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China has experienced a rapid urbanization during recent decades, strongly affecting vegetation dynamics 
in areas undergoing a transformation from rural to urban areas. At the same time, national greening 
policies have been implemented to promote urban sustainability and urban greening in China in recent 
years. However, it is unclear how urban greening compensates vegetation losses from urban expansion 
at national scale. Here, we use Moderate Resolution Imaging Spectroradiometer and Landsat satellite 
normalized difference vegetation index time series to study 974 major cities (urban area > 20 km2) in China 
during 2000 to 2020 and develop an urban vegetation change typology including 5 types of vegetation 
dynamics (greening, browning, stable, reversal, and recovery). We document a rapid urban expansion 
associated with a browning in urban areas before 2011, followed by widespread regreening of the urban 
areas after 2011. This recovery in greenness was found in 63.45% of the cities, while 14.68% showed a 
continuous browning, and 8.13% a continuous greening. Our findings reveal to what extent, where, and 
when vegetation browning from urban expansion is balanced by urban greening in urban core areas, which 
may indicate that initial vegetation losses are offset by urban greening initiatives.

Introduction

More than two-thirds of the human population is projected to 
reside in urban areas by 2030 [1]. This requires an expansion of 
urban areas with considerable losses in vegetation cover caused 
by the conversion of natural and agricultural land into impervi-
ous surfaces [2,3]. However, urban land does not necessarily 
exclude vegetation, and urban greening is a well-known global 
phenomenon [2,4]. Vegetation in urban areas is typically planted 
and managed and provides several ecosystem services ranging 
from the mitigation of air pollution [5], traffic noise [6], the 
reduction of air temperature [7], to the improvement of people’s 
physical and mental health [8,9]. The ecological services available 
from urban vegetation naturally depend on the implementation 
year of a given urban greening initiative. Consequently, since 
urban areas and associated green infrastructure do not grow 
homogeneously, there is often a heterogeneous and nonlinear 
pattern of vegetation dynamic across and within urban areas [10].

Previous studies have documented change of urban vegeta-
tion using satellite data [11–13]; however, in many studies, an 
assumption is made that vegetation changes are linear over time 
and distributed homogeneously within city areas, which may 
not always reflect reality [8,9]. Indeed, there are large spatial 
differences and even diverging vegetation trends within 
cities [14], and varying policies and management can lead to 

nonlinear temporal changes. Only a few studies have recently 
studied nonlinear urban vegetation changes using satellite time 
series, revealing different types and periods of changes for single 
cities [10,14]. Interestingly, Zhang et al. [15] found that aboveg-
round biomass in urban areas in China increased over the 
recent decades, which compensates for initial aboveground 
biomass caused by the expansion of urban areas in earlier years, 
a phenomenon referred to as “green recovery”.

If using linear trend analysis, most large cities in China show 
an overall negative trend in vegetation cover during 2000 to 
2018, reflecting the conversion of green landscapes to built-up 
areas [13]. However, this approach is likely not to capture ade-
quately the attempt from the Chinese government to improve 
the urban environment. This has been done by implementing 
a series of regulations and policies, such as the “Urban Greening 
Policies” starting 1992, which includes tree plantations in public 
and residential areas [16,17]. These projects are observed as 
green recovery in satellite time series [2,14]. One of the current 
strategies in China is named “Ecological Civilization” and aims 
at balancing economic development and environmental protec-
tion [18,19]. To evaluate the effect of such programs, detecting 
and quantifying nonlinear vegetation dynamics in urban areas 
is essential. Previous studies often either select example cities 
[14] or merge all urban areas at national scale [15] and also do 
not consider heterogeneity of trends within individual cities.
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Here, we use normalized difference vegetation index (NDVI) 
time series to study nonlinear vegetation changes for all major 
cities (urban areas >20 km2) in China during 2000 to 2020. We 
classify changes in NDVI into 5 change types: greening, brown-
ing, recovery (change from browning to greening), reversal 
(greening to browning), and stable. Trends and change types 
are studied at city level using coarse and robust Moderate 
Resolution Imaging Spectroradiometer (MODIS) time series 
and additionally with moderate-resolution Landsat time series 
revealing heterogeneous patterns within cities.

