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Abstract 12 

The quantity and complexity of environmental data show exponential growth in recent 13 

years. High-quality big data analysis is critical for performing a sophisticated characterization 14 

of the complex network of environmental pollution. Machine learning (ML) has been employed 15 

as a powerful tool for decoupling the complexities of environmental big data based on its 16 

remarkable fitting ability. Yet, due to the knowledge gap across different subjects, ML concepts 17 

and algorithms have not been well-popularized among researchers in environmental 18 

sustainability. In this context, we introduce a new research paradigm—"ChatGPT + ML + 19 

Environment", providing an unprecedented chance for environmental researchers to reduce the 20 

difficulty of using ML models. For instance, each step involved in applying ML models to 21 

environmental sustainability, including data preparation, model selection and construction, 22 

model training and evaluation, and hyper-parameter optimization, can be easily performed with 23 

guidance from ChatGPT. We also discuss the challenges and limitations of using this research 24 

paradigm in the field of environmental sustainability. Furthermore, we highlight the importance 25 

of "secondary training" for future application of "ChatGPT + ML + Environment". 26 
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1. Introduction 34 

An environmental issue usually involves multiple substances, factors, and processes, 35 

leading to the generation of environmental big data generally characterized by rich sets of input 36 

features, e.g., the data of real-time monitoring[1, 2], human activities[3-6], meteorological 37 

parameters[7-10], emission inventories[11-14], chemical composition[15, 16], environmental 38 

transportation[17, 18], and pollution exposure[19, 20]. In addition to numbers, the input 39 

formats of environmental data also include texts, graphs, and images[21]. Hence, 40 

environmental big data analysis requires more advanced approaches and powerful tools. In 41 

recent years, machine learning (ML), an emerging data mining tool for addressing the multi-42 

dimensional/variety data[22], has triggered a revolutionary development in the field of 43 

environmental science[8, 21, 23-28]. ML is defined as "developing a model based on a set of 44 

example data, known as 'training data', to generate predictions or decisions without the need 45 

for explicit programming"[29]. ML algorithms show an excellent capacity for handling data 46 

with various input features and formats, outperforming traditional statistical tools that are often 47 

limited to data showing linear relationships with the outcomes[30-32]. It is worth noting that 48 

the dataset to be processed can be directly packaged and input into an ML model without prior 49 

knowledge of relevant features, and their patterns or trends can be identified or predicted.  50 

In recent years, several reviews have summarized the current state of ML applications in 51 

environmental research. In 2021, Zhong et al. reported the working principles of ML algorithms 52 

and presented their specific applications in environmental pollution research, including 53 

predicting the pollution trends of atmospheric fine particulate matter (PM2.5), predicting the 54 

future water availability, data processing from different water facilities, predicting sludge 55 

bulking in wastewater treatment plants, and identifying the Endocrine Disrupting Chemicals 56 

(EDCs)[21]. In 2022, Liu et al. summarized the new gains in using ML algorithms to study 57 

environmental issues, and highlighted their applications in estimating the health outcome of 58 

exposure[22]. Furthermore, they illustrated the importance of balancing the performance and 59 

interpretability of ML models in environmental research. Since 2022, the environmental 60 

scenarios of applying ML algorithms have been further expanded. For instance, ML algorithms 61 

have been widely used for improving the efficiency of environmental monitoring and policy-62 
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making[27], accounting carbon budget[33, 34], decoupling the meteorological impact on air 63 

pollution[9, 35], screening the new pollutants from a tremendous number of chemicals[36], 64 

predicting the health benefits through reducing pollution[37-42], identifying the impactors 65 

affecting the food chain or ecosystem[43, 44], etc. Example ML algorithms used in 66 

environmental research include recurrent neural network (RNN)[45], convolutional neural 67 

network (CNN)[46], decision tree[47], support vector machine (SVM)[48, 49], random forest 68 

