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Abstract

Dementia is an escalating global health challenge, with Alzheimer’s disease (AD) at its forefront. Substantial evidence highlights the
accumulation of AD-related pathological proteins in specific brain regions and their subsequent dissemination throughout the broader
area along the brain network, leading to disruptions in both individual brain regions and their interconnections. Although a compre-
hensive understanding of the neurodegeneration-brain network link is lacking, it is undeniable that brain networks play a pivotal role
in the development and progression of AD. To thoroughly elucidate the intricate network of elements and connections constituting
the human brain, the concept of the brain connectome was introduced. Research based on the connectome holds immense potential
for revealing the mechanisms underlying disease development, and it has become a prominent topic that has attracted the attention
of numerous researchers. In this review, we aim to systematically summarize studies on brain networks within the context of AD,
critically analyze the strengths and weaknesses of existing methodologies, and offer novel perspectives and insights, intending to

serve as inspiration for future research.

Keywords: Alzheimer’s disease; brain-connectome; graph theory; deep graph neural networks

Introduction

Dementia stands as one of the most significant global health chal-
lenges in the 21st century. Currently, >50 million individuals are
living with dementia worldwide (Hughes, 2017), and this number
is estimated to triple, reaching 152 million by 2050 as the global
population ages (International, 2019). Alzheimer’s disease (AD) is
the most common cause of dementia, accounting for ~60-80% of
all dementia cases (Scheltens et al., 2021; World Health Organiza-
tion, 2019; Alzheimer’s Association, 2018). In the USA, it is fore-
casted that the population of Americans with either Alzheimer’s
dementia or mild cognitive impairment will reach 15 million in
2060 (Brookmeyer et al., 2018). At present, the total annual cost for
AD and other dementias in the USA stands at $305 billion, and this
figure is expected to surge to >$1.1 trillion by 2050 (Alzheimer’s
Association, 2018).

AD imposes not only financial burdens but also profound emo-
tional anguish on patients and their families. As a progressive,
neurodegenerative disease, AD follows a progressive disease con-
tinuum, spanning from an asymptomatic phase with biomarker
evidence of AD (preclinical AD), progressing through mild cogni-
tive impairment (MCI), and ultimately culminating in AD demen-
tia (Jack Jr et al,, 2018a). It is characterized by a range of func-
tional, cognitive, and behavioral impairments, including mem-
ory disorders, memory loss, and challenges in decision-making,
verbal communication, concentration, thinking, and judgment
(Alzheimer’s Association, 2018). These symptoms advance grad-
ually over time, causing patients to progressively lose their ability
to manage daily life and retain their memories. Current research
identifies two primary pathological hallmarks of AD: the pro-

gressive accumulation of extracellular amyloid beta (AB) plaques
and the presence of intracellular neurofibrillary tangles (NFTSs)
(Alzheimer’s Association, 2018). AB plaques accumulate due to ei-
ther reduced Ag clearance or excessive production (Serrano-Pozo
et al., 2011), typically emerging around two decades before the on-
set of cognitive impairment (Bateman et al., 2012; Jack Jr et al,
2018b). NFTs, on the other hand, result from the abnormal ac-
cumulation of hyperphosphorylated tau proteins (Serrano-Pozo
et al., 2011) and can be detected 10-15 years before the onset of
symptoms (Bateman et al., 2012; Jack Jr et al., 2018b). While there
is currently no complete cure for AD due to an incomplete under-
standing of its etiology, pathophysiology, and progression, early di-
agnosis and intervention to delay dementia development can sig-
nificantly benefit patients and their caregivers while also resulting
in substantial cost savings for healthcare systems.

Previous research has unveiled the accumulation of patho-
logical proteins within specific macroscale brain networks, sug-
gesting a fundamental role of brain network architecture in
the system-level pathophysiology of neurodegenerative diseases
(Pearson et al., 1985; Saper et al, 1987; Braak and Braak, 1991,
Jucker and Walker, 2018, 2013; Prusiner, 1998; Seeley et al., 2009;
Zhou et al,, 2012; Calafate et al, 2015; De Calignon et al.,, 2012;
Grothe et al., 2016; Pereira et al., 2019; Buckner et al., 2009, 2005;
Palmgyvist et al., 2017; Villeneuve et al., 2015; Hoenig et al., 2018;
Jones et al., 2017; Hansson et al,, 2017; Bejanin et al., 2017; Os-
senkoppele et al., 2016; Bero et al., 2011; Busche and Hyman,
2020; Busche et al., 2019, 2012; Wu et al, 2016). This concept,
known as the network degeneration hypothesis, has gained sub-
stantial support over the last decade. Two primary mechanistic
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hypotheses underlie this theory: brain networks as conduits for
pathological spread (Pearson et al. 1985; Saper et al., 1987; Braak
and Braak, 1991; Jucker and Walker, 2018, 2013; Prusiner, 1998;
Seeley et al., 2009; Zhou et al, 2012; Calafate et al, 2015; De
Calignon et al., 2012; Grothe et al., 2016; Pereira et al., 2019; Buck-
ner et al., 2009, 2005; Palmqvist et al., 2017; Villeneuve et al., 2015;
Hoenig et al., 2018; Jones et al, 2017; Hansson et al., 2017; Be-
janin et al., 2017; Ossenkoppele et al., 2016; Bero et al., 2011) and
brain networks as drivers of disease progression (Bero et al., 2011;
Busche and Hyman, 2020; Busche et al.,, 2019, 2012; Wu et al,
2016). Some studies (Pearson et al., 1985; Saper et al. 1987; Braak
and Braak, 1991), based on post mortem human tissue analysis,
have noted the frequent colocalization of abnormal protein ag-
gregates in brain regions connected by strong anatomical links.
This observation led to the proposition that pathogenic proteins
originate as prion-like seeded aggregations (Jucker and Walker,
2018, 2013; Prusiner, 1998; Seeley et al., 2009; Zhou et al., 2012;
Calafate et al.,, 2015; De Calignon et al., 2012), subsequently prop-
agating along the neuronal pathways that constitute large-scale
brain networks. This "prion-like" spreading hypothesis suggests
networks act as "passive" anatomical conduits for the transport
of pathological agents. Recent neuroimaging studies further sup-
port this perspective (Grothe et al., 2016; Pereira et al., 2019; Buck-
ner et al., 2009, 2005; Palmqvist et al., 2017; Villeneuve et al., 2015;
Hoenig et al., 2018; Jones et al., 2017; Hansson et al., 2017; Bejanin
et al., 2017; Ossenkoppele et al., 2016; Bero et al., 2011). For ex-
ample, positron emission tomography (PET) studies in AD have
shown significant overlap between g-amyloid distribution and the
topography of default-mode network (DMN) and fronto-parietal
brain networks (Grothe et al., 2016; Pereira et al., 2019; Buckner
etal.,, 2009, 2005; Palmqgvist et al., 2017; Villeneuve et al., 2015). Like-
wise, there is a spatial correlation between tau-PET deposition and
syndrome-specific functional networks (Hoenig et al., 2018; Jones
etal, 2017; Hansson et al., 2017; Bejanin et al., 2017; Ossenkoppele
et al., 2016; Bero et al., 2011). However, some recent evidence also
supports an alternative hypothesis, suggesting a more "active" link
between disease pathology and the dynamic properties of neu-
ronal circuits (Bero et al., 2011; Busche and Hyman, 2020; Busche
etal,, 2019, 2012; Wu et al., 2016). According to this view, brain net-
works directly catalyze disease progression, where the functional
attributes of networks dynamically influence the spread of patho-
logical proteins and disease progression, rather than merely serv-
ing as a passive propagation pathway.