Datasets

Satellite image time series for urban vegetation 
monitoring
MODIS vegetation index time series
We used time series combining the MODIS Collection 6 
Vegetation Index (VI) product from MOD13Q1 C6 (Terra, 
https://lpdaac.usgs.gov/products/mod13q1v006/) and MYD13Q1 
C6 (Aqua, https://lpdaac.usgs.gov/products/myd13q1v061/) to 
study dynamics in vegetation greenness for the period 2001 
to 2020. Both MODIS products are provided as 16-d image 
composites at a spatial resolution of 250 m and are computed 
from atmospherically corrected bidirectional near-daily surface 
reflectance masked for water, clouds, heavy aerosols, and cloud 
shadows. Compared to vegetation indexes such as enhanced veg-
etation index, NDVI values is more responsive to changes in 
sparse vegetation cover, thereby producing a wider range in 
data values (Fig. S1). This makes NDVI a good choice for 
monitoring vegetation dynamics in sparsely vegetated regions, 
such as urban areas [13,20,21]. We filtered observation flagged 
as snow, water, and cloud cover using the embedded quality data 
(SummaryQA ≤ 1) available in Google Earth Engine. Pixels 
with less than 10 good-quality observations per year (8.21%) 
were masked (Fig. 1A and B). Maximum monthly NDVI was 
calculated, and no-data pixels were filled with mean values from 
a 4-months moving window (previous 2 mo and following 
2 mo). Annual averages values were then calculated from the 
monthly NDVI time series for the period 2001 to 2020. The rela-
tively coarse spatial resolution does not reveal details, but the 
time series based on MODIS 8-d composite observations pro-
vides robust and reliable results at the level of individual cities.

Landsat time series
Landsat time series were used to study changes in vegetation 
greenness with a higher level of spatial details within urban 
areas at a 30-m × 30-m resolution. We used the Landsat Surface 
Reflectance Climate Data Record which includes Landsat 5, 7 
and 8, all corrected for atmospheric interference and geometric 
distortions [22] (Fig. 1C and D). We masked pixels flagged as 
cloudy, cloud shadow, snow, and water and used annual medoid 
composites of NDVI [23]. A total of 4.69% of the pixels in the 
urban areas have less than 10 good-quality observations per 
year and were not used for further analyses (Fig. 1C and E).

Ancillary datasets for the definition  
of urban boundaries
GlobeLand30 land cover dataset
GlobeLand30 (GL30) land cover maps are produced by the 
National Geomatics of China at 30-m spatial resolution using 
Landsat satellite images every 5 years during 2000 to 2020, 

with an overall accuracy of 85.5% [24,25]. Land cover is mapped 
for 10 classes including water, wetland, artificial surfaces, 
cultivated land, forest, shrub land, grassland, bare land, tun-
dra, and permanent snow/ice [24]. We used the class of arti-
ficial surfaces to define the urban areas in 2020 and 2000.

Nighttime light data
Urban areas from the GL30 classification are not always spa-
tially adjoined and can form isolated clusters of built-up areas 
belonging to the same city (Fig. S2). To merge several clus-
tered belonging to the same city, we used the Suomi National 
Polar-orbiting Partnership (NPP) Satellite Visible Infrared 
Imaging Radiometer Suite (VIIRS) nighttime light data at a 
spatial resolution of 500 m, which have been widely used to 
estimate human activities and to extract urban areas [26]. We 
calculated the yearly mean nighttime lights using cloud-free 
pixels (cloud-free coverages = 0) from monthly NPP-VIIRS 
data for 2020 [27].

Methodology

To study urban vegetation trends and to detect the change 
types, we developed a framework consisting of 3 main steps: 
(a) the definition of urban boundaries; (b) the estimation of 
monotonic trends in urban greenness; and (c) the segmenta-
tion of change types related to urban vegetation at the level of 
individual cities using MODIS NDVI time series and within 
urban areas at the pixel level using Landsat time series. A flow-
chart summarizing the workflow is provided in Fig. S3.

Definition of urban boundaries
First, the GL30 land cover map was used to extract information 
about built-up areas using the class of artificial surfaces for both 
2000 and 2020. We then filled nonurban pixels within the urban 
boundaries, which are typically urban green spaces or lakes. To 
limit the effect of changes in greenness to built-up areas, we 
masked all water surfaces and croplands located within urban 
areas based on the land cover map from 2000. We then aggre-
gated built-up areas to 250 m to match the resolution of the 
MODIS NDVI dataset.