(RF)[8, 10], and artificial/deep neural network[22]. Most of these ML models used in 69 

environmental research are well-developed, and their concepts, principles, and example codes 70 

are publicly shared. Despite that, environmental researchers with less experience in AI 71 

techniques still face challenges in appropriate applications of ML algorithms, e.g., misuse of 72 

cross-validation to the entire data set[21], or confusion between the validation set and test 73 

set[50]. Hence, they usually seek collaborations with researchers in the field of computing, 74 

ensuring a correct application of ML algorithms. Yet, some critical parameters for proper ML 75 

application, e.g., feature description and hyper-parameter tuning, should be drawn upon 76 

domain expertise, rather than only AI techniques[21].  77 

ChatGPT, as a state-of-the-art version of the dialogue-based model, was launched in 78 

November 2022 and will probably simplify ML usage in environmental research[51]. 79 

Specifically, ChatGPT has been trained on a large corpus of billions of text data, and is 80 

embedded with human feedback reinforcement learning and manually supervised fine-81 

tuning[52-55]. This enables it to naturally understand and generate the text like a human[56]. 82 

Moreover, the human-like text ability makes it an indispensable tool for handling a variety of 83 

language-based tasks, e.g., providing exampled codes of ML models and connecting up-/down- 84 

stream sections in the full-chain study mentioned above. Thus, for environmental researchers 85 

with less knowledge of ML algorithms, ChatGPT might reduce the threshold of using ML for 86 

environmental big data analysis. 87 

Here, we present a novel research paradigm—"ChatGPT + ML + Environment" and 88 

highlight its potential in popularizing ML in the field of environmental science. We also discuss 89 

the challenges and limitations remaining in this technique. Considering the current version of 90 

ChatGPT-3.5 is mainly performed based on a general database, we give our perspectives on its 91 

performance improvement by "secondary training" with some professional databases. 92 
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Furthermore, we also discuss the possibility of coupling ChatGPT with other AI techniques, 93 

e.g., intelligent robots and console algorithms. This training provides a chance for generating 94 

an integration solution in the full-chain study of environmental sustainability.  95 

2. A new paradigm of "ChatGPT + ML + Environment" 96 

The workflow of ML models used in environmental research can generally be 97 

decomposed into data preparation, model selection and construction, model training and 98 

evaluation, hyper-parameter optimization, and output[57]. Note: hyper-parameter optimization 99 

means improving the performance and accuracy of the model by adjusting the hyper-100 

parameters (parameters that cannot be learned by the model itself and require to be manually 101 

set) in the algorithm[57]. As shown in Fig. 1 and Supplementary discussion, the specific 102 

concepts, common errors, features, and example codes of solutions can be obtained by 103 

consulting ChatGPT. Therefore, the paradigm of "ChatGPT+ ML + Environment" is a 104 

promising tool that provides an unprecedented chance for inexperienced environmental 105 

researchers to address complex data analysis. 106 

 107 

Figure 1. Schematic overview of "ChatGPT + ML + Environment". The workflow of using 108 

ML in environmental research can be roughly decomposed into data preparation, model design, 109 

and model evaluation. The dialog boxes show examples of how ChatGPT makes ML 110 
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algorithms to be easy used in environmental research. 111 

 112 

2.1 Data preparation 113 

The raw data of environmental analysis and monitoring usually contain a large amount of 114 

"noise" and irrelevant information, as well as incorrect, missing, or duplicate results. Moreover, 115 

some types of environmental data cannot be read by the ML model. Although some data can 116 

be directly inputted into the model, their uneven distribution also leads to unstable model 117 

training and slow model convergence. Therefore, to ensure the smooth running of ML models 118 

in environmental research, the first step is to perform data preparation of environmental big 119 

data by using some algorithms, e.g., Python's Pandas library and Scikit-Learn library[57]. 120 

Specifically, we can inquire with ChatGPT about the data preparation methods and their 121 

functions, and choose an appropriate one according to the specific formats and features of raw 122 

data (Fig. 1). Alternatively, we can also enter ChatGPT with our available data storage formats, 123 

and then guide it to provide appropriate data preparation methods (Fig. 1). Furthermore, 124 