While a consensus or comprehensive understanding of the
connection between neurodegeneration and brain networks is
currently lacking, compelling evidence has demonstrated that
pathological proteins not only accumulate in specific brain re-
gions but also propagate further throughout the network, disrupt-
ing both the brain regions and the connections between them.
Therefore, network-based studies have the potential to bridge the
gap between pathological processes and emerging clinical mani-
festations, offering insights into the disease development mech-
anism. Consequently, they play a pivotal role in neurodegenera-
tive diseases such as AD. Numerous studies aim to leverage ad-
vanced graph-based approaches to investigate brain networks for
disease progression prediction and biomarker identification. In
these approaches, a brain network is represented by a connec-
tion matrix, often referred to as the brain connectome, which is
analyzed from a graph perspective. In this representation, nodes
of the graph represent different brain regions, while edges sym-
bolize biological or functional connections between these regions.
This graph-based framework allows researchers to explore the in-
tricate relationships and patterns within brain networks in the

context of brain diseases. These graph-based approaches can be
broadly categorized into two types: the traditional graph theory-
based methods and the deep graph neural network-based meth-
ods. Traditional graph theory-based methods leverage established
principles in mathematical graph theory to describe and analyze
essential properties of intricate brain connectomes using graph
measures. While these approaches have identified numerous AD-
related brain connections, they struggle to effectively capture the
intricate nonlinear patterns inherent in the data. On the con-
trary, deep graph neural network-based methods, such as graph
convolutional networks (GCNs), employ deep learning techniques
to capture these complex nonlinear patterns and relationships
within brain connectomes. However, a drawback of deep graph
neural network-based methods is their reliance on opaque black-
box models. Interpreting these models requires a comprehen-
sive understanding of the underlying mechanisms governing their
decision-making processes. In this comprehensive review, our pri-
mary objective is to offer a detailed analysis and comprehensive
summary of the various graph-based methods employed in the
study of neurodegenerative diseases, with a particular focus on
AD.

To concentrate on the latest research outcomes, we conducted
a search on Google Scholar covering the period from January
2013 to June 2023, utilizing two key terms: “brain networks” and
“Alzheimer’s disease.” We compiled relevant studies meeting the
following criteria: original peer-reviewed research studies using
either graph theory or deep graph convolutional neural networks
for AD prediction. Following this criterion, we identified and re-
viewed a total of 36 studies, which are presented in this paper. The
remainder of this review is organized as follows: Brain Connec-
tome Section introduces the foundational concepts of brain con-
nectomes. It covers brain connectomes at three different struc-
tural scales and encompasses three distinct types of brain con-
nectivity. Furthermore, an analysis and summary of AD-related
brain connections from existing literature are presented. In Sec-
tion Graph Theory-Based Approaches in AD study, the focus is on
graph theory-based methods, elucidating their core principles and
commonly utilized graph measures in AD-related brain networks
studies. Deep Graph Neural Network-Based Approaches for AD
Prediction Section shifts attention to deep graph neural network-
based methods, exploring their applications and potential in the
analysis of brain networks, with a particular emphasis on new
findings in AD prediction. Discussion and Conclusion Section crit-
ically examines the limitations of existing research and outlines
potential avenues for future work.

Brain Connectome

The definition, scales, and levels of brain
connectome

The concept of brain connectome, initially proposed by Olaf
Sporns, 2005, aimed to furnish a comprehensive structural depic-
tion of the intricate network of elements and connections com-
prising the human brain. Its primary utility is to serve as a struc-
tural substrate for comprehending human cognitive function and
interpreting neuroimaging research. This concept plays an indis-
pensable role in supporting the exploration of intricate interre-
lationships of brain structure, function, and cognition. The con-
nectome comprises two fundamental components that shape its
network architecture: neural elements and neural connections.
The relationship of the set of n elements can be represented
by a connection matrix A = [a;;] € R"*", where a;; > 0 denotes
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Figure 1: Depictions of “connections” in a brain connectome and the
resulting three types of connectivity. Structural connectivity (SC) refers
to anatomical links and is usually estimated using fiber bundles derived
from diffusion MRI; Functional connectivity (FC) and effective
connectivity (EC) are generally inferred through the correlation of nodal
activities based on BOLD-fMRI or EEG/MEG.

the presence of a connection between element i and j, otherwise
QU‘ =0.

The elements and their connections within the connectome
can vary in definition across different scales and levels of struc-
tural description. These structural descriptions typically target
three distinct levels of organization. The microscale targets at the
level of single neurons and synapses, while the macroscale delves
into the level of anatomically distinct brain regions of interest
(ROI) and inter-regional pathways. Between these extremes lies
the mesoscale, which centers around neuronal populations. Sin-
gle neurons have the advantage of relatively straightforward de-
marcation and definition. However, their sheer number, substan-
tial variability, and rapid dynamics make them unsuitable as the
fundamental elements of the connectome. By contrast, the iden-
tification and delineation of brain regions and neuronal popula-
tions pose greater challenges, as there is currently no universally
accepted parcellation scheme for human brain regions. Nonethe-
less, anatomically distinct ROI and interregional pathways is the
most practical organizational level for human connectome. This
review will primarily concentrate on this particular level.

Different types of connections in the macroscale
brain connectome

In the macroscale brain connectome derived from in vivo neu-
roimaging, connections between elements can be categorized
into three types (Fig. 1): structural connectivity, representing
anatomical links; functional connectivity, capturing undirected
statistical dependencies; and effective connectivity, describing di-
rected causal relationships among distributed responses (Friston,
1994). It is worth noting that this categorization is not limited to
macroscale brain connectome but extends to mesoscale and mi-
croscale as well, with specific definitions dependent on the mea-
surements and models available at each particular scale.
Structural connectivity (SC) in macroscale primarily reveals
long-range fiber bundles derived from diffusion or diffusion ten-
sor magnetic resonance imaging (MRI) (Basser et al., 1994). A struc-
tural brain network can be constructed based on these fiber bun-

dles, associating them with the specific brain regions they inter-
connect (Park et al., 2004; Hagmann et al., 2007). It is worth not-
ing that SC derived from diffusion MRI is typically undirected and
cannot discern between excitatory or inhibitory connections. This
stands in contrast to SC based on tracing studies, which can vary
in strength or density in either direction and, in some cases, be
linked to excitatory or inhibitory postsynaptic effects.

Functional connectivity (FC), on the other hand, is commonly
inferred through the correlation of nodal activities based on
blood oxygenation level-dependent (BOLD) functional MRI (fMRI)
or coherence analysis of electro- or magnetoencephalogram
(EEG/MEG) signals acquired during task performance or in a rest-
ing state. In their work, Zhang et al., 2022 provided a comprehen-
sive summary of commonly used measurements for representing
pairwise relationships between two fMRI signals. These measure-
ments encompass correlation, partial correlation, covariance, and
include both weighted and binary edges. Resting-state fMRI, in
particular, has gained prominence as a foundational tool for the
analysis of functional networks, thanks to the discovery of spa-
tially organized endogenous low-frequency fluctuations within
BOLD signals (Biswal et al., 1995).

Effective connectivity (EC), by contrast, delves into the realm
of causal relationships within a network. It centers on the notion
of one node (neuronal population) influencing another within a
specific model of network dynamics. The inference of EC entails
the use of a neuronal integration model, typically necessitating
the estimation of model parameters (effective connectivity) that
most accurately explain the observed BOLD or EEG/MEG signals.
While the neuronal model is commonly constrained by SC, it is
vital to note that SC does not comprehensively dictate EC. EC is
dynamic, responsive to the state of the system, and contingent
on experimental context. Additionally, in certain models, EC can
encompass polysynaptic pathways, not solely reliant on direct ax-
onal connections.

