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Abstract: In the past 30 years, observational climate datasets reveal a significant a drying and 
warming trend over in North China. Understanding of climatic variability over North China and 
its driving mechanism in a long-term perspective is, however, limited to a few sites only, es-
pecially the lack of temperature reconstructions based on latewood density and blue intensity. 
In this study, we developed a 281-year latewood blue intensity chronology based on 45 cores 
of Picea meyeri in western North China. Based on the discovery that the warm season 
(May–August) mean maximum temperature is the main controlling factor affecting the change 
in blue light reflection intensity, we established a regression model that explained 37% of the 
variance during the calibration period (1950–2020), allowing to trace the mean maximum 
temperature up to 1760 CE. From the past 261 years, we identified seven persistent high 
temperature periods (1760–1773, 1778–1796, 1805–1814, 1869–1880, 1889–1934, 1984– 
2000, 2004–2020) and three persistent low temperature periods (1815–1868, 1935–1963, 
1969–1983) in North China. Comparisons of a nearby temperature reconstructions and cli-
mate gridded data indicate that our reconstruction record a wide range of temperature varia-
tions in North China. The analysis of links between large-scale climatic variation and the 
temperature reconstruction showed that there is a relationship between extremes in the warm 
season temperature and anomalous SSTs in the equatorial eastern Pacific, and implied that 
the extremes in the warm season temperature in North China will be intensified under future 
global warming. 
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1  Introduction 

Recent climate warming has become a public concern because of its apparent impact on so-
ciety, the environment, and various ecosystems (Walther et al., 2002; Morton, 2007; Lafferty, 
2009). The ability to study climatic conditions in different regions from a long-term per-
spective is critical for a comprehensive understanding of current warming (Jones et al., 2004; 
Zachos et al., 2008; Marcott et al., 2013). Simultaneously, identifying the drivers of temper-
ature change will help to improve the ability to predict future climate change and avoid cat-
astrophic environmental impacts (Jonesand Mann, 2004; Tylianakis et al., 2008; Moss et al., 
2010; Zscheischler et al., 2018). The limited observational record, however, limits our com-
prehensive understanding of climate change in different regions (Zwiers et al., 2013; Sher-
wood et al., 2020). Long-term regional climate histories can be recovered through a range of 
climate proxies, and tree rings with high resolution, accurate dating and high replication are 
among the best indicators of climate change over the past millennium (Yao et al., 1997; Petit 
et al., 1999; Liu et al., 2011; Maher, 2016; Cheng et al., 2019; Chevalier et al., 2020; Pang 
et al., 2020; Hadad et al., 2021; Chen et al., 2022a). 

The tree-ring width (TRW) and the maximum latewood density (MXD) are particularly 
important in enhancing the sensitivity of the temperature response and expanding the scope 
of regional reconstruction (Davi et al., 2003; Chen et al., 2012; Büntgen et al., 2021). How-
ever, expensive instruments and complex experimental steps make the extraction of the 
maximum latewood density index impossible to replicate in each laboratory, while the width 
also faces the disadvantage of missing temperature signal capture at low altitudes (Campbell 
et al., 2011; Björklund et al., 2019). Blue intensity (BI) based on high-resolution image 
technology can effectively compensate for the above shortcomings (Wilson et al., 2014; 
Wilson et al., 2017; Seftigen et al., 2020; Heeter et al., 2021a, 2021b). It relies on the blue 
light band reflected by tree ring lignin to derive the relative density parameter of cells, 
which is relatively simple and inexpensive (Davi et al., 2021; Heeter et al., 2022). Globally, 
blue intensity has been widely used in the past decade to identify regional tree growth re-
sponse to climate and reconstruct past temperature (Kaczka et al., 2021), but less research 
has been done in China (Cao et al., 2022). 

