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Abstract
The root is an important organ for plants to obtain nutrients and water, and its phenotypic 
characteristics are closely related to its functions. Deep learning-based high-throughput in-
situ root senescence feature extraction has not yet been published. In light of this, this 
paper suggests a technique based on the TransFormer neural network for retrieving 
cotton’s in-situ root senescence properties. High-resolution in-situ root pictures with 
various levels of senescence are the main subject of the investigation. By comparing the 
semantic segmentation of the root system by general Convolutional Neural Networks and 
TransFormer Neural Networks, SegFormer-UN (large) achieves the optimal evaluation 
metrics with mIoU, mRecall, mPrecision and mF1 metrics values of 81.52%, 86.87%, 
90.98% and 88.81% respectively. The segmentation results indicate more accurate 
predictions at the connections of root systems in the segmented images. In contrast to two 
algorithms for cotton root senescence extraction based on deep learning and image 
processing, the in-situ root senescence recognition algorithm using the SegFormer-UN 
model has a parameter count of 5.81M and operates at a fast speed, approximately four 
minutes per image. It can accurately identify senescence roots in the image. We propose 
that the SegFormer-UN model can rapidly and non-destructive identify senescence root in 
in-situ root images, providing important methodological support for efficient crop 
senescence research.

MAIN TEXT

1. Introduction
The root is composed of fine root and their root hairs, which are the key tissues that 
absorb soil nutrients and water, directly affecting the functions of the root [1]. The root is in 
direct contact with the soil, and because of this, its features adapt to environmental 
changes before those of above-ground plants, giving a clear indication of how crops are 
growing [2-3]. Root senescence is an important root trait that significantly affects the 
process of aboveground senescence [4]. And exploring the law of root senescence is an 
important aspect of revealing the senescence of aboveground plants.
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The basis for root senescence research is the acquisition of dynamic in situ root pictures. 
Finding and identifying roots is challenging due to the soil’s shade and lack of 
transparency. Conventional manual excavation techniques including digging, soil coring, 
and soil column methods [5–7] cannot be used to research the senescence law of roots. The 
in situ cultivation method cultivates plants while allowing for the observation of root 
characteristics in an undisturbed environment [8]. In recent years, the commonly used in-
situ cultivation methods include aeroponics, hydroponics, gel culture, and germination 
paper culture [9–12]. These techniques have some usefulness for researching in-situ roots, 
but using soil as a culture medium is more challenging, and the quick cultivation cycle 
makes it impossible to examine the complete plant life cycle. The minirhizotron method is 
an old in-situ root research technique that uses dirt as a culture medium, however, it has 
drawbacks such as high costs, small in-situ root pictures, and inefficient collection [13-14]. 
In contrast, methods such as X-ray Computed Tomography (XCT) [15], magnetic resonance 
imsenescence (MRI) [16], ground penetrating radar (GPR) [17], and electrical capacitance 
(EC) [18] have also been reported, but they are plagued by low imsenescence quality [19]. In 
contrast to earlier methods, the digital imsenescence device method [20,21] uses a high-
resolution image acquisition device that has been widely used for root acquisition, and 
offers the advantages of being less expensive, easier to install, and demonstrating 
imsenescence. To get in-situ root images of crops throughout their whole growth period, 
which can be used for studies on root senescence, this study makes use of the RhizoPot, 
which the team developed in the early stages [22,23]. 

Root identification is an approach to root phenotypic research, and traditional recognition 
methods include manual delineation and semi-automatic interactive recognition. The 
manual representation suffers from issues including low efficiency, a heavy workload, and 
a high rate of result error [24]. The researcher’s visual observations serve as the foundation 
for the root semi-automatic interactive software, and the auxiliary software identifies the 
roots, which can increase job productivity and lower labor expenses. However, relying on 
the arbitrary skill and practical knowledge of manual root separation makes it challenging 
to achieve high-throughput in-situ root image recognition [25,26]. 