Methods for brain structural and functional
connectivity generation

There are several commonly used methods in brain structural and
functional connectivity generation. This section provides a com-
prehensive overview of these methods.

Generation of structural connectivity

Structural covariance network (Yun et al., 2016; Zielinski et al.,
2010) and diffusion MRI derived fiber connectivity (Zhang et al.,
2021,2020a,2019) are two commonly used approaches to generate
brain structural connectivity. Structural covariance refers to the
synchronized changes in morphological characteristics, includ-
ing cortical thickness (CT) and cortical surface area (CSA), across
brain structures that are either functionally or anatomically con-
nected to each other. The key steps for calculating individualized
structural covariance (ISC) are as follows: (i) acquisition and pre-
processing of T1-weighted MRI data. The preprocessing steps are
adaptable based on the specific objectives of the study. (ii) Use of
open-source neuroimaging data analysis and visualization tools,
such as Freesurfer, for surface reconstruction and parcellation.
This results in the segmentation of the brain surface into ROL. (iii)
Calculation of CT and CSA. CT can be calculated as the short-
est distance between gray-white matter boundary and the gray
matter-CSF boundary at each vertex and CSA can be estimated
for each ROL (iv) Use of specific formulas to calculate cortical
thickness-based individualized structural covariance (CT-ISC) and
cortical surface area-based ISC (CSA-ISC) values between ROI for
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each individual (Zielinski et al.,, 2010). In Equations (1) and (2), k
indicates the kth individual, i and j indicate the ith and jth RO,
CTmean() and CTyy(i) denote the regional mean and standard de-
viation of CT in ROI(i) across all participants or across all normal
control participants in disease related studies.

CT_ISCy, (i, )
_ CTk —CTimean (i) CTi (j) — CTmean (J) ’
=Y exP( CTaa () ) ) =
CSA_ISCy (i, §)
—1exp ((CSA}Z (ié;AftSdA({)man (i) CSAg (Jg;AfjAJ;lean (J)) ) )

Diffusion MRI derived fiber connectivity is another commonly
used method to generate brain structural connectivity. The ma-
jor steps are as follows: (i) both T1-weighted MRI and diffusion
MRI images are required; (ii) the same steps as the structural co-
variance approach are adopted to use T1 image for surface re-
construction and parcellation; (iii) diffusion MRI image is used for
fiber tracking via tools such as MedINRIA and DSI-Studio; and (iv)
the number of fibers connecting each pair of ROl is calculated and
used to generate the structural connectivity.

Generation of functional connectivity

Various methods are commonly employed to generate func-
tional connectivity and are categorized into knowledge-based
approaches, such as the Pearson correlation coefficient (Zhang
et al., 2021, 2020a, 2019; Batista-Garcia-Ramé and Fernandez-
Verdecia, 2018) and partial correlation (Friedman et al., 2008), and
data-driven approaches, including independent component anal-
ysis (ICA) (Zhang et al. 2018; Hutchison et al.,, 2010) and princi-
pal component analysis (PCA) (Ghosh-Dastidar et al., 2008; Lang
et al., 2012). In other literature, these methods are also referred
to as model-dependent and model-free methods, respectively.
Knowledge-based approaches typically require prior knowledge
about the spatial and temporal patterns of activation, as well as
a model for the data generation process. These approaches usu-
ally select some ROI as seeds and generate a connectivity map of
the human brain by determining whether other regions are func-
tionally connected to these seeds according to predefined metrics.
Data-driven methods serve as a complementary approach that
does not rely on prior knowledge, allowing them to reveal unex-
pected correlations in the data.

The Pearson correlation coefficient between a pair of functional
signals is a widely used functional measurement for estimat-
ing functional connectivity (Batista-Garcia-Ramé and Fernandez-
Verdecia, 2018). The Pearson correlation coefficient can be calcu-
lated by Equation (3), where F = [F; ;] € RV *" denotes the func-
tional connectivity, cov is the covariance, f; is the averaged func-
tional signal of brain region i, and oy, is the standard deviation

of f;.

cov (f i f j)
Fj=—"— (3)
5%%;

Partial correlation provides a valuable graphical depiction of
functional interactions. A common method for estimating sparse
inverse covariance, known as the graphical lasso (Friedman et al.,
2008), utilizes partial correlation. In Friedman et al., 2008, the
sparse inverse covariance matrix is determined by maximizing
the L1 penalized log-likelihood of the observed data with as-
sumption of Gaussian distribution. The graphical lasso method is
then applied to learn individual sparse functional connectivity F.

Specifically, for each individual, let g;; denote functional signal of
brain regioniat timet, G = [g;;] € R" *N denote the functional sig-
nals over N brain regions spanning time T. The t" sample g; = [g¢1,

., gin]T € RN is assumed to be drawn i.i.d. from some Gaussian dis-
tribution with the precision matrix F for encoding the conditional
independencies between any two ROI. The empirical sample co-
variance is:

(9 — 9u) (@ — 9,)" (4)

@)

Il
]

| |~
—
-

1

T
where g, = 1 Y g: is the mean of T samples. F can be obtained by

t=
the optimization problem of the graphical Lasso:
maxr log det (F) — trace (CF) — p|F|1 (5)

where p is the regularization parameter to control the sparsity
of F.

PCA and ICA are two typical data-driven approaches, which are
based on the assumption that the activation is orthogonal (PCA)
or independent (ICA) to the other signal variations. In these ap-
proaches, the brain functional data is represented by a matrix X €
RN M where M is the temporal dimension and the N is the voxel-
space dimension. Before applying PCA and ICA, the mean of each
row is normally subtracted from the data: X’ = X — X, where X is
a matrix that contains the row-wise means. Then the following
decomposition is conducted in PCA:

x'xT=vzsTu? =007 (6)

where U € RN * ¥ represents the matrix of eigenimages of the N x
N-dimensional correlation matrix and ¥ contains the correspond-
ing eigenvalues along its diagonal. These eigenimages identify ex-
tended areas of correlated neuronal activity. The orthogonality
constraint imposed onto PCA often limits the usefulness and im-
mediate interpretation of the eigenimages extracted. To alleviate
such constraints, ICA has been considered:

xT = MH )

The row of X7 represents spatial activity distributions and its
column represents different observation time points. The spatial
independent component analysis aims to discover an unmixing
matrix M~! (pseudoinverse of M) such that H = M~'X". In this
context, H consists of rows representing independent spatial ac-
tivity distributions assumed to best characterize the observations,
while M contains rows representing the corresponding weights in-
dicating how each independent component contributes to the ob-
servation at any given time point. Alternatively, when examines
the columns of matrix X7, representing pixel time courses of ob-
served functional images, the decomposition results in indepen-
dent columns of matrix M, representing independent pixel time
courses reflecting temporal variations of observed neuronal ac-
tivities. In this case, the columns of matrix H contain the corre-
sponding weights. Consequently, matrix M contains temporal in-
formation in its rows, and matrix H contains spatial information
in its rows, specifically the activity maps.