ChatGPT can also generate the code examples for operating data preparation.  125 

To further test the reliability of this method, we performed an example procedure of data 126 

preparation in Air Quality Index (AQI) prediction[58]. Specifically, we inputted "My data is a 127 

csv file, the columns are 'date, PM2.5, PM10, SO2, CO, NO2, O3, AQI', the date column does not 128 

need to be entered into the model, the remaining columns may be partially missing, how to 129 

read the file, perform data cleaning and divide it into a training set and a validation set?" into 130 

the ChatGPT. As shown in Supplementary discussion, ChatGPT directly provided annotated 131 

codes and their description. However, ChatGPT seemed to ignore that "the date column does 132 

not need to be entered into the model." Then, a further instruction, "I don't need the data in the 133 

date column," was entered into the ChatGPT, which provided a complete set of code and 134 

explanation. Hence, ChatGPT can help inexperienced environmental researchers achieve data 135 

preparation of complex environmental data. 136 

2.2 Model selection and construction 137 

As aforementioned, ML models have been widely used for environmental big data 138 

analysis, including classification, data fitting, clustering analysis, association analysis, and 139 

anomaly detection[21]. Theoretically, there are multiple ML models available that can be used 140 
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to resolve the same type of task in data analysis. Yet, the model capacity, training speed, and 141 

functional focus of these ML models are different. Thus, a sophisticated analysis of the 142 

fundamentals and functional differences of the numerous models is essential for model 143 

selection. ChatGPT provides an effective solution for selecting an appropriate ML model. 144 

Specifically, we can learn about the patterns, basics and fundamentals, functional focuses, 145 

advantages, and disadvantages of the intentional-required models by inquiring with ChatGPT. 146 

It is worth noting that using ChatGPT to select an ML model only requires a few short 147 

conversations, saving considerable time compared with manual research and investigation.  148 

Considering that different ML models have their own frameworks, the data to be 149 

processed should be optimized to achieve the requirements of the selected ML's framework. 150 

For example, if a convolutional neural network (CNN) is chosen to perform AQI prediction 151 

(Supplementary discussion), bootstrap instructions can be given to ChatGPT, such as "I want 152 

to achieve AQI prediction through a one-dimensional convolutional neural network based on 153 

the pytorch framework". Then, ChatGPT would present guidelines for converting the pending 154 

data into a readable format for Data Loader. Moreover, a complete set of "sample code" for the 155 

selected model construction can also be provided by ChatGPT (Supplementary discussion). 156 

After a slight optimization, we can easily build the selected ML model. Hyper-parameters 157 

selection, an important factor for proper model building, directly affects the capacity, 158 

convergence speed, and performance of the ML model. Particularly, some hyper-parameters 159 

(e.g., the depth of trees in the RF model) are not fixed options, which should be set with a 160 

comprehensive account of the number of input data features, data volume, data distribution, 161 

and application scenario, etc[21]. Considering that hyper-parameters selection is a dilemma 162 

that involves the knowledge of AI and environmental science, inexperienced environmental 163 

researchers can seek solutions with the support of ChatGPT. Although ChatGPT might not 164 

provide optimum parameter settings, it can provide the detailed meaning of each hyper-165 

parameter and advanced methods (e.g., grid search) for proper selection. Thus, ChatGPT can 166 

guide the ML model building in the field of environmental science.  167 

To illustrate how to select the most appropriate ML mode, we performed an exampled 168 

case of the Shannon index (a critical indicator for measuring biodiversity) prediction with the 169 

parameters of nanoparticles (e.g., type, shape, size, potential) and relevant environmental 170 
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factors (e.g., temperature, pH, soil depth). For instance, we performed an original prediction 171 

with linear regression based on this ChatGPT-empowered system. Then, "Can any other model 172 

be used to achieve this prediction? Output the performance of each model and select the best 173 

one." was inputted into the ChatGPT-empowered system. As shown in Supplementary 174 

discussion, the ChatGPT-empowered system provided the codes of linear regression, random 175 