A deep learning-based semantic segmentation approach speeds root identification research 

[27]. And by continually extracting the features from the image’s region of interest, this 
technique achieves pixel-by-pixel categorization of the image. Since it was the first 
semantic segmentation model, FCN has produced positive results [28]. Based on this 
approach, Shoaib Kamal et al. accomplished weed-crop segmentation [29]. The processing 
results for FCN are not fine enough, and the relationship between the pixels is not taken 
into account. To achieve end-to-end training with superior training results than FCN, 
SegNet utilizes a symmetric encoder-decoder structure based on FCN and adds nonlinear 
upsampling [30]. SegRoot, a high-throughput root analysis tool created by Tao Wang and 
colleagues that distinguishes between the soil and the root system, is based on the SegNet 
model [31]. Originally developed as a segmentation model in the same year, UNet was first 
applied to the recognition of medical images. With skip connection structures added 
between levels, UNet is a U-shaped structure based on an encoder-decoder that integrates 
low-level characteristics and high-level semantic information to increase segmentation 
accuracy and make it more appropriate for small datasets [32]. As vascular tissue and the 
crop root system architecture (RSA) are comparable, the model was applied to root 
identification. For instance, better UNet models were used to build root detection tools 
like ChronoRoot, RootPainter, RootDetector, etc [33–35]. Pyramid pooling, on which 
PSPNet is built, aggregates the context data of many receptive fields and enhances the 
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ability to gather global information [36]. Based on enhanced PSPNet, Rui Zhang and 
colleagues implemented agricultural regional segmentation [37]. To reduce model 
parameters and increase accuracy, Google’s DeepLabV3plus model leverages Depthwise 
separable convolution and includes an encoder and decoder structure based on V3 [38]. In 
an earlier study conducted by our team, the enhancement of upsampling based on the 
V3plus network was documented [39,40]. Convolutional neural networks are the foundation 
for root feature extraction currently, but deeper networks, more input parameters, and 
more computation are needed to optimize and improve semantic segmentation models 
[41,42].

Li et al., through improvements to UNet, achieved pixel accuracy of 0.9917, Intersection 
Over Union of 0.9548, and F1-score of 95.10 in the task of peanut root recognition [43]. Lu 
et al. achieved pixel accuracy (PA) of 97.7 in segmenting chili pepper roots, with an 
average F1-score over 90 [44]. Shen et al., by enhancing deeplabV3plus for cotton root 
segmentation, reported F1-score, recall, and precision values of 0.9773, 0.9847, and 
0.9702, respectively. Compared with the above papers, this study compares the two types 
of root segmentation models, and the data used are from real root images with the same 
configuration environment, and the experimental results obtained were relatively accurate.

The machine translation issue was addressed in the initial proposal for the attention 
mechanism [45]. To process NLP, the Google team created a TransFormer neural network 
that is entirely based on the attention mechanism block and uses the multi-head self-
attention mechanism in place of convolution [46]. The long-distance dependence issue is 
resolved by the TransFormer neural model, which is capable of performing parallel 
computations. Since the structure of the NLP input data is different from the structure of 
the picture data, it adopts a sequence structure. It has been published on how to apply 
TransFormer neural networks to the field of picture recognition [47]. This methodology 
achieves picture categorization by converting the image’s pixel and location data into a 
sequence via a patch operation. Hamoud Alshammari used this model to implement the 
Olive Disease Classification issue for plant disease detection [48]. Based on this model, 
Jiqing Chen et al. finished classifying maize seeds [49]. The Vision TransFormer neural 
model can process images, but it has drawbacks, including a lot of parameters and 
calculations and a finite number of model stacks. Swin TransFormer (Swin) uses the 
window self-attention module and constructs a hierarchical structure to tackle the 
challenging problem of self-attention computing. Image data can now be transmitted 
between windows thanks to the Shifted Windows Multi-Head Self-Attention (SW-MSA) 
structure [50], broadening the range of applications for TransFormer, including the 
detection of plant diseases, the identification of weeds, and the detection and identification 
of animals [51–54].