The impact of AD on brain networks

Existing research has extensively explored the intricate disrup-
tions in structural and functional brain networks associated with
AD. Notably, investigations into the pathological hallmarks of
AD, such as amyloid plaques and hyperphosphorylated tau pro-
tein, reveal distinct regional preferences. One study (Grothe et al.,
2016) uncovered a predilection for amyloid deposition in the DMN,
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with significant effect sizes also noted in other neocortical intrin-
sic connectivity networks, particularly the frontoparietal-control
network. Atrophic changes exhibited specificity for an anterior
limbic network, followed by the DMN, while other neocortical net-
works remained relatively unaffected. Hypometabolism displayed
a mixed profile influenced by both amyloid and atrophy. Parallel
patterns of network specificity were observed in the predemen-
tia and preclinical stages, affirming the DMN’s heightened vul-
nerability to multimodal imaging abnormalities in AD. Another
study (Hansson et al.,, 2017) highlighted the typical tau pattern,
predominantly affecting temporal cortical areas, the precuneus—
posterior cingulate, and lateral parts of the parietal and occipital
cortex. This pattern notably overlapped with the dorsal attention,
higher visual, limbic, and parts of the DMN. These results empha-
size that tau aggregate deposition in AD predominantly affects
higher-order cognitive networks over primary sensory-motor net-
works, challenging the specificity for the default-mode or related
limbic networks.

In addition, various studies have explored the impact of AD on
brain network through graph measures, further contributing to
our understanding of influence of AD on brain connectivity. These
studies found that individuals with AD exhibit intricate disrup-
tions in both the FC and SC. Compared to healthy controls, AD pa-
tients show increased local efficiency, decreased global efficiency,
longest characteristic path lengths, largest clustering coefficients,
increased characteristic path length, and decreased intramodular
connections (Dai et al., 2019, 2015; Kabbara et al., 2018; Martens-
son et al. 2018; Liu et al., 2012). And when compared to AD patients,
MCI patients demonstrate decreased nodal centrality in the me-
dial temporal lobe, increased nodal centrality in the occipital re-
gions, and distinct alterations in the amygdala (Liu et al., 2012).
These results indicate a widespread rewiring in AD and MCI pa-
tients, reflecting the reorganization of brain networks accompa-
nying cognitive decline leading to AD. Furthermore, the correla-
tion between FC and SC is heightened in connections involving
the DMN and rich club, revealing overlapping and distinct network
disruptions and emphasizing a strengthened correlation between
FCand SCin AD (Dai et al., 2019). AD is also found to be associated
with regional gray matter damage and abnormalities in functional
integration between brain regions (Dai et al. 2015). The disease se-
lectively targets highly connected hub regions, such as the medial
and lateral prefrontal and parietal cortices, insula, and thalamus.
This impairment is connectivity distance-dependent, particularly
affecting long-range connections. Disruptions in functional con-
nections within the default-mode, salience, and executive-control
modules, as well as connections between them, significantly cor-
relate with cognitive performance (Joo et al., 2016; Dai et al., 2015).
Notably, nodal connectivity strength in the posteromedial cortex
proves highly discriminative in distinguishing individuals with AD
from healthy controls (Dai et al., 2015). In addition, brain networks
of AD patients are characterized by lower global information pro-
cessing and higher local information processing, showing signifi-
cant correlation with alterations in cognitive scores (Kabbara et al.,
2018).

Graph Theory-Based Approaches in AD
study

Graph theory, a mathematical discipline dedicated to the study
of networks, has extensive applications in various real-life con-
texts, often referred to as complex network analysis (Rubinov and
Sporns, 2010). The fundamental idea is to characterize both lo-

cal and global attributes of complex real-world networks, such as
brain networks, using a concise set of meaningful and computa-
tionally feasible measures. In this section, we will introduce the
prevalent network measures used to evaluate both brain struc-
tural and functional connectivity. Furthermore, we will furnish
a summary and analysis of their applications in existing AD re-
search literature.

Network measures of brain connectivity

Based on existing literature, certain measures are frequently em-
ployed in brain network studies to detect functional integration
and segregation within brain networks, assess the centrality of
individual brain regions or pathways, elucidate the patterns of
local anatomical circuitry, and evaluate network resilience when
confronted with external challenges. In the following sections, we
will offer a comprehensive summary and analysis of these mea-
sures. You can find the mathematical definitions of these com-
plex network measures, encompassing directed/undirected and
binary/weighted networks, in Table 1 .

Measures of functional segregation

Functional segregation in the brain means specialized processing
occurs in closely connected groups of brain regions. Segregation
metrics assess the existence of these groups, often called clusters
or modules, within networks. In anatomical and functional net-
works, these metrics are meaningful. Clusters in anatomical net-
works suggest potential functional segregation, and in functional
networks they show organized statistical dependencies indicating
segregated neural processing.

Simple segregation measures involve counting triangles within
the network; with a great number of triangles indicating segre-
gation. Locally, the fraction of triangles around a single node is
termed a clustering coefficient, which indicates the fraction of
the node’s neighbors are also neighbors to each other (Watts and
Strogatz, 1998). The network’s mean clustering coefficient reveals
the prevalence of clustered connectivity around individual node,
but this measure can be skewed by nodes with fewer connections.
An alternative measure, transitivity (Newman, 2003), collectively
normalized, avoids this bias. Advanced segregation measures go
beyond identifying tightly connected groups; they also unveil the
size and composition of these groups, forming the network’s mod-
ular or community structure. This entails dividing the network
into groups of nodes with maximum internal links and minimum
external links (Girvan and Newman, 2002). Modularity (Newman,
2004b) quantifies how effectively the network separates into these
distinct, nonoverlapping groups. Optimizing the modular struc-
ture is typically done with algorithms, which may sacrifice some
accuracy for computational speed. One algorithm proposed by
Newman (2006) is accurate and fast enough for smaller networks.
Another algorithm (Blondel et al., 2008) is faster for larger net-
works and can identify hierarchical modules. These algorithms
have been generalized to weighted (Newman, 2004a) and directed
(Leicht and Newman, 2008) networks. Some algorithms even iden-
tify overlapping modular structures, recognizing nodes that be-
long to multiple modules simultaneously (Palla et al., 2005).

Measures of functional integration

Functional integration in the brain refers to its capacity to rapidly
combine specialized information from different regions. This con-
cept is evaluated using integration measures, typically based
on the concept of “path,” which estimate how effectively brain
regions communicate. Paths represent sequences of connected
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Table 1: Mathematical: definitions of complex network measures.

Basic concepts and notation

N: set of network nodes, n: number of nodes.

L: set of network links, I: number of links.

(i,): link between nodes nodes i and j, (i,j € N).

a;: connection status between nodes i and j (a; = 1 when link (i, j) exists, a;; = 0 otherwise; a; = 0 for all 1).
Each undirected link was counted twice for the total number of links to avoid ambiguity with directed links.

Measures of functional segregation

Number of triangles Binary and undirected: t; = % > nen @ijQinjn

around node i weighted: 1 = 5 37 oy (wl)wlhw}h)%

directed: t7 = 5 3 oy (@ + a5i) (@i + ani) (@jn + ar;)
Clustering Binary and undirected (Watts and Strogatz, 1998): C = } Yien Ci = & Yien £ 2[‘
coefficient Ci: the clustering coefficient of node i (C; = 0 for k; < 2).

2t
1)

Weighted (Onnela et al., 2005) (see Saraméki et al., 2007 for other variants): C¥ = 1 ¥,

n
. . _ t
directed (Fagiolo, 2007): C~ = ZIGN Ry S

Transitivity Binary and undirected (Newman, 2003): T = ﬁ(h)
weighted: T% = %
. , et
directed: T7 = s eyt +1 =07 5 o]

Note that transitivity is not defined for individual nodes.