North China (approximately 32°N–43°N and 105°E–120°E, Figure 1), one of the densely 
populated and economically developed regions of the country, plays an important role in 
ensuring China’s food supply, industrial manufacturing production, and ecological environ-
ment balance (Varis et al., 2001; Cai, 2008; Ma et al., 2019). In the context of current cli-
mate change, North China is facing a series of severe climate threats, such as high tempera-
tures, drought, forest growth decline, water shortage, and crop yield reduction (Ju et al., 
2013; Lei et al., 2016; Xu et al., 2018). Some tree-ring studies have succeeded in obtaining 
temperature and precipitation data in this area for many centuries based on tree-ring width 
and hydrogen and oxygen isotopes, but there is no example of reconstructing the mean 
maximum temperature using the blue intensity parameter (Li et al., 2015; Liu et al., 2019; 
Cai et al., 2022; Zeng et al., 2022). 

The purpose of this study was to (1) obtain the blue intensity parameters of tree rings, (2) 
clarify the relationship between changes in tree ring blue intensity and climatic factors, (3) 
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reconstruct the multi-century mean maximum temperature changes in North China, and (4) 
analyze the driving mechanism of the mean maximum temperature changes. 

 

 

Figure 1  Overview of the study area. (a) The geographical distribution of North China. The pink line is the 
boundary between the Asian monsoon and the westerly, the black circles are the compared sampling sites, and the 
blue and red circles are the meteorological station (Ningwu) and the sampling point of this study (ZGB), respec-
tively. (b) The monthly mean temperature (T), monthly mean maximum temperature (Tmax), monthly mean 
minimum temperature (Tmin) and precipitation (P) at Ningwu meteorological station. (c) Topographic features of 
the sampling site and the distribution of the water system. All compared samples are from the following papers: 
Cook et al., (2010); Cai et al., (BWD, 2010); Bao et al., (HLBE, 2012); Li et al., (NW, SD, HS, LY, 2018); Chen 
et al., (NWT, XF, SR, 2020). 

2  Materials and methods 

2.1  Geographical environment and core collection 

The study area is located in the north-central part of the Shanxi province, China (Figure 1c), 
close to Taiyuan, Shijiazhuang and other important industrial cities in North China. Because 
it is located in the transition zone between humid and arid, corresponding to monsoon and 
non-monsoon climates, respectively, forest and grassland are environmentally sensitive areas 
in North China (Li et al., 2011). The temperate continental monsoon climate has obvious 
characteristics, with four distinct seasons and rainy season overlaps with the warm period 
(Liu et al., 2013) (Figure 1b). According to the instrumental climate data of the Ningwu 
meteorological station (112.29°E and 38.99°N, 1409 m a.s.l., 1959–2020, Figure 1a), the 
total annual precipitation is 454.4 mm, which drops by more than 84% in the warm season 
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(May–September); the annual mean temperature is 6.7℃, and the mean temperatures in 
January and July are –8.9℃ and 20.7℃, respectively (Figure 1b). Summer (June–August) 
precipitation originates from water vapor transport over the Pacific Ocean, while the winter 
(December–February) climate is dominated by cool, dry continental winds (Cai et al., 2010; 
Li et al., 2015). Snowfall in winter and spring (December–March) supplements water re-
quirements before the growing season (pre-May) (Li et al., 2015). Tree-ring samples were 
collected from Picea meyeri growing near the timberline in the Guanchen mountain nature 
reserve (ZGB, 111.9°E and 38.7°N, 2658 m a.s.l., Figure 1c). In October 2020, we drilled 93 
wood cores in various locations on 45 living trees using 10 mm diameter increment borers. 
To eliminate the influence on tree growth from non-climatic factors, we prudently selected 
healthy stands free from human, fire and insect damages (Speer, 2010). Picea meyeri grows 
on gentle slopes with sparse stands, and the upper layer of the root system is covered with 
thick litter.  