Next, we used the average monthly nighttime lights data 
for 2020 to merge built-up clusters into urban megaregions 
(500-m spatial resolution) with an empirical threshold (DN 
≥ 12) [28] (Fig. S2). Erroneously merged cities were separated 
using district-level administrative boundary information pro-
vided by the National Geomatics Center of China [29]. In 
these urban areas, built-up areas larger than 20 km2 in 2020 
are here considered as major urban areas or cities, resulting 
in 974 cities in total. Built-up areas being present both in 2000 
and 2020 are considered as urban core, while urban areas not 
present in 2000 but in 2020 were defined as urban expansion 
areas.

Urban vegetation change monitoring
As a benchmark analysis, we averaged MODIS NDVI for each 
year from 2001 to 2020 and over all cities (974) to understand 
the change in urban greenness at national scale. Then, to under-
stand the diversity of trends observed between cities, a linear 
regression was used to study monotonic greenness trends 
over 2001 to 2020 using annually averaged MODIS NDVI for 
each city.
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Change types of urban vegetation greenness
The transformation of urban land uses is multidirectional, which 
can change between urban and other land cover/use types, for 
example agriculture, shrubland, or forest [10]. In this study, we 
focus on vegetation greenness changes within urban cores (both 
urban in 2000 and 2020) and newly urbanized areas (not urban 
in 2000 but in 2020). Using a time series segmentation approach 
(see detailed method below) focusing on abrupt changes, we 
classified mainly 5 change types of NDVI time series as described 
in the following sections (Fig. 2).

MODIS-based analysis at the level of individual cities
A piecewise regression [30] was used to identify breakpoints 
of vegetation changes observed in MODIS NDVI time series 

for each city. We chose to focus on one breakpoint only in order 
to identify only the most substantial changes in urban vegeta-
tion over the past 20 years. A major breakpoint in the NDVI 
time series indicates that vegetation greenness has changed 
from browning to greening or vice versa (reversal). The vegeta-
tion greenness change is classified as Greening or Browning if 
no breakpoint is detected and the associated significant trend 
(P ≤ 0.05) in NDVI during 2000 to 2020 is either positive or 
negative throughout the entire period. We use the class Stable 
if no breakpoint is detected and no significant (P > 0.05) NDVI 
trends are detected during 2000 to 2020. The class is named 
Reversal if vegetation dynamics change after breakpoints from 
greening to browning, and finally, Recovery implies that vegeta-
tion greenness greening after an initial browning.

Fig. 1. Availability of MODIS and Landsat images. (A) The spatial distribution of the mean number of annual good-quality observations (SummaryQA ≤ 1) for each 250-m × 
250-m pixel in China during 2001 to 2020. (B) Histogram of averaged number of observations of available good-quality MODIS pixels (n =1,629,836) for the study area. 
(C) Spatial distribution of the average number of good-quality observations for each Landsat pixel (30 m × 30 m) in China during 2000 to 2020. (D) The number of images by 
sensors Landsat 5/7/8 (L5/L7/L8) per single year. (E) Histogram of averaged good-quality observations of Landsat pixels (n = 130,940,116) for the study area.
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Landsat-based analysis within urban areas
The Landsat-based Detection of Trends in Disturbance and 
Recovery algorithm (LandTrendr, https://emapr.github.io/
LT-GEE/) implemented in the Google Earth Engine platform 
[31] was applied to detect vegetation dynamics and identify 
vegetation greenness change types within urban regions for 
each pixel. LandTrendr is a temporal segmentation method 
[23], which means that it identifies disturbances in time 
series of vegetation indices and classifies the periods between 
disturbances as temporal segments. It is used for dynamic 
mapping and monitoring of land vegetation disturbances and 
recovery at a spatial resolution of 30 m. The annual medoid 
NDVI values were used as inputs for LandTrendr [23]. We 
set the significance threshold for the model fitting used to 

smooth the time series to 0.05 and the maximum number of 
segments to 6 for the 20-year time period. Other parameters 
were unchanged [23]. The outputs are the number of segments 
and their duration, as well as the magnitude of the distur-
bances in NDVI units.