Modularity Binary and undirected (Newman, 2004b): Q = Z lew — (Z ew)’]

M: the network is fully subdivided into a set of nonoverlappmg modules M.
ey the set of links that connect nodes in moduklekvg with nodes in module v.
Weighted (Newman, 2004a): Q% = £ 3 [wij = " 18mm;

i,jeN
ke

Directed (Leicht and Newman, 2008): Q 1Y (a5 — 1 ]0m, m;
i.jeN
Measures of functional integration
Shortest path Binary and undirected: d;; = Zawew Ayy
length gij: the shortest path (geodesic) between i and j (djj = oo for all disconnected pairs).
Weighted: dif = Z;”WEQH f(Wuw)
f:amap from weight to length.
gL the shortest weighted path between iandj .
Directed: d—> =24 eq.; %
gij: the durected shortest path fromitoj.
Characteristic path ~ Binary and undirected (Watts and Strogatz, 1998): L= 13" L= 1Y ’n”f)*‘d

length L;: the average distance between node i and all other nodes.

: Y
Weighted: LV = 1 3 %

: . _1 Zjenjui 4
Directed: L™ = =3~y =5

=T
PIPLE

Global efficiency Binary and undirected (Latora and Marchiori, 2001): E = 2 3 Ei = 2 3 =52

E;: the efficiency of node i .
,
Weighted: B = 1 ¥, Zaus @l

n—1
: - ez (@7)7"
Directed: E~ =1y, =a i
Small-world brain connectivity
Small-worldness Binary and undirected (Humphries and Gurney, 2008): S = L/rﬂ

Yrand
C and Cyypg: the clustering coefficients.

L and L,,q: the characteristic path lengths of the respective tested network and a random network.

) ey d
Weighted: S¥ = =tdd
rand

; o _ S vand
directed: 57 = A4M¢

ran
(Small-world networks often have S > 1.

Measures of centrality

Degree Binary and undirected: ki = 3°; aij
weighted: k¥ = 37 wij
directed (out-degree of i ):v kM =35 i
directed (in-degree of 1): k" = 3"y ;i

Within-module Binary and undirected (Guimera and Amaral, 2005): $; = w
degree z-score m;: the module containing node i.
ki (m;): the within—module degree of i.
k(m;) and o*(™): the respective mean and standard deviation of the within-module m; degree distribution.

Weighted: 1" = #
directed (out-degree): 2 = %ﬁ:tw
ki (m;) k" (m;)

En (m)

directed (in-degree): +* =
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Table 1: Continued

Participation Binary and undirected (Guimera and Amaral, 2005): y;=1— Y (%"))2
coefficient ) 2 meM

weighted: y/ =1—- Y (“—)

meM '
i . yout kput(m) 2
directed (out-degree): y?*' =1~ 3" (“mr?) -
meM !
gy 2
Directed (in-degree): y" =1 3 (k‘kl(,f")) .
meM !
Measures of network resilience
Degree distribution Binary and undirected (Barabasi and Albert, 1999): P(k) = >~ p(k’)
k'=k
P(k): the probability of a node having degree k'
c weighted: P(R¥) = > p(k)
k' =kv
directed (out-degree): P(k™') = Y p(k')
k' >kout
directed (in-degree): P(k") = Y p(k)
k' >kin

Average neighbor Binary and undirected (Pastor-Satorras et al., 2001): ky, ; = %
degree weighted: k¥, = S

directed: k; ; = 72“”(az”(;i’ik(j:gmw:")
Assortativity Binary and undirected (Newman, 2002): r = : 12("”? k;kJ _2[1 el %Oiﬁk’)] -
coefficient 7 X gper 7 REHRT) =171 Eijer 7 RitR))]

oLW = 1 N 2
17 5 e Wk R 17 5 Jwy (9 +2)]

weighted: 1V =

= 1 N2
8 et 30 LR+ 0PI X ey 3w (R 4]

. IR T S (Rl S 1(kam+km)]z
- (i.j)eL RP K] (.t 2 (R i
directed: 1~ = -1 11ROV 4 (kM ] =[1-1 3™, . L (ot 4in
Ziper 2[R HET) T X jyer 2 R+ET]

nodes and links in anatomical networks, depicting potential
routes for information flow between brain regions, while paths
in functional networks represent sequences of statistical asso-
ciations and may not necessarily reflect actual information flow
within anatomical connections. Binary path length is determined
by the number of links in the path, while weighted path length
considers the total sum of individual link lengths. Shorter paths
indicate a stronger potential for integration. The most frequently
used measure of functional integration is the average shortest
path length between all pairs of nodes in the network, known as
the characteristic path length (Watts and Strogatz, 1998). A related
measure is the average inverse shortest path length, referred to
as global efficiency (Latora and Marchiori, 2001). Global efficiency
can be computed even for disconnected networks, where paths
between disconnected nodes are considered infinite, resulting in
zero efficiency. The characteristic path length is primarily influ-
enced by long paths, while global efficiency is primarily influenced
by short paths. It is essential to note that measures such as the
characteristic path length and global efficiency do not account
for multiple or longer paths, which can significantly contribute to
integration in larger and sparser networks (Estrada and Hatano,
2008).

Small-world brain connectivity

Anatomical brain connectivity is believed to address the dual
requirements of functional integration and segregation concur-
rently (Tononi et al., 1994). An ideally structured anatomical net-
work should exhibit both functionally specialized (segregation)
modules and a robust number of intermodular (integration) links.
This configuration is commonly referred to as a “small-world”
network and is widely observed in anatomical connectivity (Bas-
sett and Bullmore, 2006). Moreover, numerous studies investigat-
ing functional brain networks also reveal some degree of small-
world organization. It is generally hypothesized that such organi-

zation represents an optimal balance between functional integra-
tion and segregation (Sporns and Honey, 2006).

Small-world networks are formally defined as networks that
exhibit significantly higher clustering than random networks
while maintaining approximately the same characteristic path
length as random networks (Watts and Strogatz, 1998). In gen-
eral, small-world networks should simultaneously demonstrate
a high degree of segregation and integration. Recently, a metric
called “small-worldness” was introduced to capture this property
in a single statistic (Humphries and Gurney, 2008). While this met-
ric can be valuable for providing a snapshot characterization of a
network ensemble, it may also mistakenly indicate a small-world
topology in networks that are highly segregated but poorly inte-
grated. Consequently, this metric should not be generally regarded
as a replacement for individual assessments of integration and
segregation.

Measures of centrality

Important brain regions, often referred to as hubs, play a crucial
role in facilitating functional integration and enhancing network
resilience to disturbances. These hubs interact with numerous
other regions, and their significance can be evaluated through var-
ious measures of node centrality.

Degree is one of the most prevalent centrality measures. The
degree of a node is the count of links connected to it, which
is essentially the number of its neighbors. Thus, individual de-
gree values indicate the significance of nodes within the network.
It holds a straightforward neurobiological interpretation: nodes
with a high degree have extensive interactions, either structurally
or functionally, with many other nodes within the network. Degree
is particularly sensitive in anatomical networks characterized by
nonhomogeneous degree distributions.

In modular anatomical networks, degree-based metrics that fo-
cus on within-module and between-module connectivity can help
classify nodes into distinct functional groups (Guimera and Ama-
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ral, 2005). The within-module degree z-score is a localized version
of degree centrality within a module. By contrast, the participation
coefficient assesses the diversity of intermodular connections for
individual nodes. Nodes with a high within-module degree but a
low participation coefficient, often referred to as provincial hubs,
are likely instrumental in facilitating modular segregation. Con-
versely, nodes with a high participation coefficient, known as con-
nector hubs, play a crucial role in promoting global intermodular
integration.