forest, and xgb tree models, and output the name and RMSE (Root Mean Square Error) of the 176 

most suitable model. Moreover, the ChatGPT-empowered system can provide codes of cross-177 

validation to evaluate the performance of these models. It can also search the most suitable 178 

parameters on the internet automatically. For the whole process, we merely provided the output 179 

and error message from the last step for ChatGPT, which then generated the subsequent codes 180 

of correction and implementation automatically.  181 

2.3 Model training, performance, and hyper-parameter optimization 182 

ChatGPT can further guide the training, performance evaluation, and hyper-parameter 183 

optimization of the ML models used in environmental research. For traditional ML models like 184 

RF and SVM, most of their codes used for model training are with fixed structures[21, 22]. The 185 

corresponding statements and structures can usually be found by ChatGPT in the database of 186 

code examples. For instance, the training procedure of the RF model for air quality (AQI) 187 

prediction from emissions was smoothly performed with guidance from ChatGPT 188 

(Supplementary discussion). With regard to deep learning models, to reduce running problems 189 

(e.g., convergence difficulties and declining model generalization ability), the parameters, 190 

including learning rate, optimizer, and learning rate decay, are required to be set prior to 191 

training[22]. Taking an example of AQI prediction by using CNN (Supplementary discussion), 192 

the parameters including adam optimizer, learning rate (0.001), and mean squared error loss 193 

were successfully set guided by ChatGPT. Moreover, to further optimize the training process, 194 

the procedures of gradient descent and backpropagation, and the codes for learning rate decay 195 

were also provided by ChatGPT. 196 

Model performance is critical for ML applications, determining the reliability of 197 

prediction[57]. Although there are many ways to evaluate an ML model's performance, some 198 

evaluation parameters involve computer terminology and are difficult to understand for 199 

environmental researchers. ChatGPT can provide formulas, meanings, and examples of 200 
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application scenarios of the various evaluation parameters for users to understand and select 201 

appropriate evaluation methods. Specifically, we can obtain the "Mean Squared Error," "Root 202 

Mean Squared Error," "Mean Absolute Error," and "R-squared" of the models used in AQI 203 

predictions via inquiring with ChatGPT (Fig.1, Supplementary discussion). More importantly, 204 

the implementation codes for model evaluation can be accessed directly from the package 205 

provided by ChatGPT. Furthermore, tuning hyper-parameters is usually required to further 206 

improve the model performance. Similar to hyper-parameters selection (see section 2.2), we 207 

can obtain specific tuning codes of the selected model, and find the optimum hyper-parameters 208 

by ChatGPT.  209 

The aforementioned applications mainly tend to directly use or make slight modifications 210 

to the existing code structures. In these applications, ChatGPT can provide clear and concise 211 

code examples, preventing us from spending tremendous time studying the user manual of 212 

various ML models. This is of extreme importance for those with less knowledge in ML 213 

programming, as it can greatly reduce the interference and misdirection caused by complex 214 

codes. Additionally, ChatGPT can provide code interpretation and error-checking assistance, 215 

enabling us to quickly grasp the logical framework of a code segment and apply it to 216 

environmental studies. To facilitate understanding, the whole process of application examples 217 

based on the paradigm of "ChatGPT + ML + Environment" has been successfully performed, 218 

as detailed in Supplementary discussion.  219 

3 Advancement and challenges  220 

In addition to the aforementioned text data processing, the ChatGPT-empowered system 221 

also shows advantages in processing complex data. For instance, it can be used to predict the 222 

toxicology of chemicals based on their physical-chemical properties dataset (see 223 