To find expressive thresholds defining the classes “increase” 
and “decrease” of a segment, we studied NDVI changes over 
10 sites that have stable urban condition, such as airport, central 
train station, and historical buildings (Fig. S4). We found that 
NDVI fluctuations in these supposedly stable areas around 
−0.01 and 0.01, leading to a set of thresholds as follows: increase 
(magnitude ≥ 0.01), stable (−0.01 < magnitude < 0.01), and 
decrease (magnitude ≤ −0.01). Pixels that had more than 4 
segments, suggesting multiple disturbances, were not included 

Fig. 2. Conceptual examples for urban change types using annual NDVI time series. (A) Greening. (B) Browning. (C) Stable. (d) Reversal. (E) Recovery.

Fig. 3. NDVI change in urban areas in China during 2000 to 2020, including urban core and urbanization areas. (A) Mean NDVI trend at the level of individual cities during 2001 
to 2020 (n = 965). (B) NDVI trends for urban areas stratified into different geographical zones. (C) NDVI trends for urban areas grouped by their size.

D
ow

nloaded from
 https://spj.science.org on M

arch 15, 2024

https://doi.org/10.34133/remotesensing.0112
https://emapr.github.io/LT-GEE/
https://emapr.github.io/LT-GEE/


Zhang et al. 2024 | https://doi.org/10.34133/remotesensing.0112 5

in this study (Fig. S5). We classified each pixel into 1 of the 5 
vegetation change types (Greening, Browning, Stable, Reversal, 
and Recovery) based on the following rules: Pixels characterized 
by a disturbance in the form of an increase with stable condi-
tions before/after were classified as Greening, whereas pixels 
showing a disturbance of the type decrease with otherwise 
stable segments are classified as Browning; pixels were clas-
sified as Stable if all segments were stable; pixels were classified 
as Reversal if the last segment showed a decrease or stable 
conditions following one or several segments with an increase; 
pixels were classified as Recovery if the last segment showed 
an increase or is stable following a segment with a decrease. 
More information is found in Table S1.

Results

Urban expansion and vegetation dynamics in China
The urban areas of the 974 studied cities covered an area of 
72,785 km2 in 2020, which is twice as much as compared to the 
cover in 2000 (36,400 km2, Fig. S4). Urban expansion areas are 
primarily found in agglomeration areas (interconnected cities), 
such as Beijing–Tianjin, Yangtze River Delta, and the Pearl 
River Delta (Fig. S4). A total of 81.38% of the urban expansion 
areas were previously cropland, 10.11% were grassland, and 
6.01% forest in 2000 (Fig. S6).

Urban greenness shows an overall positive trend during 2001 
to 2020 for the majority of the cities in Northern China. These 
urban expansion areas had generally low greenness values in 
2001 (Fig. S7), likely because the new built-up areas expanded 
into grasslands and croplands. Contrary, cities in Southern China 
usually expanded into former forests areas, resulting in negative 
greenness trends in urban areas (Fig. 3A and B). We subsequently 
classified cities by the size of their urban areas in 2020 and 
found that positive trends are observed mostly in large cities 
(> 500 km2), whereas smaller cities (< 100 km2) show a negative 
trend in greenness (Fig. 3A and C).

Overall, the NDVI trend for urban areas shows a slight 
browning during 2001 to 2020 (blue line in Fig. 4A). This negative 
trend is mostly found in the urban expansion areas (yellow line 
in Fig. 4A), whereas urban core areas show an increasing 
NDVI trend over this period. Looking closer at the time series, 
decreasing NDVI trends in urban areas were mostly found before 
2010, and after 2011, a greening was found both in urban core 
and urban expansion areas, almost balancing the browning from 
urban expansion areas during the first period at national scale 
(Fig. 4A). These nonlinear NDVI dynamics for urban areas are 
studied in more details in the following sections.

Vegetation changes at city level
We used MODIS NDVI time series to study urban greenness 
changes at the level of individual cities (Fig. 4B). Out of the 974 

Fig. 4. Change types of MODIS NDVI in urban areas for 2001 to 2020. (A) Yearly mean NDVI in urban core and urban expansion areas during 2001 to 2020. (B) Vegetation 
change types for each urban areas (n = 965), including urban core and urbanization. (C) Number and timing of breakpoints of the class recovery (n = 609). (D) Percent of 
urban vegetation cover change types for different geographical zones. (E) Percent of vegetation change types for groups of different urban area sizes.
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studied cities, 609 cities (63.45%) experienced a greening in 
NDVI after an initial browning. Breakpoints reflecting a change 
from browning to greening (recovery) were mainly found dur-
ing 2011 to 2015 (Fig. 4C). These cities are distributed across 
all geographical zones in China regardless of the size of urban 
areas (Fig. 4B, D, and E). There are 77 cities (7.91% of all cities) 
that show a continuously greening NDVI trend, and most of 
these are large cities located in northern China (Fig. 5B and D). 
In total 139 cities (14.27%) show a continuously browning NDVI 
trend during 2000 to 2020, mainly located in Southern China 
(Fig. 4B and D). Nonsignificant trends (stable) are observed 
in 11 cities. For 129 cities (13.24%), mostly large cities in Central 
China, we found a reversal trend in urban greenness during 
2000 to 2020, which reflects a change from greening to drown-
ing (Fig. 4B).