Various centrality measures are rooted in the idea that central
nodes play a pivotal role in governing information flow within a
network, often participating in numerous short paths (Freeman
et al., 2002). Closeness centrality, for instance, is defined as the in-
verse of the average shortest path length from a node to all other
nodes in the network. A closely related and often more sensitive
measure is betweenness centrality, which quantifies the fraction
of all shortest pathsin the network that traverse a particular node.
Nodes with high betweenness centrality frequently act as bridges
connecting different parts of the network. The concept of be-
tweenness centrality can also be naturally extended to edges, en-
abling the identification of crucial anatomical or functional con-
nections. Certain algorithms (Brandes, 2001; Kintali, 2008) offer
efficient methods for computing betweenness centrality, greatly
enhancing its computational efficiency.

Measures of network resilience

Anatomical brain connectivity plays a significant role in deter-
mining how neuropathological lesions impact functional brain ac-
tivity. In conditions such as stroke, the extent of functional deteri-
oration hinges on the specific anatomical region affected, whereas
in diseases such as AD, it relies on the resilience of anatomical
connectivity to degenerative changes. Complex network analysis
equips us with tools to assess these network resilience properties
both directly and indirectly.

Indirect measures of resilience gauge anatomical features that
reflect a network’s vulnerability to damage. One of these fea-
tures is the degree distribution (Barabéasi and Albert, 1999). Net-
works with power-law degree distributions may exhibit resilience
against gradual random deterioration but can be highly sensitive
to disruptions of high-degree central nodes. In practice, the de-
gree distributions of most real-world networks deviate from per-
fect power-law distributions. Therefore, the extent to which these
distributions resemble a power law can serve as a valuable indi-
cator of resilience. Another indirect measure of resilience is the
assortativity coefficient (Newman, 2002), which reflects the corre-
lation between the degrees of nodes at opposite ends of an edge.
Networks with a positive assortativity coefficient tend to possess
a resilient core of highly interconnected, high-degree hubs. Con-
versely, networks with a negative assortativity coefficient often
feature widely distributed and thus vulnerable high-degree hubs.
Related measures of assortativity, such as the average neighbor
degree (Pastor-Satorras et al., 2001) and the local assortativity coef-
ficient (Piraveenan et al., 2008), are computed for individual nodes.
Nodes with low scores on these measures can potentially compro-
mise global network function if disrupted.

Direct assessments of network resilience typically involve eval-
uating the network both before and after a disruption. For in-
stance, in the context of a progressive neurodegenerative disease,
patients might undergo longitudinal imaging. Alternatively, dis-
ruptions can be computationally simulated by randomly or pur-
posefully removing nodes and links from the network. The im-
pact of such lesions on the network can then be assessed ex-
amining alterations in the resultant anatomical connectivity or

in the simulated functional connectivity or dynamic activity that
emerges (Alstott et al., 2009). In conducting such resilience tests,
itis advisable to employ measures that are suitable for analyzing
networks with disconnected components. For example, when as-
sessing integration, global efficiency is preferable to characteristic
path length.

Brain network measures in AD study

Graph theory analysis, coupled with a diverse range of network
measures, equips us with valuable tools to quantify network
properties and hence has become a popular approach to study
brain networks in neurodegenerative disorders such as AD. In the
realm of AD research grounded in graph theory, statistical analy-
sis stands out as one of the most frequently employed methodolo-
gies. The core steps involve generating brain connectivity matri-
ces for individuals at different stages of AD progression, calculat-
ing network measures, and applying statistical analyses to detect
significant differences in these measures across various disease
stages. These studies contribute significantly to our comprehen-
sion of how the disease impacts the brain over time.

Researchers explore the effects of AD on the brain networks
from various perspectives by employing multimodal brain con-
nectivity matrices, including structural connectivity (SC), func-
tional connectivity (FC), and other modalities. Some studies spe-
cialize in single modality of brain connectivity (Ebadi et al., 2017;
John et al., 2017; Jalili, 2017; Behfar et al., 2020; Protas et al., 2023),
whereas others undertake comparative examinations involving
multiple types of brain connectivity (Dai et al., 2019). Specific stud-
ies may focus on particular brain regions, while others adopt a
global perspective. In Table 2, we showcase a selection of repre-
sentative studies and encapsulate their pivotal findings.

Moreover, due to variations in factors such as group size, com-
position, the selection of neuroanatomical atlases, and methods
for creating brain connectivity matrices across different studies,
the results among similar investigations often lack consistency.
Therefore, some studies (Martensson et al., 2018; Xu et al., 2022)
have attempted to explore the impact of various factors on graph
measures by comparing different results under distinct experi-
mental settings. This investigation aims to shed light on the sta-
bility of graph theoretical measures. Such efforts provide valuable
insights into the application of graph theory in brain disease re-
search and the analysis and interpretation of related findings.

Deep Graph Neural Network-Based
Approaches for AD Prediction

Recent strides in deep learning have introduced potent and effi-
cient models for brain network analysis, offering several substan-
tial advantages over traditional statistical approaches. First, deep
learning models possess the remarkable ability to autonomously
extract relevant features from raw data. In the context of brain
network analysis, this means they can automatically discern vi-
tal patterns and intricate relationships within complex connec-
tivity data, eliminating the need for laborious manual feature en-
gineering. This proves especially advantageous when dealing with
large-scale, high-dimensional datasets. Second, brain networks
often exhibit intricate, nonlinear relationships between nodes and
edges, which can be challenging to model using linear techniques.
Deep learning models, with their brilliant ability to capture non-
linearities through activation functions and multiple layers, are
well-suited to addressing this complexity. Third, deep learning
models exhibit impressive scalability, enabling them to adeptly
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Table 2: Summary of notable graph theory-based studies in AD research.

Work Sample Connectivity Main findings
Ebadi et al. (2017) 15NC, 15MCI, Nodes: Brodmann Acc: AD vs. NC = 80%, AD vs. MCI = 83.3%, MCI vs. NC = 70%
15AD areas AD vs NC (most important features): betweenness centrality at
SC: connection Brodmann Area 2, eigenvector centrality at Brodmann Area 1, load
density of fiber centrality at Brodmann Areas 2 and 27, and closeness centrality at

derived from DTI

Brodmann Area 1

AD vs MCI (most important features): Katz centrality at Brodmann Area
3, degree and closeness centrality at Brodmann Area 5, node
redundancy coefficient and load centrality at Brodmann Area 4.

MCI vs NC (most important features): hit centrality, page rank,
betweenness centrality, and load centrality at Brodmann Area 6 along
with hub centrality at Brodmann Area 1.

John et al. (2017) 100AD, 135NC Nodes: 87 cortical gray
matter and
subcortical regions
SC: correlations of
the corresponding

regional volumes

AD: (first sub-graph) clustering coefficient|, sigma (the ratio between the
clustering coefficient and the characteristic path length)|
AD: (second sub-graph) Small world propensity (SWP (Feldt Muldoon
et al., 2015))1
Neurodegenerative processes impact volumetric networks in a
nonglobal fashion.

Jalili (2017) 23AD, 25NC Nodes: EEG sensor AD: local efficiency |, modularity| (Global)
locations The optimal set of measures: edge betweenness centrality, global
FC: Pearson’s efficiency, modularity, and synchronizability.
correlation
coefficient of EEG
signals
Dai et al. (2019) 47AD, 40NC Nodes: AAL-611 atlas FC of AD: clustering coefficient|, characteristic path length4, normalized
SC: connection clustering coefficientt, normalized characteristic path lengtht, and
density of fiber small-worldnet (Global)
derived from dMRI SC of AD: disrupted the characteristic path length, intramodular
FC: Pearson’s connections in the DMN, degree| in the right middle frontal gyrus,
correlation insula, and middle temporal gyrus.
coefficient of rs-fMRI AD: the coupling of the FC and SC in connections of the default mode
network and the rich club 1.
Behfar et al. (2020) 15 young NC Nodes: Brainnetome Senior NC and MCI (compared to young NC): degree centrality (degree)|
15 senior NC Atlas at 3 ROL the right superior parietal lobule, rostral area 7 (Brainnetome
15 MCI FC: Pearson’s label: SPL_R_5_1), the right and left precentral gyri caudal dorsolateral
correlation area 6 (Brainnetome label: PrG_R_6_2 and PrG_L_6_2)

coefficient of rs-fMRI

MCI (compared to Senior NC): degree centrality (degree)| in the right
middle frontal gyrus, lateral areal 10 (Brainnetome label: MFG_R_7_7).