2.2  Blue intensity chronology development 

Changes in the reflection intensity of the blue light band produced by lignin depend on ul-
tra-high-definition image recognition, and subtle errors on the surface of the sample core 
will affect the measurement results (Rydval et al., 2014). Therefore, we carefully examined 
all samples in the laboratory to exclude the core of fungal decay, discoloration, traumatic 
resin duct formation or any other abnormal characteristic signs (Björklund et al., 2014). We 
soaked the wood cores in hot ethanol for 48 hours using a Soxhlet apparatus and then re-
moved any residual solvent and water-soluble extracts in boiling deionized water to reducing 
their interference on BI measurements (Poole, 2020; Khan et al., 2022). According to tradi-
tional dendrochronological procedures, all sample cores with complete resin removal were 
fixed by troughs and air-dried at room temperature in the laboratory for 2–3 days (Fritts, 
1971). Finally, samples were sanded with progressively finer sandpaper (from 400 to 1000 
grit) to obtain a smooth core surface and anatomically visible ring boundaries (Speer, 2010). 
The transversal surface of most conifers has color differences between sapwood and heart-
wood (Harley et al., 2021). To reduce the error of blue intensity measurement caused by 
such color difference, we only used the latewood of Picea meyeri to extract the blue intensi-
ty parameter (Seftigen et al., 2020). 

We used a flatbed scanner (Epson Expression 12000XL) to complete the rasterization of 
each core, using 3200-dpi image resolution to achieve accurate identification of latewood 
boundaries (Wilson et al., 2014; Fuentes et al., 2018; Tsvetanov et al., 2020). To reduce the 
color interference of visible light on the scanning plane, a simple dark black carton covering 
the scanner was used and additionally we calibrated images with IT8 calibration software 
before each scan to reduce color “drift” (Wilson et al., 2014; Fuentes et al., 2018; Tsvetanov 
et al., 2020). The width of the ring and the blue light reflectivity of the latewood (LWBI) 
were measured by CooRecorder 9.4 software, and the accuracy of the cross dating was veri-
fied with COFECHA program (Grissino-Mayer, 2001; Seftigen et al., 2020; Maxwell et al., 
2021). We read 30% of the darkest pixel value on the latewood medium-area surface of each 
ring as the raw blue intensity (Buckley et al., 2018). To invert the positive relationship be-
tween blue intensity and cell density, we set a maximum pixel value of 256 minus the raw 
blue intensity, which yields the final LWBI measurement (Wilson et al., 2014; 2017).  
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To avoid the problem of “trend distortion” in low-frequency signals and to eliminate the 
variability in climate-independent time series, we used RCSsigFree_v45 software to detrend 
LWBI data (Melvin et al., 2008; Zhang et al., 2017; Qin et al., 2022). Growth trend fitting 
was first performed using 300-year variable splines (Büntgen et al., 2005), then averaged 
into a site chronology using the robust weighted mean method, and finally, the variance of 
the chronology was stabilized using the method described by Osborn et al. (1997). The reli-
ability and strength of the chronological signal were assessed by the mean inter-series cor-
relation (Rbar) and the associated expressed population signal (EPS), calculated from corre-
lation analysis using a 51-year moving window for the chronology and 50-year overlap. The 
final chronology available for reconstruction was truncated in 1760 because the threshold 
requirements for EPS ≥ 0.85 and sample depth ≥ 6 were met (Figure 2) (Table 1) (Cook et 
al., 2010; Chen et al., 2019a; 2022a; 2022b; Yue et al., 2022). 

 

 

Figure 2  (a) The tree-ring latewood blue intensity standard chronology (LWBI, thin black line), smoothed with 
a 15-year low-pass filtering (red thick line). Gray shading highlights the ±10% error of the unsmoothed LWBI 
chronology, and orange fill shows how the sample depth changes over time. (b) Expressed population signal (EPS) 
(computed over 51 years, lagged by 50 years). (c) Mean inter-series correlation (Rbar) statistics. The EPS > 0.85 
threshold is outlined by the vertical dashed line. 
 