Vegetation changes within cities
We used Landsat time series to study urban greenness change 
types at higher spatial resolution for the 974 cities (visualization 
link: https://ee-xzrscph.projects.earthengine.app/view/change-
type-of-urban-vegetation). We selected 2 cities (Shanghai in 
Fig. 5A, Chengdu in Fig. 5B) to showcase examples of the spatial 
patterns of the 5 change types within the city boundaries (Fig. 
5). Distinct patterns of clustered change types are observed: 

greening and stable dominate urban cores, possibly due to the 
promotion of green spaces (e.g., urban parks) replacing resi-
dential and permanent built-up areas (Fig. 5C1 to C3). Built-up 
areas in both residential areas (Fig. 5D1 to D3) or former crop-
lands (Fig. 5E1 to E3) are often classified as recovery, reflecting 
the initial loss of green vegetation during the transformation 
of croplands to artificial surface partly compensated by a fol-
lowing planting of trees in residential areas. The change types 
reversal and browning are mostly found in large industrial areas 
(Fig. 5E1 to E3 and F1 to F3).

We summed the pixel-level change types of all 974 cities and 
found that the class stable covers 25.26% of the urban areas, 
browning covers 24.55%, recovery 22.80%, greening 19.91%, 
and reversal 7.46% (Fig. 6A). In urban core areas the class 
stable (33.03%) and greening (25.44%) dominate, while browning 
(31.32%) and recovery (26.18%) are dominating in urban 
expansion areas (2000 to 2020) (Fig. 6A). We then selected 
5 cities to illustrate different dominating patterns of change: 
greening both in urban core and urban expansion areas in 
Beijing (Fig. 6B), browning in urban expansion areas in Fuyang 
(Fig. 6C), stable in most areas in the smaller city of Togtoh (Fig. 
6D), a reversal in the expansion areas of Luohe reflects recent 
vegetation losses (Fig. 6E) and recovery dominates expansion 
areas of Changzhou (Fig. 6F).

Fig. 5. Urban greenness changes (2000 to 2020) based on Landtrendr. (A) Shanghai. (B) Chengdu. (C1 to F1) Close ups showing examples. (C2 to F2) High-resolution images 
from Google Earth historical images from 2000 to 2002. (C3 to F3) Google Earth images for 2020.
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Discussion

Urban expansion reduces natural vegetation cover, which threat-
ens ecosystem services such as biodiversity and carbon stocks 
[3]. Browning in urban vegetation cover was observed in many 
developing countries while urban greening dominates cities of 
developed counties [32]. Urban greening projects and nature-
based solutions are promoted in OECD (Organization for 
Economic Cooperation and Development) countries [33] to 
favor a greener living environment and to address adaptation to 
climate change. Examples are the URBAN GreenUP program 
initialized by the European Union [34], the “Greening the City” 
project in Australia [35], and the urban resilience program in 
Japan [36]. China has experienced an unprecedented urban 
expansion over the past decades globally, which has caused an 
initial loss of vegetation cover [37]. However, vegetation green-
ness was shown to increase again since 2011, nearly balancing 
the initial browning over the entire period 2000 to 2020. 
Explanations shown here are vegetation growth in urban core 
areas and more green spaces in newly built resident areas [38]. 

The timing of urban vegetation recovery corresponds to the start 
of the implementation of the national-scale urban greening 
policy [17]. National development strategies in China emphasized 
a rapid and large scale urban expansion before the 2011 but then 
paid more attention to promote urban sustainability and the 
quality of community [39]. In addition, urban expansion in 
China is mostly at the expense of agricultural land and only few 
forests are converted [2]. This explains the limited loss of veg-
etation but raises concerns about the loss of arable land and 
increased dependency on imported goods [40,41]. The urban 
greening may partly be contributed to by the enhancement of 
vegetation growth under a warmer urban climate with increasing 
CO2 concentrations [42]. Yet, if the urban heat island and CO2 
fertilization effects should be dominating, we would expect the 
observed greening to be more continuous over time, but here, 
we show that the greening starts around 2010 and is mainly 
limited to the urban cores.

