain networks in adolescents with MDD. Compared with
the HCs, the adolescents with MDD showed increased nodal cen-
tralities in parietal but decreased nodal centralities in temporal
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