Nodes: AAL atlas
tau network: the
weight indicates the
difference in tau
deposition between
two nodes

Protas et al. (2023) 32AD, 115MCI,

223NC

Global strength, global efficiency, and limbic strength in the tau networks
are higher in AD subjects (AD > MCI > NC).
Global efficiency and global strength are significantly correlated with
memory in the NC group.

The arrows refer to an increase (1) or a decrease ({) of the indicated measures.

Abbreviations: DTI: diffusion tensor imaging; Acc: accuracy; NC: Normal control.

handle vast and intricate datasets, a common characteristic of
brain connectivity data. This scalability ensures that deep learn-
ing methods can efficiently manage the growing volumes of data
generated in neuroscience research. Fourth, brain network anal-
ysis frequently involves integrating various data types, such as
structural and functional modalities. Deep learning models can
seamlessly integrate and learn from multiple modalities, provid-
ing a holistic view of brain connectivity. These compelling advan-
tages have propelled the use and design of effective deep models
in brain network studies into a popular and burgeoning field of
research.

Within the expansive domain of deep models, deep graph con-
volutional neural networks (GCNs) (Kipf and Welling, 2016; Wu
et al., 2020; Zhang et al., 2022, 2020b; Defferrard et al., 2016) have
emerged as a prominent choice. This prominence is attributed to
their exceptional proficiency in handling complex graph data, a

quality that greatly enhances their utility in brain network anal-
ysis. The fundamental operating principle of a GCN is elucidated
in Fig. 2. GCN starts with the representation of data as a graph,
which can be depicted using a topology (7), outlining the connec-
tions between nodes, and a feature matrix (X), capturing the dis-
tinctive features associated with each node. The core of GCN is
the iterative message-passing process via graph convolution. This
process can be formulated by G(T, X, W), where W = {Wy, W, -,
W)} is the weight matrix of each convolution layer, H' is the out-
put of the Ith convolution layer, and f(-) is the nonlinear activation
function.

G(T. X, W)= f (THHW1> 8)

u f(THHW1>, 1>0
_{ X, 1=0
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Figure 2: The fundamental operation of a GCN. A GCN functions by first representing data as a graph, with the entire graph depicted through a
topology illustrating node connectivity and a feature matrix. It then conducts iterative message passing through graph convolution, where nodes
gather information from neighbors, subject it to transformation via learnable weights (W;) and nonlinear activation functions [f(-)], and subsequently
update their representations, with the final node representations used for various tasks like node or graph classification.

In each convolution layer, W) acts like a filter to select and ag-
gregate information (features) from neighboring nodes along the
topology and subsequently convey it back to the center node, up-
dating its representation (Fig. 2). The incorporation of a nonlinear
activation function in each convolution layer is pivotal for captur-
ing and learning intricate patterns and relationships embedded
in the graph data. Through the stacking of multiple graph convo-
lutional layers, information from high-order neighbors, indirectly
connected via other nodes, can be propagated along graph topol-
ogy. After the iterations, the final node representations can be
used for various tasks, such as node classification or graph classifi-
cation. In essence, GCN processes graph-structured data by itera-
tively passing messages between nodes, allowing each node to in-
corporate information from its neighbors and update its own rep-
resentation. This process leverages the graph structure to capture
complex relationships and dependencies within the data, making
it particularly useful for tasks involving graph-structured data.

Expanding on the foundational GCN graph convolution, vari-
ous studies have explored innovative approaches in both struc-
turing graph data and designing model architectures, tailored to
a diverse range of applications. For graph data organization, some
studies employ population-level graphs as input (Parisot et al,,
2018; Huang and Chung, 2022; Li et al, 2022; Zhu et al., 2022),
where each node represents an individual subject, and the edges
denote correlations between subjects. For instance, Parisot et al.
(2018) employed a sparse graph representation of the population,
associating nodes with imaging-based feature vectors and inte-
grating phenotypic information as edge weights. Unlike Parisot
et al. (2018), which manually constructed a static affinity popula-
tion graph, (Huang and Chung, 2022) introduced a framework for
automatic learning to build a population graph with variational
edges. Similarly, Zhu et al. (2022) also adopted a dynamic graph
learning strategy to adapt the neighborhood relationship of the
population graph, generating robust node embeddings and refin-
ing correlations among all data points to enhance classifier per-
formance. Moreover, Li et al. (2022) enhanced interpretability by
incorporating feature and sample interpretation modules into the
population graph learning process, facilitating the interpretation
of feature and sample significance. By contrast, other studies use
individual-level graphs (Zhang et al., 2021, 20203, 2019), with each
node representing a ROI, and the edges signifying the connectivity
or correlation between these ROI. For example, Zhang et al. (2021)

proposed a deep brain connectome to simultaneously model indi-
vidual structural and functional networks for brain disease anal-
ysis. The structural network served as the initialization of graph
topology, while the functional information iteratively updated the
topology to maximize its classification power. The resulting deep
connectome effectively integrates various network connectomes
and characterizes their deep relationship as an “individual con-
nectome signature.” Both Zhang et al. (2020a) and Zhang et al.
(2019) followed a similar concept, constructing individual brain
networks by integrating both structural and functional networks.
However, they employed distinct neural network architectures to
handle fMRI time-series data. Zhang et al. (2019) utilized recur-
rent neural networks (RNNs) to capture temporal dependencies
within fMRI sequential data, whereas Zhang et al. (2020a) incor-
porated an attention layer to extract disease-related features for
brain network construction, enhancing the interpretability of the
deep model. Moreover, specific studies adopt a hierarchical ap-
proach, concurrently incorporating both individual and popula-
tion graphs (Jiang et al., 2020; Li et al., 2021a). In Jiang et al. (2020),
two GCNs were employed to model the individual brain functional
network and the whole population network, respectively. A com-
pact representation of individual brain network, employed as the
node embedding, was learned automatically by a graph-level em-
bedding learning GCN. Simultaneously, the population network
was acquired by updating each node embedding in the graph data
through aggregating the representations of its neighbors and it-
self. To better study the multi-scale nature of the brain network,
Li et al. (2021b) applied multiple thresholds to generate multiple
connectivity networks, reflecting different levels of the topologi-
cal structure of the original connectivity network. The population
network was also constructed using all subjects with the same
sparsity level. In general, various types of graph, including indi-
vidual, population, or multi-scale graphs, are constructed to rep-
resent brain networks from a data perspective. To enhance the ca-
pacity of GCNs in handling complex multi-scale and multi-modal
brain networks, advanced models or techniques such as RNNs
(Zhang et al.,, 2020a, 2019), attention layers (Zhang et al., 2020a),
and transfer learning (Li et al.,, 2021b) have been integrated into
GCNs from a model architecture perspective. Moreover, innovative
improvements to the vanilla GCNs, such as dynamic GCNs designs
(Zhuetal, 2022; Zhang et al., 2021), which adaptively update graph
topology or learn task-specific node/edge features during training,
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Table 3: Summary: of Notable GCN-Based Research in AD Study.