Table 1  Tree-ring blue intensity chronology statistics 

Parameter MS SD SNR MC VFE AOF EPS MSC EPS≥0.85 

ZGB 0.08 0.07 24.25 0.47 24.0% 0.91 0.96 1740–2020 1760 

Note: MS: mean sensitivity; SD: standard deviation; SNR: signal-to-noise ratio; MC: mean correlation with master 
series; VFE: variance in first eigenvector; AOF: autocorrelation order first; EPS: expressed population signal; MSC: 
master series coverage 

 

2.3  Environmental data and processing methods 

The instrumental meteorological data were recorded at the China Meteorological Admin-
istration Ningwu station (CMDSC, http://data.cma.cn/en) near the sampling site, including 
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the mean temperature (T), mean maximum temperature (Tmax), mean minimum temperature 
(Tmin) and precipitation (P). Owing to its short coverage time, we selected the CRU grid 
climate data as a supplement (CRU TS 4.05, 0.5° × 0.5°, https://crudata.uea.ac.uk/cru/data, 
Harris et al., 2020), with a spatial range of 38.5°N–39°N and 111.5°E–112.5°E. Response 
function analysis was performed with all meteorological variables by facilities of Dendro-
clim 2002 software to estimate the relationship between LWBI chronology and climate 
(Biondi et al., 2004; Chen et al., 2022a). Due to the lag effect of the response pattern caused 
by the nutrient supply of the previous year, we extended the response period, including June 
of the previous year, to December of the current year (Chen et al., 2021). After eliminating 
the random trend of LWBI and meteorological data by first-order difference calculation, the 
response analysis is carried out to further examine the stable relationship between the two 
variables (Blasing et al., 1984). We used Pearson sliding analysis with a 21-year window to 
verify the stability of the effects of different climatic factors on tree growth in different sea-
sonal combinations and set up a significance test (He et al., 2018).  

A simple linear regression function model was developed to convert the LWBI to the 
mean maximum temperature, with the LWBI as the independent variable and the mean 
maximum temperature recorded by the instrument as the dependent variable for the entire 
calibration period (Gou et al., 2013). Leave-one-out cross-validation, including the error 
reduction test (RE), sign test (ST), product mean test (PMT), and Durbin-Watson test (DW), 
was used to test the validity of the model (Speer, 2010). According to Liu et al. (2019), the 
mean ±1σ (σ is the standard deviation) was used to identify warm and cold years, and the 
mean ±2σ was used for extreme cold and warm events. A 15-year low-pass filtering method 
(Locally weighted regression, LOWESS, Seftigen et al., 2013) smoothed the reconstructed 
series, and the smoothed values above (or below) the long-term mean were used to deter-
mine warm (or cold) periods (Chen et al., 2019b).  

We used the multi-taper method (MTM) and wavelet power spectrum analysis to 
cross-validate any periodic signal in the temperature recordings and set up a noise test 
(Mann et al., 2022). To verify the spatial representativeness of the reconstructed mean 
maximum temperature during the calibration period, four types of data, including instru-
mental, reconstruction, reconstruction trend removal and reconstruction first-order differ-
ence, were used for Pearson spatial correlation analysis with gridded temperature data (Yue 
et al., 2022). The extended reconstructed sea surface temperature dataset from the National 
Oceanic and Atmospheric Administration (ERSST, 2°×2°, 1854–2022, http://www.psl.noaa. 
gov/data/gridded/data.noaa.ersst.v5.html, Huang et al., 2015) (NOAA) was used to analyze 
the circulation link between the reconstructed mean maximum temperature and the 
large-scale air-sea circulation, combined with composite mean modal analysis and 850 hPa 
geopotential height water vapor flux analysis to comprehensively explain the process of heat 
transfer (Zhou et al., 2005; Moore et al., 2012; Yue et al., 2022). 

3  Results 

3.1  Linkage between radial growth and climate variables 

The correlation between the LWBI chronology and meteorological data was calculated in the 
common period, including the single-month correlation and seasonal combination correla-
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tion from June of the previous year to December of the current year (Figure 3). In general, 
the LWBI showed a significant positive correlation with the temperature and a weak nega-
tive correlation with precipitation in the growing season (March–November) of the current 
year or the previous year. The seasonal monthly combination correlation verifies the results 
of the single-month correlation. Whether instrumental meteorological data or grid meteoro-
logical data, the results showed that temperature in the warm season (April–August) has the 
greatest impact on tree growth, with the highest correlation with CRU gridded data between 
May and August (r = 0.608, p<0.001). Simultaneously, precipitation during summer 
(June–August, r = –0.354, p<0.01) showed a significant limiting effect on tree growth. The 
results of sliding correlation analysis showed that the effects of the precipitation on tree 
growth are not stable, especially after the 1990s. In contrast, the temperature always main- 

