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Over the past 4 decades, Southwest China has the fast vegetation growth and aboveground biomass 
carbon (AGC) accumulation, largely attributed to the active implementation of ecological projects. 
However, Southwest China has been threatened by frequent extreme drought events recently, potentially 
countering the expected large AGC increase caused by the ecological projects. Here, we used the L-band 
vegetation optical depth to quantify the AGC dynamics over Southwest China during the period 2013-
2021. Our results showed a net AGC sink of 0.064 [0.057, 0.077] Pg C year−1 (the range represents the 
maximum and minimum AGC values), suggesting that Southwest China acted as an AGC sink over the 
study period. Note that the AGC loss of 0.113 [0.101, 0.136] Pg C year−1 was found during 2013-2014, which 
could mainly be attributed to the negative influence of extreme droughts on AGC changes in Southwest 
China, particularly in the Yunnan province. For each land use type (i.e., dense forests, persistent forests, 
nonforests, afforestation, and forestry), the largest AGC stock increase of 0.032 [0.028, 0.036] Pg C 
year−1 was found in nonforests, owing to their widespread land cover rate over Southwest China. For AGC 
density (i.e., AGC per unit area), the afforestation areas showed the largest AGC density increase of 0.808 
[0.724, 0.985] Mg C ha−1 year−1, reflecting the positive effect of afforestation on AGC increase. Moreover, 
the karst areas exhibited a higher increasing rate of AGC density than nonkarst areas, suggesting that 
the karst ecosystems have a high carbon sink capacity over Southwest China.

Introduction

Over the past 4 decades, Southwest China has acted as the pre-
dominant carbon sink [1–4], absorbing a huge amount of anthro-
pogenic CO2 [3]. Yet, Southwest China was threatened by 
frequent occurrences of extreme droughts in recent 2 decades 

(e.g., in the years 2009-2013 and 2022), resulting in a large reduc-
tion in vegetation greenness [5], gross primary productivity [6], 
and aboveground biomass carbon (AGC) [3]. These drought 
events (e.g., 2009/2010 winter–spring drought, 2011 and 2013 
summer droughts) have decreased the AGC sink over Southwest 
China or even flipped the AGC sink into an AGC loss [7]. For 
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example, a carbon loss caused by drought was observed over 
Southwest China, using satellite and ground observations [7–10]. 
These results are opposite to the net carbon sink over Southwest 
China reported by some prior studies [1,3,4,11,12], partly due 
to the divergent study periods and methods for estimating the 
carbon sinks of Southwest China. Hence, it is necessary to further 
quantify the AGC budget over the Southwest China.

In addition, the karst regions, accounting for about one-third 
of the Southwest China, have the fragile geological environment 
characterized by excessive human disturbances, soil erosion, 
land and vegetation degradation, and rock desertification dur-
ing the past century [13]. These issues made the carbon sink of 
karst ecosystems to be more vulnerable to climate change [14] 
than other landscapes. Meanwhile, frequent anthropogenic dis-
turbances have led to a large reduction in vegetation cover [11], 
leading to the AGC loss over the Southwest China karst [15,16]. 
Since 1999, a succession of ecological projects were carried out 
under the support of the Chinese government, in order to con-
vert croplands and degraded lands into forests, as well as protect 
existing forests and decrease rocky desertification [17]. Such 
projects include the Natural Forest Protection Project, the Grain 
to Green Project, the Zhujiang River Shelter Forest Project, and 
the Karst Rocky Desertification Restoration Project [18–20].

These intensive ecological restoration projects above could 
largely compensate for the AGC reductions caused by natural 
and human disturbances [21,22], especially for the Southwest 
China karst areas. The ecological projects can also result in a 
change of land use type [12], such as the transition from non-
forests to forests, through the implementation of land manage-
ment policies (e.g., forest protection and tree planting). To date, 
the karst areas are mainly covered by forests and shrublands 
enhancing the carbon sink capacity of the karst ecosystem, 
contrary to the prior state characterized by degraded lands and 
croplands [21]. However, it is unclear whether the magnitude 
of AGC sink per unit area (i.e., AGC density) in karst areas is 
higher than in nonkarst areas, although the karst areas smaller 
than nonkarst areas. Thus, the contribution of ecological proj-
ects to the increase in AGC density over Southwest China 
should be assessed.

Previous studies [23–25] monitored the temporal dynamics 
of AGC mainly using optical vegetation indices (VIs) like gross 
primary productivity and leaf area index (LAI), which are char-
acterized by a long-time span and relatively high spatial and 
temporal resolutions [26,27]. However, the accuracy of optical 
VIs is known to be influenced by cloud contamination, forest 
canopy structure, and topography [27]. Affected by the East 
Asian monsoon, frequent precipitation and cloudy conditions 
resulted in an average sunshine duration of only 2,175 hours 
year−1 over Southwest China, which is lower than the national 
average level of 2,430 hours year−1 [28]. The rainy season in 
Southwest China could reduce the data quality of Moderate 
Resolution Imaging Spectroradiometer (MODIS) LAI, result-
ing in more than 25% of bad-quality observations during the 
summer period [29]. Furthermore, optical VIs could be affected 
by saturation issues in densely vegetated areas and are only 
indirectly sensitive, through the photosynthetic activity of the 
leaves, to trunk and branch biomass [30,31], causing potential 
uncertainties in AGC estimation over Southwest China.

The L-band vegetation optical depth (L-VOD) has been widely 
used to quantify the AGC budgets over the China [4], Africa [32], 
Siberia [33], Amazon [34], and the pan-tropics [35,36]. In con-
trast to VOD products obtained from high-frequency bands (such 

as C, X, Ku bands, 6.9 to 18.7 GHz) [37], low-frequency VOD 
(L band, 1.4 GHz) is more sensitive to the overall vegetation struc-
ture (encompassing vegetation canopy and stem) and is more 
related to the biomass spatial distributions [31,38]. Moreover, 
L-VOD is hardly impacted by atmospheric conditions and the 
presence of clouds [37]. Thus, L-VOD is highly suitable for moni-
toring the large-scale spatial and temporal AGC dynamics over 
Southwest China.

The major aims of the present study are: (a) to examine 
spatial-temporal patterns of the L-VOD-derived AGC over 
Southwest China during 2013-2021; (b) to evaluate the impact 
of ecological projects on AGC changes over Southwest China; 
and (c) to assess the carbon sink capacity of karst areas over 
Southwest China.

Materials and Methods

Study area
Southwest China (20°54′N to 34°19′N, 96°21′E to 112°04′E) con-
sists of Sichuan, Yunnan, Guizhou, Chongqing, and Guangxi 
provinces (Fig. 1). The elevation gradually increases from the 
southeastern to the northwestern parts of the region [39]. Average 
yearly precipitation ranged from 1,000 to 1,300 mm. The domi-
nant vegetation types over Southwest China are forests (widely 
distributed in the Hengduan Mountains, western Yunnan, north-
ern Guangxi, and eastern Guizhou), croplands (widely distrib-
uted in the Sichuan Basin and southern Guangxi), shrublands 
(widely distributed in the Yunnan-Guizhou Plateau), and grass-
lands (widely distributed in the northwestern Sichuan) [40]. 
Moreover, Southwest China has 0.55 million km2 of karst land-
scapes [41], which are located in the Yunnan-Guizhou Plateau, 
eastern Chongqing, and northern Guangxi.

Datasets
Land use map and karst map
The 500-m land use map provided by Tong et al. [12] (hereafter 
referred to as Tong map) was used to get information about the 
land use change and to explore the effect of ecological projects 
on AGC changes over Southwest China. The Tong map was 
based on a random forest (RF) model, driven by MODIS 
MCD43A4 reflectance, GF-1 satellite images, and tree cover 

Fig. 1. The geographical location of Southwest China, the spatial distribution of 
karst areas, as well as the land use map over Southwest China. The land use 
types of Southwest China are separated into 5 classes, including “Dense forest”, 
“Forest”, “Nonforest”, “Afforestation”, and “Forestry”. The land use map is provided 
by Tong et al. [12].

D
ow

nloaded from
 https://spj.science.org on M

arch 15, 2024

https://doi.org/10.34133/remotesensing.0113


Fan et al. 2024 | https://doi.org/10.34133/remotesensing.0113 3

datasets, covering the period of 2002-2017. The original Tong 
map contains 8 land use types, including “Dense forest”, 
“Forest”, “Nonforest”, “Recovery”, “Afforestation”, “Deforestation”, 
“Rotation” and “RotationL” (defined by the areas with harvest-
ing by large-scale forestry), which were further merged into 5 
land use types in this study:

1. “Dense forest” (refer to “Dense forest” of Tong map [12]) 
contains protected remnant forests and secondary forests char-
acterized by a dense forest canopy. According to the description 
of Tong map [12], all pixels classified as the “Dense forest” type 
were defined as forest areas characterized by frequent anthro-
pogenic protection within ecological projects.