Supplementary discussion). The used dataset consists of 210 features, including a series of 224 

specific chemical descriptors (e.g., molecular structure, chemical name, source, and CAS 225 

number), a range of refined molecular properties (e.g., polar surface area, adsorption properties, 226 

the quantity, state, and size of atoms and functional groups), and some important 227 

physicochemical properties (e.g., solubility, lipophilicity, and surface area). Considering that 228 

the dataset is a mixture of both useful and irrelevant information, including numerical and 229 
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character-based data, we initially used the ChatGPT-3.5 to generate the code of a random forest 230 

model, yielding an RMSE of 1.39. To address the possible limitations of ChatGPT-3.5 missing 231 

some contextual information in complex datasets, we further performed this prediction by using 232 

the ChatGPT4.0-empowered system. As shown in Supplementary discussion, the RMSE is 233 

0.67 with an R-squared (R2) of 0.57, which demonstrates the potential of the ChatGPT-234 

empowered system in addressing complex ML tasks.  235 

However, ChatGPT, one of the first human-like language models, still faces challenges 236 

and limitations in environmental applications. For instance, 1) Honest use. Most of ChatGPT's 237 

output is difficult to distinguish from the text written by humans. Recently, ChatGPT was 238 

directly listed as the author of several publications, which has triggered a widespread 239 

discussion among the academic community[53-55]. Indeed, the use of ChatGPT must strictly 240 

adhere to academic ethics and standards. To popularize the applications of public-shared tools 241 

(i.e., ML) in the field of environmental science, the details of ChatGPT usage should be clearly 242 

disclosed in the publications. Furthermore, for better regulation, the usage record can be 243 

documented accurately with the time stamp in blockchain technique. 2) Model development. 244 

The training of ChatGPT is still based on a large amount of existing data. Therefore, ChatGPT 245 

can provide code examples for the well-developed ML models used in environmental research 246 

but fails to develop new models. As shown in Supplementary discussion, the ChatGPT-247 

empowered system can perform almost all ML tasks in environmental science. Yet, it is still a 248 

probability-based AI model[51]. Its responses are the results of analyzing a large amount of 249 

training data, lacking thought of the context and background information. Therefore, it may not 250 

understand why we perform these analyses, and hence the whole data processing strategy 251 

should be designed by the researchers. Moreover, ChatGPT would be unaware of the parameter 252 

errors existing in its generated codes, which can only be found when the codes are actually 253 

executed. 3) Professional database. The current ChatGPT database is limited to general data 254 

prior to 2021[51, 53], lacking a professional dataset of environmental sustainability. This may 255 

result in suboptimal performance in solving environmental problems. Therefore, the ChatGPT-256 

empowered plug-in can be embedded into the professional system of environmental research 257 

to promptly provide ML applications. Additionally, to obtain high-quality big data analysis, 258 

some environmental data are encouraged to be open to the public. 259 

Jo
urn

al 
Pre-

pro
of



4. Discussion 260 

Although ML is a powerful tool for addressing complex environmental problems, it can 261 

be a challenging task for environmental scientists without AI research backgrounds. Integrating 262 

ChatGPT can provide effective solutions, including the concepts, principles and exampled 263 

codes, for ML applications. For environmental researchers with no prior knowledge, it can help 264 

them to perform ML analysis smoothly; for scientists with some AI knowledge, this process 265 

will improve their efficiency by saving their time to edit the codes. Notably, almost all 266 

programming tools or languages like Python and R can be used to build the ChatGPT-based 267 

process. In addition to environmental science, this process will extend ML application to other 268 

fields, e.g., industrial, biology, and geochemistry. Furthermore, it is noted that other Generative 269 

Pre-trained Transformer-based tools like Claude and Bard have similar effects as the 270 

ChatGPT[51], reducing the threshold of environmental application of ML. With the 271 

development of generative models and AI technologies, the application of the "ChatGPT + ML 272 

+ Environment" research paradigm will be further expanded. For instance, the processed data 273 

will not be limited to text, and graphic data might be understood and processed as the ChatGPT 274 

evolves [53]. In the future, these techniques, used correctly in accordance with academic ethics 275 

and usage guidelines, would provide excitement for solving complex environmental problems: 276 

1) Enhancing "secondary training" based on professional datasets. As shown in Fig. 2, the 277 

first step involves choosing a certain type of environmental case (e.g., environmental 278 

monitoring, source tracing, and policy making) and introducing a specific professional dataset. 279 