 

 

Figure 3  The correlations between the latewood blue intensity chronology (LWBI) and monthly meteorological 
data (including mean maximum temperature, mean temperature, mean minimum temperature, and total precipita-
tion). Correlation analysis between LWBI and instrumental meteorological data of Ningwu meteorological station 
is based on the original (a) and first-order difference calculation (b). Correlation analysis between LWBI and 
CRU grid meteorological data is based on the original (c) and first-order difference calculation (d). The sliding 
correlation analysis of LWBI and CRU grid data over a 21-year window is based on the original (e) and first-order 
difference calculations (f). Asterisks (*) indicate the 95% confidence level. 
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tained a positive relationship with the growth of Picea meyeri, showed relatively strong sta-
bility (Figure 3e). The first-order difference method was used to remove the random trend 
and repeat the above analysis process. We found that the relationship between temperature 
and LWBI chronology was similar to that before removal, indicating that LWBI chronology 
stably recorded the temperature signal in North China. At the same time, the negative rela-
tionship between winter precipitation and LWBI chronology was significantly enhanced, and 
the negative relationship between summer precipitation and LWBI chronology was further 
weakened (Figure 3f). 

3.2  Warm-season mean maximum temperature reconstruction 

The results showed that the warm-season mean maximum temperature is a key controlling 
factor for LWBI, exhibiting long-term stable effects, and allowing us to reconstruct past dy-
namics of mean maximum temperature using precisely tree-ring data. A linear regression 
model was used to reconstruct the history of the mean maximum temperature in the warm 
season from May to August since 1760 in North China. The reconstruction model based on 
the entire instrument cycle is Y = 5.12Xi + 16.8, where Y is the mean maximum temperature 
from May to August, and Xi is the LWBI in year i (Figure 4a). The model explains 37% of 
the variance in the mean maximum temperature data from 1950 to 2020 (29% after adjusting 
for the loss of degrees of freedom) (Figure 4b). The statistics of leave-one-out cross- valida-
tion are shown in Table 2. RE was positive during both calibration periods, and the results of 
the sign test, described how well the predicted values tracked the direction of the actual data, 
also reaching a significant level. DW statistics showed that there is no significant positive 
autocorrelation between the independent and dependent variables, and the reconstructions 
and observations during the calibration period from 1950 to 2020 performed well in both 
low-frequency changes and high-frequency simulations. These results demonstrated that the 
model used here successfully passes key tests. 

  
Table 2  Leave-one-out cross-validation statistics for the warm-season mean maximum temperature reconstruc-
tions 

Calibration       Validation         

Period R2 Radj
2 F Period RE PMT ST DW 

1986–2020 0.270 0.248 12.23** 1950–1985 0.216 5.035 22+/14–** 2.064 

1950–1985 0.295 0.275 14.29** 1986–2020 0.182 4.484 23+/12–** 1.718 

1950–2020 0.369 0.360 40.51**           

Note: R2: model explained variance, Radj
2: adjusted R2 considering multiple independent variables in the model, F: 

statistical significance of the regression model, DW: Durbin–Watson test, RE: reduction of error, ST: sign test, PMT: 
product means test. ** indicates the 99% confidence level. 

 

3.3  Warm-season mean maximum temperature variability 

The long-term mean for the 261-year mean maximum temperature is 21.9℃ with a standard 
deviation of 0.46℃. A total of 7 persistent high-temperature periods (1760–1773, 
1778–1796, 1805–1814, 1869–1880, 1889–1934, 1984–2000, 2004–2020) and 3 persistent 
low-temperature periods (1815–1868, 1935–1963, 1969–1983) was observed on the decadal 
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scale (Figure 4d). In terms of interannual high and low temperature changes, there are a total 
of 41 high temperature years and 40 low temperature years, among which 1761, 1909, 1929, 
1930, 1931, and 2018 are defined as extremely high temperature years, while 1820, 1821, 
1824, 1825, 1940, 1956, 1979, and 1988 are defined as extremely low temperature years 
(Figure 4d). In general, after the end of the Little Ice Age (LIA, 1250–1850), the incidence 
of extreme weather events, including high temperatures and droughts, increased significantly 
as evidenced in Figure 4e. The kernel density distribution map showed that the distribution  
 