2. “Persistent forest” (refer to “Forest” of Tong map [12]) 
represents the less dense forests without human disturbances, 
namely, no substantial harvesting activities occurred in this 
type. According to the description of Tong map [12], all pixels 
classified as the “Persistent forest” type were defined as anthro-
pogenic semimanaged forest areas within ecological projects.

3. “Nonforest” (refer to “Nonforest” of Tong map [12]) mainly 
includes shrubs grasslands and croplands and also incorporates 
fruit trees and small patches of trees. According to the descrip-
tion of Tong map [12], all pixels classified as the “Nonforest” type 
were defined as persistent nonforest areas under anthropogenic 
management within ecological projects.

4. “Afforestation” (by merging the “Recovery” and “Afforestation” 
types of the Tong map [12]) contains areas with natural forest 
recovery and tree plantations, indicating the land use change from 
nonforests to forests. According to the description of Tong map 
[12], all pixels classified as the “Afforestation” type were defined as 
the afforested areas within ecological projects.

5. “Forestry” (by merging the “Deforestation”, “Rotation”, and 
“RotationL” of the Tong map [12]) represents extensive timber 
harvesting affected by forestry, consisting mainly of clear-cutting 
of forest stands and following regeneration (thus exhibiting 
dynamic land use change between forests and nonforests). 
According to the description of Tong map [12], all pixels clas-
sified as the “Forestry” type did not belong to the ecological 
project implementation areas.

In these land use types above, all pixels classified as “Dense 
forest”, “Persistent forest”, “Nonforest”, and “Afforestation” types 
belonged to the ecological project implementation areas (Fig. 1). 
To explore the interannual variation of AGC in the karst areas, 
a karst map was selected (Fig. 1). Here, the land use map and 
karst map were aggregated to 0.25° resolution using a majority 
rule (Fig. S1).

L-VOD
The estimations of AGC were derived from L-VOD based on the 
Soil Moisture and Ocean Salinity INRA-CESBIO (SMOS-IC) V2 
algorithm [42]. The SMOS-IC V2 product offers daily L-VOD 
at a spatial resolution of 0.25° from both ascending and descend-
ing orbits during 2010-2021, which could exhibit a good relation-
ship with AGC [42]. Therefore, the SMOS-IC L-VOD has been 
broadly used to assess the spatial distribution of AGC [32,35,36].

Because L-VOD data is disturbed by the radio frequency 
interference (RFI) in China [43], we used a strict filtering 
method to select good-quality VOD data. The root mean square 
error (RMSE) between the measured and simulated brightness 
temperature (TB-RMSE) linked to the SMOS-IC L-VOD prod-
uct was selected as a factor to remove the pixels impacted by 
strong RFI [42]. The filtering method comprises the following 
steps:

1. Daily L-VOD data with scene flag (SF) > 3 and TB-RMSE > 
8 k were removed [35], with SF > 3 corresponding to pixels 
with complex topography.

2. We further calculated the remaining L-VOD data from 
ascending (i.e., L-VODASC) and descending (i.e., L-VODDESC) 
orbits for each trimester (3-month period), respectively. If the 
difference between average L-VODASC and L-VODDESC data 
was larger than 0.05 and the trimester average of the TB-RMSE 
from the ascending (or descending) orbit was larger than 7k, 
all the L-VODASC (or L-VODDESC) data within this trimester 
were removed.

3. Following step (2), we associated all the filtered L-VODASC 
and L-VODDESC data in a combined data set (i.e., L-VODCOM). 
Note that if the L-VODASC and L-VODDESC data are available on 
the same day, we only keep L-VOD data with lower TB-RMSE.

4. For each trimester, we computed the standard deviation 
(SD) and mean value of L-VODCOM data, the daily L-VODCOM 
data falling outside of mean ± 2SD were removed. All the remain-
ing L-VODCOM data were used to estimate the AGC changes.

MODIS LAI
LAI is associated with the vegetation greenness fractions and 
therefore potentially related to AGC [4]. The MODIS MOD15A2H 
V6 product offers an 8-d composite LAI at a 500-m resolution 
[44]. All good-quality pixels (according to the QC layers) of LAI 
during the period 2013-2021 were selected.

MODIS normalized difference vegetation index (NDVI)
The MOD13A2 V6.0 product provides a 16-d average NDVI 
at 1-km resolution [45], which is generated by averaging the 
best pixels available from all the observations within a 16-d 
period. All high-quality pixels (according to the QC layers) of 
NDVI over the study period were selected.

Meteorological data
Three meteorological data were selected to analyze the response 
of AGC to extreme droughts and the meteorological conditions 
over the Southwest China, including:

1. Precipitation, provided from Climate Hazards Group 
InfraRed Precipitation with Station data (CHIRPS) [46]. The 
CHIRPS offers global daily precipitation at 0.05° spatial resolu-
tion. A previous study [46] shows that the CHIRPS precipita-
tion shows a good performance in drought monitoring. Daily 
CHIRPS precipitation data from 2013 to 2021 were used.

2. Soil moisture, obtained from the fifth-generation European 
Centre for Medium-Range Weather Forecasts reanalysis (ERA5) 
at 0.25° resolution [47]. Compared to precipitation, soil moisture 
after water distribution (through evapotranspiration and runoff) 
is considered as a variable more directly affecting vegetation 
growth over Southwest China [5,48]. In addition, root-zone soil 
moisture (RZSM) corresponds to the soil moisture content avail-
able for vegetation growth. The ERA5 soil column is divided into 
4 soil layers (i.e., 0 to 7, 7 to 28, 28 to 100, and 100 to 289 cm). 
Here, monthly ERA5 soil moisture at the depths of 0 to 7 (θ7cm), 
7 to 28 (θ28cm), and 28 to 100 (θ100cm) was selected to compute 
RZSM using a weighted average method [49], as follows:

3. Standardized precipitation–evapotranspiration index (SPEI), 
provided from the global SPEI database [50]. SPEI is based on 

(1)RZSM=0.07×�7cm+0.21×�28cm+0.72×�100cm
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multiple climatological factors from CRU TS 4.05, spanning the 
period during 1901-2020 [50]. Monthly SPEI at a resolution of 
0.5° was averaged yearly to compute a yearly SPEI index; pixels 
that experienced yearly SPEI < −1 during 2009-2020 (which 
included the years of above mentioned extreme drought events in 
Southwest China) were defined as drought-affected pixels [51,52].

The above-mentioned vegetation proxies (i.e., L-VOD, LAI, 
and NDVI) and meteorological data (i.e., precipitation, SM, 
and SPEI) were aggregated to yearly values at 0.25° using the 
sample average method.

Topographic data
The 30-m topographic data was obtained from the Shuttle 
Radar Topography Mission [53]. Southwest China is predomi-
nantly mountainous terrain, which may affect the accuracy of 
AGC estimates. Thus, the elevation and relief amplitude were 
selected as indicators of topographic variation and complexity 
to assess the influence of topography on the estimations of AGC 
over Southwest China. The relief amplitude was calculated as 
the difference between the maximum and minimum elevation 
values within a 3×3 moving window [29]. The elevation and 
relief amplitude were aggregated to 0.25°resolution.

AGC benchmark map
Four AGC benchmark maps (Fig. S2) were selected to calibrate 
the relationship between AGC and L-VOD, as follows:

1. The Saatchi map [54] contains the AGC estimates at a 
1-km spatial resolution circa 2015. It utilized GLAS LiDAR 
measurements to drive the comprehensive estimation of AGC, 
combining MODIS and QuickSCAT data. The Saatchi AGC 
map used here is an updated version derived from the Landsat, 
MODIS, Shuttle Radar Topography Mission, and Advanced 
Land Observing Satellite data.

2. The Baccini map [55] represents the AGC estimates at a 
500-m spatial resolution circa 2007-2008. Compared to the 
Saatchi map, the Baccini map was produced using the GLAS 
and MODIS products based on the RF model.

3. The Saatchi-WT map [56], providing the AGC estimates 
at a 1-km resolution circa 2010. Using the weighting tech-
nique (WT) method, the Saatchi-WT map was generated by 
integrating 5 published AGC maps in forest areas [54,55,57–
59] and the Saatchi map over nonforest areas. According to 
the description of the Saatchi-WT map, the forest and nonfor-
est areas were identified utilizing the land cover map from 
Liu et al. [60].

4. The Su map [57] contains the forest AGC estimates at a 
1-km resolution circa 2005. It was produced based on an RF 
model, using optical remote sensing data, GLAS LiDAR, and 
ground inventory measurements.

All 4 AGC benchmark maps (i.e., Saatchi map, Baccini map, 
Saatchi-WT map, and Su map) were aggregated to 0.25° resolu-
tion. In addition, the biomass density units (Mg ha−1) of these 
maps were converted to the carbon density units (Mg C ha−1) 
by multiplying AGC values by a factor of 0.5 [55].