11

Work

Dataset and
sample size

Input graph

Model

Performance
(accuracy)

Parisot et al.
(2018)

Zhang et al. (2019)

Zhang et al.
(2020a)

Jiang et al. (2020)

Lietal. (2021Db)

Zhang et al. (2021)

ADNI: 289pMCI,
251sMCI

ADNI:
116NC, 93MCI

ADNI:
116NC, 93MCI

ADNIL
99MCI, 34AD

ADNIL
99MCI, 34AD
ABIDE:
403ASD, 468 NC

ADNIL
116NC, 98MCI

Graph: population
. Node: Single subject with
imaging based (T1) feature
vectors.

Edge: weighted using phenotypic

information.
Graph: individual.

Node: atlas-based brain region
with rs-fMRI signal as features.

Edge: SC.
Graph: individual.

Node: atlas-based brain region
with rs-fMRI signal as features.
Edge: learnable, integration of SC

and rs-fMRI signal.
Graph: both individual and
population
. Individual: FC
. Population: node is single
subject; edge is the learned
embedding from FC
Graph: both individual and
population.
Individual: FC.
Population: node is single
subject; edge is the learned
embedding from FC.
Graph: individual, dynamic.

Node: atlas-based brain region

with FC as features.
Edge: deep fusion of both

structural and functional data,

Vanilla spectral GCNs
(Defferrard et al., 2016)

GCRNN: combination of
RNN and GCN

Deep cross-model
attention network,
which combine RNN,
GCN, and attention
layer

Hi-GCN: a hierarchical
GCN framework

TE-HI-GCN: an ensemble
of transfer hierarchical
GCN.

Transfer is conducted
between different
diseases: AD and ASD

Deep brain connectome,
multi-modal dynamic
GCN

pMCI/sMCI: 0.80

NC/MCL: 0.935

NC/MCIL: 0.983

AD/MCI: 0.785

ASD/NC: 0.765
AD/NC: 0.894

NC/MCI: 0.927

dynamically updated.
Huang and ADNI: 289pMClI, Graph: population. Vanilla spectral GCNs pMCI/sMCI: 0.7940
Chung (2022) 251sMCI Node: Single subject. (Defferrard et al., 2016) NC/MCI/AD:
TADPOLE: Edge: learnable variational edges 0.8779
557(NC + MCI + AD) using imaging and nonimaging
data.
Zhu et al. (2022) ADNL: Graph: population, dynamic. Dynamic GCN, coupling Refer to Fig. 2 in the
51AD, 52NC, Node: Single subject with gray interpretable feature paper
43pMCI, matter volume as initial feature learning with dynamic
56sMCI and dynamically updated. graph learning
Edge: correlation of samples, and
dynamically updated.
Lietal. (2022) ADNI: Graph: population. FSNet: a novel dual AD/NC: 0.844
226NC, Node: Single subject with gray interpretable GCN, can AD/MCI: 0.736
226pMCI, matter volume as features. simultaneously select NC/MCI: 0.718
163sMCI, Edge: correlation of samples. significant features and sMCI/pMCI: 0.702
186AD samples

Abbreviations: SMCI: stable mild cognitive impairment; pMCI: progressive MCI; ASD: autism spectrum disorder.

have been introduced, providing significant advantages over static
counterparts. We have curated a selection of representative works
and summarized them in Table 3 for reference.

Discussion and Conclusion

Recent advancements in AD research highlight the intricate con-
nection between AD pathology and brain networks. Consequently,
a substantial amount of research has focused on utilizing brain
network-based approaches for the classification and prediction of
AD conversion. This review specifically focuses on studies rooted

in graph theory and deep graph convolutional neural networks.
Numerous AD-related brain connections have been unveiled, ac-
companied by the introduction of more robust deep models. The
ongoing exploration of connectome-based research has undeni-
ably yielded valuable insights into graph data organization, anal-
ysis, and model design, laying the foundation for promising future
investigations. To further deepen our understanding of AD, sev-
eral critical gaps exist that require attention in future research
endeavors:

Interpretability: The inherent complexity of GCNs, like other
deep neural networks, renders them opaque black-box
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models. Interpreting these models necessitates a thor-
ough understanding of the mechanisms governing their
decision-making processes. In the realm of connectome-
based AD studies, unraveling the reasoning behind the pre-
dictions made by GCN-based models is not just desirable,
it is imperative. This interpretability not only facilitates
the comprehension of the intricate links between brain
networks and AD development mechanisms but also re-
inforces the trust that healthcare professionals and pa-
tients can place in these models. While strides have been
made in developing interpretation techniques for graph-
based deep models, such as GNNExplainer (Ying et al., 2019)
and GraphLIME (Huang et al, 2022), evaluating the inter-
pretability of these models remains a formidable challenge.
This challenge stems from our limited knowledge of both
brain networks and AD, making it crucial to continue ex-
ploring innovative approaches to enhance the interpretabil-
ity of GCNs in medical domain.

Multimodality: To comprehensively capture the intricacies of
brain networks within the context of brain diseases such
as AD, it is vital to consider multimodal data. This involves
integrating various types of data, including structural and
functional connectivity, alongside clinical and genetic in-
formation, to form a holistic understanding of the disease’s
multifaceted nature. While previous research has made nu-
merous attempts to fuse diverse modalities (Zhang et al.,
2021, 2020a, 2019; Lyu et al., 2021; Wang et al., 2023), most
existing multimodal studies predominantly focus on dif-
ferent imaging modalities. However, the growing accessibil-
ity of biomedical data from extensive biobanks, electronic
health records, medical imaging, and wearable and ambi-
ent biosensors provides a significant opportunity to pro-
pel multimodal studies forward. Capitalizing on these ad-
vancements, thereis a pressing need for more efficient mul-
timodal deep models that can seamlessly integrate data
from both imaging and nonimaging modalities. This in-
cludes biosensors, genetics, clinical records, and environ-
mental factors. However, due to several key factors, ef-
fectively and seamlessly amalgamating imaging and non-
imaging modalities remains a formidable challenge. One of
the foremost challenges arises from the inherent hetero-
geneity between different modalities. Each modality pos-
sesses unique characteristics, and efficiently harmonizing
and fully exploiting the potential of each modality is a cen-
tral challenge in the design of multimodal models. Addi-
tionally, practical applications often grapple with the issue
of missing modality. Addressing the problem of data in-
completeness and effectively handling such gaps in multi-
modal data remains a critical concern in multimodal analy-
sis. Developing robust strategies to handle missing data and
creating models that can accommodate these real-world
challenges is essential for the success of multimodal ap-
proaches in the study of AD and the whole medical imaging
domain.

In conclusion, this review offers a comprehensive overview of
the dynamic landscape of AD research in the context of brain net-
work analysis. It underscores the pivotal role of brain networks in
elucidating the mechanisms underpinning AD and their profound
impact on the disease progression. The review has shed light on
the rich spectrum of graph-based methods employed in AD in-
vestigations, classifying them into traditional graph theory-based
approaches and cutting-edge deep graph neural network-based

techniques. These methodologies have significantly enriched our
comprehension of AD by unveiling intricate patterns within brain
networks. Consequently, they have opened doors to pioneering di-
agnostic tools, predictive models, and the identification of poten-
tial biomarkers. However, it is crucial to acknowledge that numer-
ous substantial challenges lie ahead. These challenges encompass
issues like interpretability of complex models and the effective in-
tegration of multimodal data, especially in the context of limited
medical datasets. Addressing these hurdles remains paramount
for the continued advancement of AD research and its translation
into clinical practice.
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