 

Figure 4  The reconstruction process and characteristic analysis of the mean maximum temperature in North 
China. (a) Scatter plot of LWBI and observed mean maximum temperature from May to August. (b) Original 
comparison of reconstructed and observed mean maximum temperatures. (c) First-order difference comparison of 
reconstructed and observed mean maximum air temperature. (d) Reconstruction of the May–August mean maxi-
mum temperature of North China since 1760 CE. The black smooth curve was obtained after 15 years of low-pass 
filtering of the reconstruction results, and the gray dashed and solid lines represent the long-term mean plus or 
minus the standard deviation. Gray shading was added for ±10% error in the reconstruction results. (e) The dis-
tribution of the kernel density function of the observed (pink area) and reconstructed (gray area) mean maximum 
temperature during the calibration period (1950–2020) and the mean maximum temperature before (light blue 
area) and after (purple area) the modern warm period (1850) over the whole period (1760–2020). The vertical 
lines indicate the center of the peak. (f) Results of MTM analysis of the reconstructed results, with the 99% and 
95% confidence levels inferred from red noise spectra; periodicities significant at the 99% level are indicated 
(arrows). (g) Wavelet power spectrum of the reconstructed results, with significant periods (p < 0.05) highlighted 
by black lines. 
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density of high temperatures in the period after 1850 is skewed to the right, especially in the 
calibration period (1950–2020). The results of MTM and wavelet power spectrum analysis 
cross-validated that the reconstructed mean maximum temperature has the characteristics of 
interannual and interdecadal periodic recurrence, especially 2.0–2.5 (99%), 7.6–7.7 (95%), 
and 20–23.2 (95%). At the same time, we also noticed the characteristic of increased cycle 
recurrence approximately 2–7 years after 1850 (Figures 4f and 4g). 

4  Discussion 

4.1  Warm-season temperature signals recorded by tree-ring blue intensity 

There was a significant negative correlation between BI and MXD (r > 0.95, p < 0.0001) 
because both were essentially measurements of cellulose and lignin in tree rings (Wilson et 
al., 2017; Nagavciuc et al., 2019). The blue light band in the synthetic spectrum is extremely 
efficient for the light reflection intensity of lignin, which is based on the proliferation of cell 
numbers and the thickening of the cell wall (Campbell et al., 2007). Therefore, compared 
with the tree ring width and the maximum latewood density, the dense and dark LWBI ex-
presses a “more pure” climatic signal and is less affected by specific non-climatic factors 
detected in other locations (Wilson et al., 2017). It has been observed that the growth of co-
nifers in the upper timberline is sensitive to temperature response, especially during the 
warm season (May–September). This includes Pinus sylvestris in high latitudes, Juniperus 
rigida and Picea schrenkiana in the Tibetan Plateau, Pinus tabuliformis in arid regions, etc. 
The tree species selected for this study also follow this rule (Chen et al., 2009; Bao et al., 
2012; Tipton et al., 2016; Zhao et al., 2019). Temperatures during the growing season 
(March to November) are prime for conifer cell division and expansion, with snowmelt and 
soil warming promoting faster growth of leaf buds and stems (Shibistova et al., 2002; Yu et 
al., 2013). The latewood cell density becomes thicker after the season. The content of lignin 
depends on the increase in the density of cells, and the high content of lignin reduces the 
reflection intensity of blue light, so the blue intensity and density maintain a significant neg-
ative relationship, being a positive and significant relationship after making the correction of 
the formula (Kozlowski et al., 1991; Ernakovich et al., 2014; Heeter et al., 2021a). In con-
trast, the precipitation during the monsoon season (June–August) and winter (Janu-
ary–February) increases cloud cover, weakens the total solar radiation, increases the shallow 
soil moisture, expands the growth ring cells, thins the cell wall, and enhances the blue light 
reflection efficiency due to the lignin content (Björklund et al., 2014). Thus, the blue inten-
sity corrected by the formula maintains a negative relationship with precipitation. 