Methods
AGC changes estimated using L-VOD
The annual AGC products using L-VOD were produced based 
on the same method as used by Fan et al. [35]: Firstly, the 
L-VOD data were sorted in ascending order and grouped into 
bins consisting of 250 grid pixels, and then the average L-VOD 

value for each bin was calculated. Subsequently, the mean AGC 
value from the corresponding distribution in the AGC bench-
mark maps (i.e., Saatchi map, Baacini map, Saatchi-WT map, 
and Su map) was computed for each L-VOD bin, thereby estab-
lishing the AGC curve as a function of L-VOD. This curve was 
fitted by a power regression equation [33]:

where a and b are parameters calibrated to obtain the best-fit 
curve. AGCref is the benchmark AGC, and VOD is the mean 
annual L-VOD value in 2015. For evaluating the uncertain-
ties associated with AGC estimates calculated for each AGC 
benchmark map, we calculated the correlation coefficients 
(r) and RMSE between benchmark AGCs and bootstrapped 
AGC estimates using a bootstrap cross-validation method. 
In addition, the 95% bootstrap confidence interval of the 
AGC estimates retrieved from 4 AGC benchmark maps was 
calculated.

Given that the area of each land use type varies greatly, the 
dynamics of AGC density (i.e., AGC per unit area; Mg C ha−1) 
values and AGC stock (Mg C) values for each land use type 
were analyzed. In comparison to the AGC stock changes, 
quantifying the AGC density changes can allow us to better 
analyze the effect of ecological projects on the increase of car-
bon sink of Southwest China. Similarly, the carbon sink capac-
ity of karst areas was assessed by calculating the AGC density 
changes over the study period, because the karst area accounts 
for about 30% of Southwest China (Fig. 1). Accordingly, the 
time series of AGC density maps (Mg C ha−1) during 2013-
2021 were generated based on Eq. 2. The AGC stocks (Mg C) 
over Southwest China from 2013 to 2021 were computed by 
multiplying yearly AGC density by each pixel area. The net 
AGC changes (including AGC stock changes and AGC density 
changes) were computed by the difference in yearly values 
between 2013 and 2021. AGC gross gains and losses were 
computed, respectively, by aggregating positive and negative 
AGC changes over consecutive years spanning from 2013 to 
2021.

We used the median values of 4 L-VOD retrieved AGC maps 
(i.e., AGCSaatchi, AGCBaccini, AGCSaatchi-WT, and AGCSu) to repre-
sent the AGC dynamics over Southwest China during 2013-
2021. The maximum and minimum AGC values were also 
reported, because they could provide a comprehensive assess-
ment of AGC dynamics and the uncertainty of retrieved AGC 
estimations.

Trend analysis
The interannual variation of annual vegetation proxies (i.e., 
AGC, NDVI, and LAI) and meteorological data (i.e., precipita-
tion and RZSM) were calculated by a linear regression method, 
which is represented as follows:

where n is the number of study periods. Vari is the annual vari-
able value in year i. Slope represents the trend of the temporal 
variations. We also selected the P value to identify the pixels 
with significant trends (P < 0.1) using an F test [61].

(2)AGCref = a × VODb

(3)Slope=

∑n
i=1

�

yeari−year
�

×

�

Vari−Var
�

∑n
i=1

�

yeari−year
�2
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Results

Spatial pattern of AGC over Southwest China
The 4 L-VOD-derived AGC maps (i.e., AGCSaatchi, AGCBaccini, 
AGCSaatchi-WT, and AGCSu) in 2013 exhibited a similar spatial 
pattern of AGC density over Southwest China (Fig. 2). High 
AGC values were mainly located in the southern regions of 
study area (i.e., Southeastern Chongqing, eastern Guizhou, 
northern Guangxi, and southwestern Yunnan provinces). Low 
AGC values were observed in northwestern Sichuan and the 
Sichuan Basin (Fig. 2), which are dominated by grasslands and 
croplands, respectively.

In the year 2013, nonkarst areas showed the largest AGC 
stocks of 3.501 [3.239, 3.736] Pg C (the range represents the 
maximum and minimum AGC values calculated by 4 AGC 
benchmark maps) (Fig. 3A), accounting for 68.85% of the total 
AGC stocks over Southwest China. Meanwhile, the karst areas 
showed AGC stocks of 1.584 [1.476, 1.685] Pg C (Fig. 3A). For 
AGC density (indicated by the AGC per unit area), a higher 
AGC density was observed over the karst areas (45.167 [41.665, 
48.176] Mg C ha−1), relative to the nonkarst areas of 42.721 
[39.573, 45.585] Mg C ha−1 (Fig. 3B). Among land use types, 
the largest AGC stocks were found in nonforests (2.767 [2.460, 
2.992] Pg C) that covers the majority (62.55%) of the study 
area, followed by persistent forests (1.187 [1.092, 1.250] Pg C), 
forestry (0.483 [0.445, 0.509] Pg C), dense forests (0.377 [0.347, 
0.397] Pg C), and afforestation (0.298 [0.275, 0.318] Pg C) 

(Fig. 3C). The highest AGC density was found in persistent 
forests (56.003 [51.550, 59.015] Mg C ha−1), followed by dense 
forests (55.372 [50.916, 58.283] Mg C ha−1), forestry (54.766 
[50.452, 57.730] Mg C ha−1), afforestation (45.410 [41.904, 
48.420] Mg C ha−1), and nonforests (38.203 [33.958, 41.302] 
Mg C ha−1) (Fig. 3D).

Fig. 2. Spatial patterns of 4 L-VOD derived AGC maps for the first year of study in 2013 over Southwest China. (A) AGCSaatchi. (B) AGCBaccini. (C) AGCSaatchi-WT. (D) AGCSu.

Fig. 3. AGC estimates for the first year of study in 2013. (A) AGC stocks and (B) AGC 
density over the karst and nonkarst areas. (C) AGC stocks and (D) AGC density for 
each land use type. The error bars represent the uncertainties of AGC stocks and 
AGC density estimated by 4 AGC benchmark maps.
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AGC changes in space and time
The period of analysis contained several extreme drought 
events linked to the AGC losses, potentially introducing uncer-
tainties in AGC trend analysis. Therefore, the analysis of our 
results was mainly based on the yearly net AGC changes. Our 
study revealed a gross AGC loss of −0.007 [−0.006, −0.009] 
Pg C year−1 was offset by a gross AGC gain of +0.071 [+0.063, 

+0.086] Pg C year−1 during 2013-2021, leading to a net sink 
of +0.064 [+0.057, +0.077] Pg C year−1 over Southwest China 
(Fig. 4A). Both LAI and NDVI showed an increasing trend 
over the study period (Figs. S3 and S4), which are in line with 
the AGC trends. At the provincial scale (Fig. 4B to F), the 
Sichuan province had the largest AGC sink of +0.026 [+0.024, 
+0.031] Pg C year−1, followed by Guangxi (+0.013 [+0.012, 

Fig. 4. Yearly net AGC changes from 2013 over Southwest China. The AGC values shown were subtracted from the 2013 baseline values. (A to F) Net AGC changes for the 
Southwest China, Chongqing, Guizhou, Guangxi, Sichuan, and Yunnan provinces, respectively. The shaded areas show the uncertainties of AGC changes estimated by 4 AGC 
benchmark maps.
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+0.017] year−1), Yunnan (+0.010 [+0.009, +0.012] Pg C 
year−1), Guizhou (+0.010 [+0.009, +0.012] Pg C year−1), and 
Chongqing (+0.005 [+0.005, +0.006] Pg C year−1).

Spatially, the positive AGC net changes were observed for 
81.65% of the area in Southwest China during 2013-2021 (Fig. 
5A), with the AGC sinks able to be observed in Sichuan, northern 
Chongqing, Guizhou, and Guangxi provinces. The AGC losses, 
by contrast, were found in the southwestern part of the Yunnan 
province (Fig. 5A). Similar patterns could be observed in the 
yearly trend of AGC (Fig. 5B). The gross AGC losses were mainly 
observed in Chongqing, eastern Guizhou, western Guangxi, and 
Yunnan provinces (Fig. 5D). In parallel, areas with high gross 
AGC gains (Fig. 5C) correspond to areas of gross AGC sink, 
offsetting these AGC losses and resulting in an overall net AGC 
increase within these areas.

For a better understanding of the negative effect of drought 
on the AGC dynamics, the AGC changes in 2013-2014 (2014 
AGC density map minus 2013 AGC density map) and drought 
areas (defined as pixels with SPEI < −1 in 2013) were ana-
lyzed. In the years 2013-2014, the AGC losses (i.e., ΔAGC < 
0) of −0.113 [−0.101, −0.136] Pg C year−1 were found over 
the Southwest China, with −0.107 [−0.095, −0.132] Pg C 
year−1 of the AGC losses observed from drought-affected areas 

(Fig. 6A and B), such as Yunnan and southern Sichuan prov-
inces (Fig. 6C). In addition, the magnitude of AGC losses was 
related to the drought intensity (Fig. 6D), with the largest AGC 
losses were found in areas with SPEI < −1.5. These results 
suggest that the severe droughts reduced the AGC over 
Southwest China, leading to Southwest China transitioning 
to act as a net AGC loss in 2014.