Moreover, a standard description file of the professional dataset, including dataset format, data 280 

types, additional data description, number of data entries, and dataset content description, 281 

should be set for the system of "ChatGPT + ML + Environment." This step will help ChatGPT 282 

to learn about the overview of the dataset. Afterward, a "secondary training" model, including 283 

the framework of data processing, the code for data preparation, model construction, and 284 

performance evaluation, would be built for the professional dataset. The detailed 285 

implementation procedures are similar to that mentioned in Section 2. Through further training 286 

or optimization, the "secondary training" model would show a capacity to provide effective 287 

and quick solutions for such environmental problems, especially for some emergency events.  288 
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 289 

Figure 2. The conceptual mode of "ChatGPT + ML + Environment" in future environmental 290 

research. The left box shows the secondary training by introducing environmental professional 291 

dataset. The middle box mainly shows the potential in connecting the up-/down-stream tasks 292 

of data analysis in the full chain study of environmental sustainability. The right box mainly 293 

gives a perspective on coupling data processing with data collection via using an integration of 294 

ChatGPT, control algorithms, ML, and robots, etc.  295 

 296 

2) Developing big data processing strategies for full-chain environmental study. An 297 

environmental event usually involves the coupling of multiple substances, factors, and 298 

processes across various scales, requiring a comprehensive research route covering 299 

"monitoring—source tracing—environmental behavior and transformation—exposure and risk 300 

assessment—policy making." Each of them can generate different datasets (Fig. 2). These 301 

datasets might have become "data islands" due to a lack of proper data analysis techniques, 302 

hampering the proposal of a systematic solution for real environmental problems[22]. 303 

Identifying the connection factors and developing an intelligent data processing system is 304 

critical for achieving full-chain environmental study. For instance, we would first establish a 305 

dataset composed of connection factors (Fig. 2), e.g., tracers, transformation reactions, 306 

biomarkers, and policy implementation date. The specific communication instructions for 307 

connecting up-/down-stream sections would be well-trained by ChatGPT with its human-like 308 

text ability[54]. In this way, the ML-based data processing in a down-stream section can be 309 
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14 

 

operated automatically after receiving the output from the up-stream section. Alternatively, 310 

they can provide feedback of the output to the up-stream section, guiding its optimization. Thus, 311 

the integration of ChatGPT and ML algorithms is a promising tool for future full-chain 312 

environmental research. 313 

3) Expanding the application mode of "ChatGPT +". The integration of ChatGPT and ML 314 

significantly improves the processing capacity of environmental big data, promoting the rapid 315 

development of environmental science. For instance, the current environmental monitoring 316 

system is capable of continuously collecting real-time environmental data and outputting brief 317 

reports[48, 58]. Such operations are tasks consisting of specific sequences of steps, where the 318 

execution of each task is based on previously normalized instructions. However, these tasks 319 

pose challenges in terms of generating predictions, making decision, and developing smart 320 

feedback to optimize the next step of data collection. In the future, the "ChatGPT + ML" mode 321 

can be further expanded by combining with other intelligent techniques like intelligent robots 322 

and control algorithms. Specifically, multiple environmental data collection devices (e.g., 323 

intelligent robots, sensors, and analytical instruments) and their carriers would be connected 324 

by the "ChatGPT + ML" system integrated with computer control algorithms (Fig. 2). This will 325 

integrate static environmental big data processing with dynamic environmental analysis, 326 

providing a novel tool for future environmental research, especially for some environmental 327 

monitoring under extreme conditions.  328 
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Highlights 

 A new paradigm of “ChatGPT + Machine learning (ML) + Environment” is 

presented. 

 The novelty and knowledge gaps of ML for decoupling the complexity of 

environmental big data are discussed. 

 The new paradigm guided by GPT reduces the threshold of using Machine Learning 

in environmental research. 

 The importance of “secondary training” for using “ChatGPT + ML + Environment” 

in the future is highlighted. 
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