4.2  Links to large-scale hydroclimate 

To test and understand the spatial representativeness of our reconstruction, we performed 
spatial correlations between the temperature reconstruction and the CRU grid dataset during 
the calibration period between 1950 and 2020. Figure 5 shows that the reconstructed results 
and the observed data have very similar patterns and pass the significance test (99%), indi-
cating that our temperature reconstruction can represent large-scale climate variability and 
change. Additionally, we also noted that the significant spatial correlation mainly covers the 
three geographical regions of the North China Plain (32°N–40°N and 114°E–121°E), Loess 
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Plateau (33°N–41°N and 100°E–114°E) and Desert Gobi (37°N–45°N and 100°E–115°E), 
which are facing a series of complex climate change problems, such as water shortages, 
fragile ecosystems, and low extreme climate adaptability (Liu et al., 2013; Li et al., 2015; Li 
et al., 2018). To evaluate whether our reconstruction results also have large-scale spatial 
hydroclimate signals before the calibration period, five hydroclimate series reconstructed 
based on tree-ring proxy data were collected in North China, three of which were tempera-
ture reconstruction (Cai et al., 2010; Bao et al., 2012; Li et al., 2018), and the other two 
were drought or streamflow reconstruction (Cook et al., 2010; Chen et al., 2020). 

 

 

Figure 5  Spatially correlated between CRU gridded climate data from May to August for the 1950–2020 period 
with (a) observed mean maximum temperature, (b) reconstructed mean maximum temperature, (c) detrended 
mean maximum temperature, (d) first-order difference of mean maximum temperature. A black square indicates 
the extent of the study area, marked by 95% of the area covered by black dots as a comparison marker. 

 
The comparison of temperature reconstructions in different regions shows that North 

China has experienced a rapid warming trend since 1956, which is unprecedented in the past 
two centuries (Figure 6). At the same time, three common continuous high-temperature pe-
riod signals were also captured, which appeared in 1832–1843, 1905–1911, and 1926–1934 
respectively, which indicates that the spatial pattern of temperature changes in North China 
remains consistent from south to north (Cai et al., 2010; Bao et al., 2012; Li et al., 2018) 
(Figure 6). The negative correlation occurs between the mean maximum temperature and the 
drought index or streamflow, indicating that sustained high temperature may trigger meteor-
ological drought and thus conduct hydrological drought (Huang et al., 2017). For example, 
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in 1760–1767, 1807–1816, 1924–1933, and 1992–2020, the high temperature in North China 
corresponds to the drought and the low runoff period of the Yellow River (Figure 6). The 
climatic and hydrological drought caused by the continuous high temperature undoubtedly 
caused enormous damage to the social economy and loss of life, especially in North China 
during the 1920s to 1930s (Qian et al., 2001; Liang et al., 2006; Qian et al., 2007; Fang et 
al., 2009). However, with the improvement of social productivity, we can maintain a good 
adaptation to the pressure brought by drought, especially in the context of extremely climat-
ic and hydrological changes brought about by global warming. Water conservancy projects 
such as the South-to-North Water Diversion have greatly improved our ability to cope with 
climate change (Zhao et al., 2017; Zhang et al., 2018). 

 

 

Figure 6  Comparison of the present reconstruction of the mean maximum temperature (May to August) with 
other paleoclimatic records derived from tree-ring from surrounding regions. (a) Reconstruction of mean maxi-
mum temperature from May to August in North China (this study). (b) Reconstruction of mean temperature from 
May to August in northern-central China (Li et al., 2018). (c) Reconstruction of mean maximum temperature from 
April to September in Hulunbuir, Inner Mongolia (Bao et al., 2012). (d) Reconstruction of mean temperature from 
May to July in Lüliang Mountain, Shanxi (Cai et al., 2010). (e) Regional PDSI reconstruction for North China 
(Cook et al., 2010). (f) Summer monsoon season (July to October) streamflow variation reconstruction for the 
middle Yellow River (Chen et al., 2020). All sequences are dimensionless and standardized by the Z score, and 
low-frequency fluctuations are realized by the low-pass filtering method (LOWESS) with a 10-year step size. On 
the basis of the mean value, all series are filled upward (downward) as red, indicating a warm period (dry period 
or low streamflow period), while downward (upward) as blue indicates a cold period (wet period or high stream-
flow period). The common warm period (dry period or low streamflow period) is marked with an orange square, 
and the common cold period (wet period or high streamflow period) is marked with a purple square. 
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4.3  Links to atmospheric circulations 