Furthermore, it should be noted that more than 70% of 
Southwest China (especially for the Yunnan province) was also 
affected by severe drought during 2010-2012 (Figs. S5 and S6), 
which may have a legacy effect on AGC changes during the 
study period. Meanwhile, the precipitation and RZSM values 
indicated abnormally dry conditions during the period of 2013-
2014 (Fig. S3B), providing unfavorable growing conditions for 
vegetation over Southwest China.

AGC dynamics for each land use type
The influence of ecological projects on AGC over Southwest China 
during 2013-2021 was quantified (Fig. 7), indicated by the net 
AGC changes for each land use type. Overall, the net AGC changes 
in all land use types were positive during 2013-2021 (Fig. 7A). 
Nonforests exhibited the largest AGC sink (+0.032 [+0.028, 
+0.036] Pg C year−1; Fig. 7A), followed by the persistent forests 

Fig. 5. Spatial patterns of AGC density changes during 2013-2021. (A) Yearly net changes, (B) trends, (C) gross gains, and (D) gross losses in AGC density during the 2013-2021 
period. Yearly AGC trends are indicated by significantly positive (blue) and negative (red) trends (linear trend; P < 0.1). Gross AGC gains and gross AGC losses were calculated, 
respectively, by aggregating positive and negative AGC changes, for consecutive years during 2013-2021.
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(+0.017 [+0.015, +0.022] Pg C year−1), afforestation (+0.005 
[+0.005, +0.006] Pg C year−1), forestry (+0.005 [+0.005, +0.007] 
Pg C year−1), and dense forests (+0.004 [+0.004, +0.006] Pg C 
year−1). The primary AGC sink in nonforests could be attributed 
to the large proportion (62.55%) of nonforests over Southwest 
China (Fig. 7C). Also, nonforests have some shrubs and small 
patches of trees with relatively high carbon sink capacity, which 
contributed to the increase in AGC over the nonforested areas of 
Southwest China, despite nonforests exhibited the lowest AGC 
density increase (Fig. 7B). Consequently, these results suggested 
that the nonforests dominate the AGC stock increases over 
Southwest China during 2013-2021.

In terms of AGC density, the afforested regions showed the 
largest increase in AGC density (+0.808 [+0.724, +0.985] Mg C 
ha−1 year−1, Fig. 7B), suggesting that afforestation over Southwest 
China could be an effective way to increase the AGC density. 
This is, in part, likely to be the consequence of the transition from 
nonforests to forests as a result of tree planting. Meanwhile, a 
high AGC density increase of +0.803 [+0.721, +1.035] Mg C 
ha−1 year−1 was found in persistent forests, followed by dense 
forests (+0.650 [+0.583, +0.816] Mg C ha−1 year−1), forestry 
(+0.619 [+0.555, +0.791] Mg C ha−1 year−1), and nonforests 
(+0.438 [+0.391, +0.498] Mg C ha−1 year−1) (Fig. 7B).

Fig. 6. Yearly net AGC changes from 2013 over the nondrought and drought areas. The AGC values shown were subtracted from the 2013 baseline values. (A and B) Net AGC 
changes for the (A) nondrought and (B) drought areas, respectively. (C) The spatial pattern of the AGC changes in 2013-2014 over Southwest China, calculated by the difference 
between the 2014 AGC density map and the 2013 AGC density map. (D) The relationship between the 2013-2014 AGC changes and the 2013 SPEI over Southwest China. The 
shaded areas in (A) and (B) show the uncertainties of AGC changes estimated by 4 AGC benchmark maps.

Fig. 7. Temporal dynamics of AGC for each land use type during 2013-2021. (A) AGC 
changes and (B) AGC density changes for each land use type. (C) Areal ratios of land 
use types. The shaded areas in (A) and error bars in (B) show the uncertainties of 
AGC changes estimated by 4 AGC benchmark maps.
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AGC dynamics in karst and nonkarst areas
Over the study period, both karst and nonkarst areas showed 
AGC increases (Fig. 8A). The net AGC change in karst areas was 
+0.022 [+0.020, +0.027] Pg C year−1 (29.57% of total area), nearly 
half of the net AGC changes in nonkarst areas (+0.042 [+0.037, 
+0.050] Pg C year−1, 70.43% of total area) (Fig. 8A and C). 
Contrary to the results of AGC stock changes, karst areas have a 
higher AGC density increase (+0.772 [+0.692, +0.940] Mg C 
ha−1 year−1) relative to nonkarst areas (+0.537 [+0.481, +0.646] 
Mg C ha−1 year−1) (Fig. 8B), suggesting a high carbon sink capac-
ity of karst areas.

We further analyzed AGC changes for each land use type of 
karst and nonkarst areas (Fig. 9). Over the karst areas, the AGC 
stock increases were mainly observed in nonforests (+0.012 
[+0.010, +0.014] Pg C year−1) and persistent forests (+0.005 
[+0.005, +0.007] Pg C year−1) (Fig. 9A). In terms of AGC density 
changes, the dense forests showed the largest increase in AGC 
density of +1.191 [+1.068, +1.468] Mg C ha−1 year−1 (Fig. 9B), 
followed by persistent forests (+0.842 [+0.757, +1.106] Mg C 
ha−1 year−1), afforestation (+0.818 [+0.734, +1.047] Mg C ha−1 
year−1), forestry (+0.642 [+0.576, +0.816] Mg C ha−1 year−1), 
and nonforests (+0.545 [+0.488, +0.637] Mg C ha−1 year−1).

Over the nonkarst areas, the main AGC increases were also 
observed in nonforests (+0.020 [+0.018, +0.023] Pg C year−1) as 
well as persistent forests (+0.012 [+0.011, +0.015] Pg C year−1) 
(Fig. 9A). The largest AGC density increases were found in affor-
estation areas (+0.799 [+0.715, +0.926] Mg C ha−1 year−1) (Fig. 
9B), followed by persistent forests (+0.788 [+0.707, +1.006] Mg 
C ha−1 year−1), forestry (+0.607 [+0.545, +0.779] Mg C ha−1 
year−1), dense forests (+0.576 [+0.517, +0.728] Mg C ha−1 year−1), 
and nonforests (+0.393 [+0.351, +0.441] Mg C ha−1 year−1). 
Generally, the nonforest areas showed the largest increase in AGC 
stocks in both karst and nonkarst areas during 2013-2021.

Discussion

Continuous AGC increases over Southwest China
The dynamics of AGC derived from L-VOD showed a net sink 
(+0.064 [+0.057, +0.077] Pg C year−1) over Southwest China 
during 2013-2021, supporting previous findings on the increase 
in vegetation growth and AGC over Southwest China in recent 
decades [11,12,14]. The AGC increases are dominated by non-
forests owing to the large areas they occupy, as reported by the 
study of Tong et al. [12] highlighting the high carbon uptake in 
nonforested areas of southern China. According to the descrip-
tion of Tong map [12], nonforests have several shrubs and small 
trees, which have a greater carbon sink capacity than herbaceous 
vegetation (such as grasslands and croplands). Zhang et al. [62] 
reported that vegetation in nonforest areas only reached 42% of 
the carbon sink potential, suggesting that nonforests could still 
absorb a large amount of CO2 in the future. Besides, the persist
ent forests exhibited the large increase in AGC density over the 
study period, probably due to the presence of many forests with 
young and middle-aged trees, which still have a high carbon sink 
potential. Hence, maintaining the protection of persistent forests 
may continue to increase regional AGC stocks.

However, human disturbances associated with the reduction 
of vegetation cover [63] and climate change [64], such as extreme 
drought events, may lead to a large decrease in the AGC stocks. 
Our results showed that the large AGC losses during 2013-2014 
were mainly occurred in the drought-affected areas, especially 
in the Yunnan province. After the year of 2016, persistent AGC 

reduction was also found in Yunnan province, suggesting that 
the Yunnan Province has served as a carbon loss during the 
period 2016-2021. The persistent AGC losses in Yunnan could 
be attributed to the frequent drought events that threaten the 
vegetation carbon sink capacity and offset the positive effect of 
ecological projects on AGC stocks. These results are consistent 
with the simulations of multiple atmospheric inversion models 
[7,10] that indicated a net carbon loss caused by drought over 
the western Yunnan Province during the period 2010-2019. 
Interestingly, the AGC losses in Yunnan were opposite to the 
greening trends indicated by LAI and NDVI values, suggesting 
that the recovery of AGC stocks was much slower than that of 
greenness after the drought perturbation. Similar results were 
found in the Siberian forests [33], where AGC losses and green-
ing trends occurred simultaneously. Therefore, the protection 
of vegetation in Yunnan province should be enhanced by 
improving the effectiveness of ecological projects, to mitigate 
the negative impacts of drought on AGC stocks in this region.