At a global scale, urban vegetation changes are mostly related 
to population growth and economic development with clear dif-
ferences between continents [13]. Chinese cities show a rather 

Fig. 6. Urban greenness changes for selected cities (2000 to 2020). (A) Vegetation change typology for entire cities in China (visualization link: https://ee-xzrscph.projects.
earthengine.app/view/change-type-of-urban-vegetation). (B) Example city dominated by pixels classified as greening; (C) browning; (D) stable; (E) reversal; (F) recovery. 
The black line in the maps represent the urban core in 2000. The surrounding areas represent urban expansion areas. The dominating change type is highlighted by a black 
border in the bar plots.
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heterogeneous pattern on vegetation greenness changes, which 
may partially be explained by local land use policies at city level. 
For example, tree planting in Beijing causes increasing vegetation 
greenness both in urban core and urban expansion areas (e.g., 
One Million-Mu Plain afforestation Project) [43]. However, 
many smaller cities show an overall negative vegetation green-
ness trend, especially in southern China, where urban areas 
expanded into forests and natural shrublands (Fig. S3). Proper 
urban planning and management focusing on offsetting the veg-
etation loss caused by urban expansion requires accurate and 
timely information of urban vegetation change types in these 
emerging cities. The nonlinear vegetation change type mapping 
at both city and pixel levels as demonstrated in the present study 
is expected to be a useful tool in support of strategic planning.

Globally, urban greening is driven by vegetation greening 
in sparsely populated periurban areas [32]. However, we found 
that the recent greening of China’s cities is driven by changes 
in urban core areas, supported by considerable increase in 
urban parks and a decline in industrial areas, whereas expan-
sion areas are only most recently showing first signs of greening 
[14]. The establishment of new industrial zones drives ongoing 
vegetation loss in many periurban areas and is difficult to com-
pensate [32]. In contrast, residential areas in the periurban 
areas mostly contribute to vegetation gains [32], and it is largely 
up to municipality governments to implement regulations to 
protect and increase vegetation cover in new urban areas.

Improved monitoring capacities from satellite images allow 
to assess urban vegetation cover at a high temporal and spatial 
resolution at national scale [13]. Rapid and timely city-level 
monitoring using coarse spatial resolution time series is essen-
tial to understand dominant characteristics of urban greenness 
at national scale; however, these results are of limited use from 
a management perspective. Therefore, detailed analyses from 
Landsat time series can be better linked to local land use/cover 
transformations [23,44], such as the establishment of street 
trees, small lawns, and residential parks [38]. These results are 
directly usable at the policy level and can feed into proactive 
management of ecosystem services of cities. Although the usage 
of time series segment methods to study vegetation cover trend 
and change of terrestrial ecosystems [23] have become a com-
mon tool available in cloud computing facilities like Google 
Earth Engine platform [31] such approaches has yet to be con-
solidated for use in analysis of urban ecosystems. Together with 
the pioneering studies [10,38,39], the present study supports 
the usage of segmentation approaches that unveil the multidi-
rectional spatial-temporal urban vegetation change.

Conclusions and Perspectives
The rapid urbanization in China has caused international con-
cerns on environmental pollution and the loss of natural vegeta-
tion. Here, we observe an abrupt change in urban greenness 
trends for the majority of the Chinese cities around 2010. This 
abrupt reversal from browning to greening follows political 
urban greening strategies implemented after 2010. Our major 
findings suggest that the greening of urban core areas nearly 
compensates for losses from urban expansion areas and also 
that even expansion areas show first signs of greening. It is remark-
able to see how clearly policies are reflected in satellite time 
series, which serves as a powerful monitoring tool that can be 
applied to identify areas and cities that do not follow the general 
patterns. This study is based on analysis of a “greening/browning” 

variable, serving as an integral measure for vegetation cover 
and density. This variable does not provide any information on 
the composition of the vegetation, or quantitative measures on 
vegetation cover and biomass. Ecosystem services provided 
by urban greenness depend among others on the proportion 
between trees and grasses, and future studies need to go beyond 
greenness and quantify urban tree cover changes.
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