The results of the periodic analysis showed that our reconstructed mean maximum tempera-
ture in the warm season has a significant 2–7-year cycle, which may be related to the mid- 
and low-latitude Pacific SST anomalies. Regarding the mechanism of this relationship, we 
analyzed the spatial correlation pattern between the calibration period (1950–2020) and the 
ERSST sea surface temperature dataset, results that are shown in Figure 7. We found that the 

 

 

Figure 7  Spatial correlation and composite analysis. (a) The original reconstruction is spatially correlated with 
the SST during the calibration period. (b) The first-order difference of reconstruction is spatially correlated with 
the SST during the calibration period. (c) Composite modes of SST corresponding to 10 high-temperature years 
during the calibration period. (d) Composite modes of SST corresponding to 10 low-temperature years during the 
calibration period. (e) Composite modes of the water vapor flux divergence corresponding to 10 high-temperature 
years during the calibration period. (f) Composite modes of the water vapor flux divergence corresponding to 10 
low-temperature years during the calibration period. 
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significant correlation fields between the original reconstruction and SST are mainly con-
centrated in the Pacific Ocean, Indian Ocean and Atlantic Ocean, which are also the main 
heat sources of traditional land-sea heat exchange (Mohtadi et al., 2016). However, after 
removing the linear trend by the first-order difference, the main significant positive correla-
tion fields are concentrated on the east coast of the low-latitude Pacific Ocean, which is also 
the main monitoring area of the Niño 3 index (Ren et al., 2011). Through the correlation 
calculation with the Niño 3 index from May to August, there is a significant positive corre-
lation between the two (r = 0.21, p<0.01, 1871–2020, not shown). 

The composite analysis revealed how the Pacific SSTA affects the dynamic mechanism of 
the mean maximum temperature change in North China. We selected 10 high-temperature 
years and 10 low-temperature years for sea surface temperature and water vapor flux diver-
gence synthesis analysis. When a high-temperature year occurs, the sea temperature region 
indicated by the Niño 3 index is in a warm phase and forms an El Niño mode. At this time, 
the monsoon rain belt lags behind the South China Sea and the Indochina Peninsula. North 
China is under the control of the subtropical high-pressure zone, with prevailing sinking 
airflow and inland wind, dry and little rain, and frequent high-temperature weather (Ding, 
1992). In contrast, when a low-temperature year occurs, the sea temperature region indicated 
by the Niño 3 index is in the cold phase and forms the La Niña mode. The Asian monsoon is 
strong, the rainfall in North China is greater, and the increase in cloud amount absorbs the 
heat radiation of the sun and the ground to reduce the temperature (Wang et al., 2017). 

5  Conclusions 

Herein, we have shown that the latewood blue light intensity (LWBI) resulted in the in-
creased climate information and warm season temperature reconstruction from the tree rings 
of Picea meyeri in North China that has very few high-resolution temperature records. This 
is the first LWBI chronology of spruce (Picea meyeri) developed from North China and it 
has captured the recent warming trend indicated by the instrumental climate data. The re-
constructed average maximum temperature represents a large-scale spatial signal, covering 
typical areas of water shortage in North China, and suggests an out-of-phase relationship 
between the temperature reconstruction and the hydroclimate reconstructions over past 200 
years. Synoptic climatology analysis indicated that the sea surface temperature anomaly on 
eastern tropical Pacific Ocean play a role in modulating temperature variations in the study 
area. Additional data from North China is necessary to substantiate these findings. 
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