Our estimated net AGC changes (+0.064 [+0.057, +0.077] 
Pg C year−1) during 2013-2021 are comparable to the values 
(+0.050 Pg C year−1) reported by Tong et al. [11] over the 2001-
2012 time period. In addition, the previous estimates by Tong 
et al. [12] demonstrated that the AGC density increase was 
+0.610 Mg C ha−1 year−1, which is close to our results (+0.655 
[+0.586, +0.793] Mg C ha−1 year−1). Our estimated net AGC 
changes are slightly lower than the 16-year (2002-2017) average 
AGC sink of +0.110 Pg C year−1 reported by Tong et al. [12]. 
This larger amount could be due to the difference in the study 
area extent as Tong et al. [12] considered 3 more provinces 
(Hubei, Hunan, and Guangdong provinces) compared to our 
study. Our estimated AGC stocks of 2.344 [+2.159, +2.474] Pg 
C in forest areas are close to the forest inventory estimates of 
2.426 Pg C [65], supporting the accuracy of our AGC estimates. 
The small difference between our results (estimated over 2013-
2021) and the forest inventory (estimated over 2009-2013) [65] 

Fig. 8. AGC dynamics in karst and nonkarst areas during 2013-2021. (A) AGC changes 
and (B) AGC density changes in karst and nonkarst areas. (C) Area ratios of karst and 
nonkarst areas. The shaded areas in (A) and error bars in (B) show the uncertainties 
of AGC changes estimated by 4 AGC benchmark maps.
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Fig. 9. Dynamics of AGC for each land use type in karst and nonkarst areas during 2013-2021. (A) AGC changes and (B) AGC density changes. (C) Areal ratios of land use types 
in karst and nonkarst areas. The error bars show the uncertainties of AGC changes estimated by 4 AGC benchmark maps.

Fig. 10. Spatial patterns of the RMSE between retrieved AGC values and benchmark AGC values at the pixel scale for the year 2015, calculated using the bootstrap cross-
validation method. (A) RMSESaatchi. (B) RMSEBaccini. (C) RMSESaatchi-WT. (D) RMSESu.
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could be attributed to the expansion of forest areas in recent 
decades [20,66].

Impacts of ecological projects on AGC changes
Our results showed that the afforestation areas had the largest 
carbon sink capacity, partly attributed to the expansion of forests 
in these areas. Over the past 2 decades, ecological projects in the 
form of afforestation have converted portions of bare ground 
and croplands to forests, and enforced protection intensity of 
existing forests over Southwest China [17,63,67]. Especially for 
the karst areas, the ecological conditions and forest cover rates 
in karst areas have improved through effective human manage-
ment and protection, thus enhancing the carbon sink capacity 
of karst areas. Furthermore, a field-based experiment in Sichuan 
province [68] showed that the ecological projects reduced soil 
erosion and increased biodiversity by increasing the area of 
mixed forests, thereby mitigating the negative impact of drought 
on AGC stocks. Thus, the successful implementation of ecologi-
cal projects and afforestation not only benefits local livelihoods 
but also increases AGC [15] and mitigates climate change [11].

Several studies [11,64,69] have confirmed that human man-
agement, particularly ecological restoration projects, is the pre-
dominant factor driving vegetation growth and AGC increase 
in Southwest China karst. In addition, Southwest China karst is 

mainly located in the East Asia monsoon climate zone, creating 
the basis for a stable and favorable climate (e.g., SlopeRZSM > 0 
in Fig. S3B) during the study period [69], thereby promoting the 
increase of AGC over the Southwest China karst. To date, land 
degradation and sloping croplands still exist in karst areas 
[21,63], indicating that there is still a considerable carbon sink 
potential in these regions [70]. Addressing these issues by affor-
estation and tree species adjustment could increase AGC stocks 
in karst areas [62].

The magnitude of AGC density increase in forestry was lower 
than that in other forest types, despite the forestry did not belong 
to the scope of ecological projects [12], suggesting that the sus-
tainable management of forests in forestry areas should be 
enhanced to increase the regional AGC. Forestry was mainly 
used as a means to alleviate poverty for local residents through 
timber production and fruit sales [12]. If certain forests in for-
estry areas no longer have the capacity to absorb CO2 (i.e., cease 
to serve as a carbon sink or even transition into a carbon loss), 
harvesting these trees may be the best option [71]. This is because 
harvesting could reduce AGC losses from forest decomposition 
and generate wood production. Moreover, forests of native tree 
species could provide better performance than tree plantations 
on a number of ecosystem services [72], such as carbon seques-
tration, water provisioning, and biodiversity benefits. Restoring 

Fig. 11. The relationship between uncertainties of AGC density estimates and elevation over Southwest China. The RMSE value is calculated by 4 AGC benchmark maps, using 
the bootstrap cross-validation method. (A) Saatchi. (B) Baccini. (C) Saatchi-WT. (D) Su.
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old plantations that are no longer intended for timber production 
to native forests can increase AGC stocks in forestry areas [73].

Yet, the implementation of ecological projects may generate 
some negative impacts on the hydrological cycle in karst areas 
[12]. For example, excessive afforestation may increase soil mois-
ture consumption and evapotranspiration, leading to water short-
ages at local and regional scales [74]. In particular, a considerable 
part of plantations in Southwest China karst are Eucalyptus, 
which can consume more water than other tree species [75,76]. 
Extensive ecological restoration projects may also impact the 
local food production in Southwest China karst due to the 
increase of abandoned cropland [77]. The trade-off between 
afforestation and food provisioning and security should be given 
attention in future ecological restoration projects.

Uncertainties and limitations
We used 4 AGC benchmark maps (i.e., Saatchi map, Baccini 
map, Saatchi-WT map, and Su map) to calibrate and estimate 
the L-VOD-based AGC density maps during the study period. 
For evaluating the uncertainties associated with AGC estimates 
calculated for each AGC benchmark map, a bootstrap cross-
validation method was used in 2015. Our results showed that 
the AGC stocks retrieved using the Baccini map have the high-
est accuracy, indicated by the lowest RMSE value of 0.153 Pg C 
(Table S1). At the pixel scale, the high RMSE values associated 

with 4 AGC benchmark maps were mainly distributed in the 
Hengduan Mountain and the Yunnan-Guizhou Plateau (Fig. 
10), which are characterized by the complex topography and 
high elevations (Fig. S7). The Baccini map also exhibited lower 
RMSE values in AGC density estimates relative to other maps 
(Fig. 10B), suggesting that the Baccini map has a good perfor-
mance for estimating AGC over Southwest China.

To evaluate the influence of topography on the AGC estima-
tions over Southwest China, the relationship between uncer-
tainties of AGC density estimates and 2 topographic factors 
(i.e., elevation and relief amplitude) was investigated (Figs. 
11 and 12). Across 4 AGC benchmark maps, the RMSE values 
increased with elevation (Fig. 11), except for the Baccini map 
where the highest RMSE values were found at elevations 
between 1,000 and 2,000 m. Similarly, the RMSE values showed 
an upward trend with increasing relief amplitude (Fig. 12), 
except for the Baccini map where the highest RMSE values were 
observed at relief amplitude between 30 and 40 m. Thus, these 
results suggest that the accuracy of AGC estimates was influ-
enced by the topographic features: higher accuracy of AGC 
estimates is found in areas with low elevations and flat terrain, 
whereas lower accuracy is found in areas with high elevations 
and rugged terrain.

Although a strict pre-processing method was used to filter 
the influence of RFI and topography, the remaining L-VOD 

Fig. 12. The relationship between uncertainties of AGC density estimates and relief amplitude over Southwest China. The RMSE value is calculated by 4 AGC benchmark maps, 
using the bootstrap cross-validation method. (A) Saatchi. (B) Baccini. (C) Saatchi-WT. (D) Su.
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pixels may still be affected by RFI to some extent, potentially 
affecting the accuracy of AGC estimation. The presence of RFI 
leads to the lack of L-VOD observation in a few pixels and limits 
the applicability of monitoring AGC dynamics in parts of 
Southwest China, such as the eastern part of Sichuan. Never
theless, the negative effect of RFI on L-VOD has diminished 
obviously in China after 2016 [42]. Moreover, the relatively 
coarse spatial resolution (0.25°) of the AGC maps based on 
L-VOD generally limits the ability to analyze accurately the AGC 
dynamics for each land use type separately [32,35], because a 
single pixel at a resolution of 0.25° would often consist of differ-
ent land use types. For example, nonforests and afforestation 
areas may be combined in a 0.25° grid cell, reducing our ability 
to accurately calculate the net AGC changes precisely at the level 
of classes of afforestation and nonforests.

Some uncertainties are also contained in the original Tong 
map, such as the uncertainty associated with the carbon density 
models. Additionally, the Tong map represents the land use 
change for the period 2002-2017, which may introduce certain 
uncertainties to our results.