The visual attention mechanism model has a stronger ability to capture global receptive 
fields, extract more contextual information, and have good modal fusion ability, which has 
been widely used in agriculture[55]. Morphological information on color differences within 
plant tissues can be extracted based on RGB images [56], such as the analysis of sorghum 
senescence based on the degree of greenness in leaf tissues in the context of nitrogen and 
water availability [57], and the study of chlorophyll degradation during the senescence 
process of wheat and madder [58]. Typically, changes in root color indicate the degree of 
root senescence, and when the root turns black, it is thought to be dead [59]. There aren’t 
many reports on deep learning-based root senescence recognition. To accurately identify 
in-situ roots, the goal of this paper is to create a root segmentation model based on a visual 
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attention mechanism. To assess this model’s processing effectiveness, we compare it to 
two widely used models: the convolutional model and the TransFormer model. The 
tracking and extraction of time-series root image characteristics are also lacking in root 
phenotypic investigations, and the present dynamic root identification is manually 
extracted by software during the root growth phase [60], which has issues with high cost 
and poor accuracy. In this study, full-fertility root pictures were precisely identified using 
this model by applying varying levels of nitrogen stress, which offers fresh perspectives 
for the investigation of crop time-series root dynamics properties. 

2. Materials and Methods
The Crop Growth Regulation Laboratory at Hebei Agricultural University (Baoding City, 
Hebei Province, 38.85°N, 115.30°E) has an artificial climate chamber where this 
experiment was conducted. Figure 1 depicts the proposed method’s flow. To begin with, 
the root system time-series photos are obtained, and the dataset is created and tagged with 
two data kinds. Data type 1 is root binary annotation and data type 2 is root senescence 
annotation. Subsequently, the improved model SegFormer-UN proposed in this paper is 
implemented for root segmentation training based on data type 1, and finally the senescent 
root recognition training is implemented based on data type 2. 

Fig1. The Overall Process of Dataset Acquisition and Model Training
2.1 Data acquisition

In-situ root image acquisition was acquired using a high-throughput in-situ root research 
device (Rhizopot) (Figure 2A), which consists of a root’s growth device, and a flatbed 
scanner (Epson Perfection Version 39, Suwa, Japan) and a laptop. The root growth device 
is a trapezoid-like device composed of acrylic plates and attached to a scanner. The front 
of the device is 20 cm wide and 30 cm high, the side is 8 cm wide and the top protrusion is 
6 cm high. The growth device and scanner are at an angle of 60° to the ground and 
covered with a black straight plate to prevent light exposure. The flatbed scanner was 
connected to a PC. And multiple scanner devices could be connected on the PC side 
through Epson’s dedicated API (Figure 2B), and the final output image of the scanning 
device was in JPEG format. 

As the object of study, the cotton plants were cultivated in two levels of nitrogen 
concentration soil: low nitrogen soil environment 0g N/kg-1; and Normal soil environment 
(urea N fertilizer) 138 mg N/kg-1 (Zhu et al., 2022). In addition, 138 mg N/kg-1 soil 
(superphosphate), and 138 mg N/kg-1 soil (potassium chloride) were applied to all soils. 
The greenhouse was maintained under the following environmental conditions:14/10 h 
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(day/night), 28/25°C (day/night), daytime light intensity 600μmol·m-2·s-1, and relative 
humidity 45-50%. Other cultivation conditions are as shown in Zhu et al., paper [61].