Conclusions
In the present study, the AGC dynamics over Southwest China 
during 2013-2021 were analyzed using the L-VOD-derived 
AGC product. The AGC stocks over Southwest China exhibited 
a net sink of +0.064 [+0.057, +0.077] Pg C year−1, suggesting 
that Southwest China represents an AGC sink over the study 
period. Yet, regional drought resulted in a large AGC stock 
decrease of −0.113 [−0.101, −0.136] Pg C year−1 during 2013-
2014, making Southwest China act as an AGC loss in 2014, 
especially for the Yunnan province. For each land use type, the 
nonforests showed the largest increase in AGC stocks (+0.032 
[+0.028, +0.036] Pg C year−1), owing to their predominance 
over Southwest China. For the AGC density changes, afforesta-
tion areas showed the highest increase in AGC density (+0.808 
[+0.724, +0.985] Mg C ha−1 year−1), suggesting that afforesta-
tion has been an effective measure for carbon sequestration 
over Southwest China. Given that the magnitude of AGC den-
sity increase in forestry was lower than that in other forest 
types, the sustainable forest management in forestry could be 
enhanced, in order to increase regional AGC and mitigate cli-
mate change. Furthermore, our results showed a high carbon 
sink capacity of the karst areas, indicated by the higher increase 
in AGC density of +0.772 [+0.692, +0.940] Mg C ha−1 year−1 
in karst areas than nonkarst areas (+0.537 [+0.481, +0.646] 
Mg C ha−1 year−1).

Some limitations should be noted, such as the coarse spatial 
resolution of the AGC map, and the RFI affecting the L-VOD 
data over Southwest China. Additionally, the accuracy of AGC 
estimates is affected by topographic factors, such as elevation 
and relief amplitude. Further studies should use finer resolution 
L-VOD products to monitor AGC dynamics and utilize ancil-
lary data to explore the drivers of AGC over Southwest China.

Acknowledgments
Funding: This study is supported in part by research grants from 
the National Natural Science Foundation of China (Grant Nos. 
42322103, 42171339, and 41830648). 
Author contributions: L.F. and G.D. designed the experiment. 
G.D. and L.F. conducted the analysis and wrote the manuscript. 

J.-P.W., R.F., F.F., Y.Y., X.X., Y.Z., S.T., L.C., Y.L., M.M., H.F., L.Y., 
Z.X., X.L., W.S., and X.C. revised the manuscript and provided 
valuable suggestions. All authors contributed to the discussion 
and revised the submitted manuscript.
Competing interests: The authors declare that they have no 
competing interests.

Data Availability
The land use map can be available from Tong et al. [12]. The 
MODIS LAI, NDVI, CHIRPS precipitation, ERA5 soil moisture, 
and topographic data are publicly available from Google Earth 
Engine. The SPEI data can be downloaded at https://spei.csic.es/
spei_database/#map_name=spei12#map_position=1172. The 
karst map can be downloaded at https://www.karstdata.cn/. The 
L-VOD data can be available from the SMOS-IC website (https://
ib.remote-sensing.inrae.fr/). The Baccini and Su AGC maps are 
publicly available. The Saatchi AGC map is available upon 
request from Dr. S. Saatchi (sasan.s.saatchi@jpl.nasa.gov). The 
Saatchi-WT AGC map can be available from Chang et al. [56].

Supplementary Materials
Figs. S1 to S7 
Table S1 

References

	 1.	 Piao S, Fang J, Ciais P, Peylin P, Huang Y, Sitch S, Wang T. The 
carbon balance of terrestrial ecosystems in China. Nature. 
2009;458(7241):1009–1013.

	 2.	 Tang X, Zhao X, Bai Y, Tang Z, Wang W, Zhao Y, Wan H, 
Xie Z, Shi X, Wu B, et al. Carbon pools in China’s terrestrial 
ecosystems: New estimates based on an intensive field survey. 
Proc Natl Acad Sci U S A. 2018;115(16):4021–4026.

	 3.	 Wang J, Feng L, Palmer PI, Liu Y, Fang S, Bosch H, O’Dell CW,  
Tang X, Yang D, Liu L, et al. Large Chinese land carbon sink 
estimated from atmospheric carbon dioxide data. Nature. 
2020;586(7831):720–723.

	 4.	 Chang Z, Fan L, Wigneron J-P, Wang Y-P, Ciais P, Chave J, 
Fensholt R, Chen JM, Yuan W, Weimin J, et al. Estimating 
aboveground carbon dynamic of China using optical and 
microwave remote-sensing datasets from 2013 to 2019.  
J Remote Sens. 2023;3:0005.

	 5.	 Li XY, Li Y, Chen AP, Gao MD, Slette IJ, Piao SL. The impact 
of the 2009/2010 drought on vegetation growth and terrestrial 
carbon balance in Southwest China. Agric For Meteorol. 
2019;269–270:239–248.

	 6.	 Zhang L, Xiao JF, Li J, Wang K, Lei LP, Guo HD. The 2010 
spring drought reduced primary productivity in southwestern 
China. Environ Res Lett. 2012;7(4):045706.

	 7.	 He W, Jiang F, Mousong W, Weimin J, Scholze M, Chen JM, 
Byrne B, Liu J, Wang H, Wang J. China’s terrestrial carbon 
sink over 2010–2015 constrained by satellite observations of 
atmospheric Co2 and land surface variables. J Geophys Res 
Biogeosci. 2022;127(2):e2021JG006644.

	 8.	 Byrne B, Liu J, Lee M, Baker I, Bowman KW, Deutscher NM, 
Feist DG, Griffith DWT, Iraci LT, Kiel M, et al. Improved 
constraints on northern extratropical Co2 fluxes obtained by 
combining surface-based and space-based atmospheric Co2 
measurements. J Geophys Res-Atmos. 2020;125(15): 
e2019JD032029.

D
ow

nloaded from
 https://spj.science.org on M

arch 15, 2024

https://doi.org/10.34133/remotesensing.0113
https://spei.csic.es/spei_database/#map_name=spei12#map_position=1172
https://spei.csic.es/spei_database/#map_name=spei12#map_position=1172
https://www.karstdata.cn/
https://ib.remote-sensing.inrae.fr/
https://ib.remote-sensing.inrae.fr/
mailto:sasan.s.saatchi@jpl.nasa.gov


Fan et al. 2024 | https://doi.org/10.34133/remotesensing.0113 14

	 9.	 Liu JJ, Baskaran L, Bowman K, Schimel D, Bloom AA,  
Parazoo NC, Oda T, Carroll D, Menemenlis D, Joiner J, et al. 
Carbon monitoring system flux net biosphere exchange 2020 
(Cms-flux Nbe 2020). Earth Syst Sci Data. 2021;13(2):299–330.

	10.	 He W, Jiang F, Weimin J, Chevallier F, Baker DF, Wang J, 
Mousong W, Johnson MS, Philip S, Wang H, et al. Improved 
constraints on the recent terrestrial carbon sink over China 
by assimilating Oco-2 Xco2 retrievals. J Geophys Res Atmos. 
2023;128(14):e2022JD037773.

	11.	 Tong XW, Brandt M, Yue YM, Horion S, Wang KL,  
De Keersmaecker W, Tian F, Schurgers G, Xiao XM, Luo YQ, 
et al. Increased vegetation growth and carbon stock in China 
karst via ecological engineering. Nat Sustain. 2018;1(1):44–50.

	12.	 Tong X, Brandt M, Yue Y, Ciais P, Rudbeck Jepsen M,  
Penuelas J, Wigneron JP, Xiao X, Song XP, Horion S, 
et al. Forest management in Southern China generates 
short term extensive carbon sequestration. Nat Commun. 
2020;11(1):129.

	13.	 Zhou LG, Wang XD, Wang ZY, Zhang XM, Chen C, Liu HF. 
The challenge of soil loss control and vegetation restoration in 
the karst area of southwestern China. Int Soil Water Conserv 
Res. 2020;8(1):26–34.

	14.	 Brandt M, Yue YM, Wigneron JP, Tong XW, Tian F,  
Jepsen MR, Xiao XM, Verger A, Mialon A, Al-Yaari A,  
et al. Satellite-observed major greening and biomass increase 
in South China karst during recent decade. Earth’s Future. 
2018;6(7):1017–1028.

	15.	 Erb KH, Kastner T, Plutzar C, Bais ALS, Carvalhais N,  
Fetzel T, Gingrich S, Haberl H, Lauk C, Niedertscheider M,  
et al. Unexpectedly large impact of forest management 
and grazing on global vegetation biomass. Nature. 
2018;553(7686):73–76.

	16.	 Houghton RA, Hackler JL. Sources and sinks of carbon 
from land-use change in China. Glob Biogeochem Cycles. 
2003;17(2):1034.

	17.	 Delang CO, Zhen Y. China’s Grain for Green program. 
Switzerland: Springer International Publishing; 2015. Chapter 1, 
China’s reforestation and rural development programs; p. 19–35.

	18.	 Fang J, Yu G, Liu L, Hu S, Chapin FS 3rd. Climate change, 
human impacts, and carbon sequestration in China. Proc Natl 
Acad Sci U S A. 2018;115(16):4015–4020.

	19.	 Liu J, Li S, Ouyang Z, Tam C, Chen X. Ecological and 
socioeconomic effects of China’s policies for ecosystem 
services. Proc Natl Acad Sci U S A. 2008;105(28):9477–9482.

	20.	 Lu F, Hu H, Sun W, Zhu J, Liu G, Zhou W, Zhang Q, Shi P, 
Liu X, Wu X, et al. Effects of national ecological restoration 
projects on carbon sequestration in China from 2001 to 2010. 
Proc Natl Acad Sci U S A. 2018;115(16):4039–4044.

	21.	 Yue YM, Qi XK, Wang KL, Liao CJ, Tong XW, Brandt M, Liu B. 
Large scale rocky desertification reversal in South China karst. 
Prog Phys Geogr-Earth Environ. 2022;46(5):661–675.

	22.	 Huang W, Ho HC, Peng YY, Li L. Qualitative risk 
assessment of soil erosion for karst landforms in Chahe 
town, Southwest China: A hazard index approach. Catena. 
2016;144:184–193.

	23.	 Barrachina M, Cristobal J, Tulla AF. Estimating above-ground 
biomass on mountain meadows and pastures through remote 
sensing. Int J Appl Earth Obs Geoinf. 2015;38:184–192.

	24.	 He B, Li X, Quan X, Qiu S. Estimating the aboveground 
dry biomass of grass by assimilation of retrieved Lai into 
a crop growth model. IEEE J Sel Top Appl Earth Obs. 
2014;8(2):550–561.

	25.	 Zheng G, Chen JM, Tian QJ, Ju WM, Xia XQ. Combining 
remote sensing imagery and forest age inventory for biomass 
mapping. J Environ Manag. 2007;85(3):616–623.

	26.	 Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR. 
Increased plant growth in the northern high latitudes from 
1981 to 1991. Nature. 1997;386(6626):698–702.

	27.	 Zeng YL, Hao DL, Huete A, Dechant B, Berry J, Chen JM, 
Joiner J, Frankenberg C, Bond-Lamberty B, Ryu Y, et al. Optical 
vegetation indices for monitoring terrestrial ecosystems 
globally. Nat Rev Earth Environ. 2022;3(7):477–493.

	28.	 Zheng XB, Kang WM, Zhao TL, Luo YX, Duan CC, Chen J. 
Long-term trends in sunshine duration over Yunnan-Guizhou 
plateau in Southwest China for 1961-2005. Geophys Res Lett. 
2008;35(15):L15707.

	29.	 Jin HA, Li AN, Bian JH, Nan X, Zhao W, Zhang ZJ, Yin GF.  
Intercomparison and validation of MODIS and GLASS 
leaf area index (LAI) products over mountain areas: A case 
study in southwestern China. Int J Appl Earth Obs Geoinf. 
2017;55:52–67.

	30.	 Myers-Smith IH, Kerby JT, Phoenix GK, Bjerke JW,  
Epstein HE, Assmann JJ, John C, Andreu-Hayles L,  
Angers-Blondin S, Beck PSA, et al. Complexity revealed in the 
greening of the Arctic. Nat Clim Chang. 2020;10(2):106–117.

	31.	 Tian F, Brandt M, Liu YY, Rasmussen K, Fensholt R. Mapping 
gains and losses in woody vegetation across global tropical 
drylands. Glob Chang Biol. 2017;23(4):1748–1760.

	32.	 Brandt M, Wigneron JP, Chave J, Tagesson T, Penuelas J,  
Ciais P, Rasmussen K, Tian F, Mbow C, Al-Yaari A, et al.  
Satellite passive microwaves reveal recent climate-
induced carbon losses in African drylands. Nat Ecol Evol. 
2018;2(5):827–835.

	33.	 Fan L, Wigneron JP, Ciais P, Chave J, Brandt M, Sitch S, Yue C, 
Bastos A, Li X, Qin YW, et al. Siberian carbon sink reduced by 
forest disturbances. Nat Geosci. 2022;16:56–62.

	34.	 Qin YW, Xiao XM, Wigneron JP, Ciais P, Brandt M, Fan L, 
Li XJ, Crowell S, Wu XC, Doughty R, et al. Carbon loss from 
forest degradation exceeds that from deforestation in the 
Brazilian Amazon. Nat Clim Chang. 2021;11(5):442–448.

	35.	 Fan L, Wigneron JP, Ciais P, Chave J, Brandt M, Fensholt R,  
Saatchi SS, Bastos A, Al-Yaari A, Hufkens K, et al. Satellite-
observed pantropical carbon dynamics. Nat Plants. 
2019;5(9):944–951.

	36.	 Wigneron JP, Fan L, Ciais P, Bastos A, Brandt M, Chave J, 
Saatchi S, Baccini A, Fensholt R. Tropical forests did not 
recover from the strong 2015-2016 El Nino event. Sci Adv. 
2020;6(6):eaay4603.

	37.	 Liu YY, van Dijk AIJM, de Jeu RAM, Canadell JG, McCabe MF,  
Evans JP, Wang G. recent reversal in loss of global terrestrial 
biomass. Nat Clim Chang. 2015;5(5):470–474.

	38.	 Konings AG, Piles M, Das N, Entekhabi D. L-band vegetation 
optical depth and effective scattering albedo estimation from 
Smap. Remote Sens Environ. 2017;198:460–470.

	39.	 Ma B, Jing J, Liu B, Xu Y, Dou S, He H. Quantitative 
assessment of the relative contributions of climate change and 
human activities to NPP changes in the southwest karst area of 
China. Environ Sci Pollut Res Int. 2022;29(53):80597–80611.

	40.	 Dong G, Fan L, Fensholt R, Frappart F, Ciais P, Xiao X, Sitch S, 
Xing Z, Ling Y, Zhou Z, et al. Asymmetric response of primary 
productivity to precipitation anomalies in Southwest China. 
Agric For Meteorol. 2023;331:109350.

	41.	 Zhang CH, Qi XK, Wang KL, Zhang MY, Yue YM. The 
application of geospatial techniques in monitoring karst 

D
ow

nloaded from
 https://spj.science.org on M

arch 15, 2024

https://doi.org/10.34133/remotesensing.0113


Fan et al. 2024 | https://doi.org/10.34133/remotesensing.0113 15

vegetation recovery in Southwest China: A review. Prog Phys 
Geogr-Earth Environ. 2017;41(4):450–477.

	42.	 Wigneron JP, Li XJ, Frappart F, Fan L, Al-Yaari A,  
De Lannoy G, Liu XZ, Wang MJ, Le Masson E, Moisy C. 
SMOS-IC data record of soil moisture and L-VOD: Historical 
development, applications and perspectives. Remote Sens 
Environ. 2021;254:112238.

	43.	 Oliva R, Daganzo E, Kerr YH, Mecklenburg S, Nieto S, 
Richaume P, Gruhier C. SMOS radio frequency interference 
scenario: Status and actions taken to improve the RFI 
environment in the 1400–1427-Mhz passive band. IEEE Trans 
Geosci Remote Sens. 2012;50(5):1427–1439.

	44.	 Myneni R, Knyazikhin Y, Park T. MODIS/Terra leaf area 
index/Fpar 8-day L4 global 500m SIN grid V061. Nasa Eosdis 
Land Processes Daac. 2021. [accessed 1 Dec 2022]. https://doi.
org/10.5067/Modis/Mod15a2h.061

	45.	 Didan K, Modis T. Vegetation indices 16-day L3 global 1km SIN 
grid V061. Nasa Eosdis Land Processes Daac. 2021. [accessed 1 
Dec 2022]. https://doi.org/10.5067/Modis/Mod13a2.061

	46.	 Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, 
Shukla S, Husak G, Rowland J, Harrison L, Hoell A, et al. The 
climate hazards infrared precipitation with stations--A new 
environmental record for monitoring extremes. Sci Data. 
2015;2:150066.

	47.	 Hersbach H, Bell B, Berrisford P, Biavati G, Horányi A, 
Muñoz Sabater J, Nicolas J, Peubey C, Radu R, Rozum I, et al. 
Era5 monthly averaged data on single levels from 1959 to 
present. Copernicus Climate Change Service (C3s) Climate 
Data Store (Cds). 2019. [accessed 2 Dec 2022] https://doi.
org/10.24381/cds.f17050d7

	48.	 Song L, Li Y, Ren Y, Xiuchen W, Guo B, Tang X, Shi W,  
Ma M, Han X, Zhao L. Divergent vegetation responses to 
extreme spring and summer droughts in southwestern China. 
Agric For Meteorol. 2019;279:107703.

	49.	 Xing ZP, Fan L, Zhao L, De Lannoy G, Frappart F, Peng J,  
Li XJ, Zeng JY, Al-Yaari A, Yang K, et al. A first assessment of 
satellite and reanalysis estimates of surface and root-zone soil 
moisture over the permafrost region of Qinghai-Tibet plateau. 
Remote Sens Environ. 2021;265:112666.

	50.	 Vicente-Serrano SM, Begueria S, Lopez-Moreno JI. A 
multiscalar drought index sensitive to global warming: The 
standardized precipitation evapotranspiration index. J Clim. 
2010;23(7):1696–1718.

	51.	 Liu C, Yang C, Yang Q, Wang J. Spatiotemporal drought 
analysis by the standardized precipitation index (SPI) and 
standardized precipitation evapotranspiration index (SPEI) in 
Sichuan Province, China. Sci Rep. 2021;11(1):1280.

	52.	 Cui T, Fan L, Ciais P, Fensholt R, Frappart F, Sitch S, 
Chave J, Chang Z, Li X. First assessment of optical and 
microwave remotely sensed vegetation proxies in monitoring 
aboveground carbon in tropical Asia. Remote Sens Environ. 
2023;293:113619.

	53.	 Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, 
Kobrick M, Paller M, Rodriguez E, Roth L, et al. The shuttle 
radar topography Mission. Rev Geophys. 2007;45(2):RG2004.

	54.	 Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ET,  
Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, et al.  
Benchmark map of forest carbon stocks in tropical 
regions across three continents. Proc Natl Acad Sci U S A. 
2011;108(24):9899–9904.

	55.	 Baccini A, Goetz SJ, Walker WS, Laporte NT, Sun M,  
Sulla-Menashe D, Hackler J, Beck PSA, Dubayah R,  

Friedl MA, et al. Estimated carbon dioxide emissions from 
tropical deforestation improved by carbon-density maps. Nat 
Clim Chang. 2012;2(3):182–185.

	56.	 Chang ZB, Hobeichi S, Wang YP, Tang XL, Abramowitz G, 
Chen Y, Cao NN, Yu MX, Huang HB, Zhou GY, et al. New 
forest aboveground biomass maps of China integrating 
multiple datasets. Remote Sens. 2021;13(15):2892.

	57.	 Su YJ, Guo QH, Xue BL, Hu TY, Alvarez O, Tao SL, Fang JY. 
Spatial distribution of forest aboveground biomass in China: 
Estimation through combination of spaceborne lidar, optical 
imagery, and forest inventory data. Remote Sens Environ. 
2016;173:187–199.

	58.	 Santoro M, Cartus O, Carvalhais N, Rozendaal DMA,  
Avitabile V, Araza A, de Bruin S, Herold M, Quegan S, 
Rodriguez-Veiga P, et al. The global forest above-ground 
biomass pool for 2010 estimated from high-resolution satellite 
observations. Earth Syst Sci Data. 2021;13 (8):3927 –3950.

	59.	 Huang HB, Liu CX, Wang XY, Zhou XL, Gong P. Integration of 
multi-resource remotely sensed data and allometric models for 
Forest aboveground biomass estimation in China. Remote Sens 
Environ. 2019;221:225–234.

	60.	 Liu JY, Kuang WH, Zhang ZX, Xu XL, Qin YW, Ning J, 
Zhou WC, Zhang SW, Li RD, Yan CZ, et al. Spatiotemporal 
characteristics, patterns, and causes of land-use changes in 
China since the late 1980s. J Geogr Sci. 2014;24(2):195–210.

	61.	 Chen C, Park T, Wang X, Piao S, Xu B, Chaturvedi RK,  
Fuchs R, Brovkin V, Ciais P, Fensholt R, et al. China and India 
lead in greening of the world through land-use management. 
Nat Sust. 2019;2(2):122–129.

	62.	 Zhang XM, Brandt M, Yue YM, Tong XW, Wang KL, Fensholt R. 
The carbon sink potential of southern China after two decades 
of afforestation. Earth Future. 2022;10(12):e2022EF002674.

	63.	 Yue YM, Liao CJ, Tong XW, Wu ZB, Fensholt R,  
Prishchepov A, Jepsen MR, Wang KL, Brandt M. Large scale 
reforestation of farmlands on Sloping Hills in South China 
karst. Landsc Ecol. 2020;35(6):1445–1458.

	64.	 Wu LH, Wang SJ, Bai XY, Tian YC, Luo GJ, Wang JF, Li Q,  
Chen F, Deng YH, Yang YJ, et al. Climate change weakens the 
positive effect of human activities on karst vegetation productivity 
restoration in southern China. Ecol Indic. 2020;115:106392.

	65.	 Zhao MM, Yang JL, Zhao N, Liu Y, Wang YF, Wilson JP, 
Yue TX. Estimation of China’s forest stand biomass carbon 
sequestration based on the continuous biomass expansion 
factor model and seven forest inventories from 1977 to 2013. 
For Ecol Manag. 448(2019):528–534.

	66.	 Chen X, Chen TX, Yan QY, Cai JT, Guo RJ, Gao MN,  
Wei XQ, Zhou SJ, Li CF, Xie Y. The ongoing greening in 
Southwest China despite severe droughts and drying trends. 
Remote Sens. 2021;13(17):3374.

	67.	 Zhai D-L, Jian-Chu X, Dai Z-C, Cannon CH, Grumbine RE. 
Increasing tree cover while losing diverse natural forests in 
tropical Hainan, China. Reg Environ Chang. 2013;14(2):611–621.

	68.	 Hua F, Wang X, Zheng X, Fisher B, Wang L, Zhu J, Tang Y,  
Yu DW, Wilcove DS. Opportunities for biodiversity gains 
under the world’s largest reforestation programme. Nat 
Commun. 2016;7:12717.

	69.	 Zhang X, Yue Y, Tong X, Wang K, Qi X, Deng C, Brandt M. 
Eco-engineering controls vegetation trends in Southwest 
China karst. Sci Total Environ. 2021;770:145160.

	70.	 Jiang X, Ziegler AD, Liang S, Wang D, Zeng Z. Forest 
restoration potential in China: Implications for carbon capture. 
J Remote Sens. 2022;2022:0006.

D
ow

nloaded from
 https://spj.science.org on M

arch 15, 2024

https://doi.org/10.34133/remotesensing.0113
https://doi.org/10.5067/Modis/Mod15a2h.061
https://doi.org/10.5067/Modis/Mod15a2h.061
https://doi.org/10.5067/Modis/Mod13a2.061
https://doi.org/10.24381/cds.f17050d7
https://doi.org/10.24381/cds.f17050d7


Fan et al. 2024 | https://doi.org/10.34133/remotesensing.0113 16

	71.	 Bellassen V, Luyssaert S. Carbon sequestration: Managing 
forests in uncertain times. Nature. 2014;506(7487):153–155.

	72.	 Hua F, Bruijnzeel LA, Meli P, Martin PA, Zhang J, Nakagawa S,  
Miao X, Wang W, McEvoy C, Pena-Arancibia  JL, et al. The 
biodiversity and ecosystem service contributions and trade-offs of 
forest restoration approaches. Science. 2022;376(6595):839–844.

	73.	 Brown HCA, Berninger FA, Larjavaara M, Appiah M. 
Above-ground carbon stocks and timber value of old timber 
plantations, secondary and primary forests in southern Ghana. 
For Ecol Manag. 2020;472:118236.

	74.	 Skerlep M, Steiner E, Axelsson AL, Kritzberg ES. Afforestation 
driving long-term surface water Browning. Glob Chang Biol. 
2020;26(3):1390–1399.

	75.	 Feng XM, Fu BJ, Piao S, Wang SH, Ciais P, Zeng ZZ, Lu YH, 
Zeng Y, Li Y, Jiang XH, et al. Revegetation in China’s loess 
plateau is approaching sustainable water resource limits. Nat 
Clim Chang. 2016;6(11):1019–1022.

	76.	 Jackson RB, Jobbagy EG, Avissar R, Roy SB, Barrett DJ,  
Cook CW, Farley KA, le Maitre DC, McCarl BA, Murray BC. 
Trading water for carbon with biological carbon sequestration. 
Science. 2005;310 (5756):1944 –1947.

	77.	 Qiu S, Peng J, Quine TA, Green SM, Liu H, Liu Y, Hartley IP,  
Meersmans J. Unraveling trade-offs among reforestation, 
urbanization, and food security in the South China karst 
region: How can a hinterland province achieve SDGs? Earth 
Future. 2022;10(12):e2022EF002867.

D
ow

nloaded from
 https://spj.science.org on M

arch 15, 2024

https://doi.org/10.34133/remotesensing.0113

	Satellite-Observed Increase in Aboveground Carbon over Southwest China during 2013-2021
	Introduction
	Materials and Methods
	Study area
	Datasets
	Land use map and karst map
	L-VOD
	MODIS LAI
	MODIS normalized difference vegetation index (NDVI)
	Meteorological data
	Topographic data
	AGC benchmark map

	Methods
	AGC changes estimated using L-VOD
	Trend analysis


	Results
	Spatial pattern of AGC over Southwest China
	AGC changes in space and time
	AGC dynamics for each land use type
	AGC dynamics in karst and nonkarst areas

	Discussion
	Continuous AGC increases over Southwest China
	Impacts of ecological projects on AGC changes
	Uncertainties and limitations

	Conclusions
	Acknowledgments
	Supplementary Materials
	References