Image acquisition involved continuous capturing over a period of 100 days from the 
beginning of the crop growth stage. The pixel size of the image acquisition was 1200 dpi 
(317.5 mm), with a resolution of 10200×14039 and a RGB image depth of 24 bits. The 
images were formatted as JPEG. There are 8 sets of root images, each consisting of over 
100 images. Due to the unreliable factors during the scanning process, images containing 
noise and unclear content were excluded, limiting each set to 100 images. In order to 
complete the training of the model, a hundred images were randomly selected from the 8 
sets for annotation. The selected images were divided into training sets, validation sets and 
test sets with proportions of 70%, 20%, and 10%, respectively. The remaining images 
were used to assess the actual performance of the model. Adobe Photoshop CC 2020 
(Adobe Inc., San Jose, CA, United States) was used for image annotation. The annotation 
process involved opening the images with Adobe Photoshop, creating a new layer, using 
the lasso tool to select the roots for annotation, and filling the selected roots with white 
using the paint bucket tool. This process was repeated until all root annotations were 
completed, and the soil background was filled with black. The annotation of two types of 
data is illustrated Figure 2C. Four randomly selected localizations are shown for example 
diagrams of binary and senescence labeling.

Fig2. Image acquisition device and annotation method, (a) Image acquisition device, (b) Cluster acquisition, (c) Two annotation methods

Root Binary Annotation Dataset (RB): To finish training the model, the necessary 
dataset must be labeled. The root is symbolized in the labeled images by the color white, 
which has the color value [255,255,255]. The soil background is represented in black with 
a color value of [0, 0, 0]. The image is in PNG format.  The actual annotated images, as 
shown in the binary label, took approximately 3 hours for annotation per image. Due to 
the high resolution of the images in the training set, the original images are cropped into 
smaller images using windows of size 768×768 dpi. In cases where the original image size 
is less than 768×768, black pixels are used to fill the gaps. The cropped real images and 
masks can fit completely after cropping. After cropping 100 large images, a total of 18883 
smaller images are obtained. These are divided into three datasets using a ratio of 70%, 
20%, and 10%, resulting in a training set of 13216 images, a validation set of 3778 
images, and a test set of 1889 images. During model training, to ensure compatibility with 
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the input requirements of the model, the images are resized to 512×512 dpi during the 
image reading stage. 

Root Senescence Annotation Dataset (RS): In order to complete the labeling of the root 
senescence and reduce the labeling time, professional agronomy experts classify actual 
root systems based on binary images. The labeling categories are divided into four 
categories: soil as the background is represented in black with the color value of [0,0,0]; 
normally growing root systems are represented in green with the color value of [0,255, 0]; 
senescent roots are represented in red with the color value of [255,0,0]; and the main roots 
are represented in white with the color value of [255,255,255]. The annotation of aging 
roots requires approximately 1 hour per image. Similarly, to manage the large image size, 
the entire image is cropped into smaller images with a size of 768×768 dpi. After 
cropping, the training set consists of 2088 images, the validation set has 300 images, and 
the test set has 600 images. Additionally, the images are resized to 512×512 dpi during the 
reading stage. 

2.2 Model structure

This paper utilizes a U-shaped encoder and decoder structure and is based on the 
SegFormer model [62]. The encoder structure starts by extracting features through four 
TransFormer blocks, halving the size of the feature map after each extraction, and saving 
the output feature map of each block for feature fusion in the decoder. Both the encoder 
and decoder have four layers and are symmetrical. The decoding process entails stitching 
the TransFormer block’s output feature map, fusing it using Convolution, and then up-
sampling to finish downscaling and dimensionalizing the image. The pixel-by-pixel 
classification of the image is finally finished by the segmentation head, and Figure 3 
depicts the model’s overall structure. This model employs two distinct backbones (Small 
and Large), whose depth varies, and whose model layers are deeper for Large than for 
Small.

 Fig3. The overall structure diagram of the model

2.2.1 The TransFormer block of the encoder

In this study, the Overlapped Patch Merging method is used to process the VIT’s Patch 
Merging method, which can guarantee the local continuity of these patches at each stage 
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of feature extraction. The patch interacts during feature extraction by varying patch size 
(K), stride between two adjacent patches (S), and padding size (P). Setting K=7, S=4, P=3 
for the initial picture input and K=3, S=2, P=1 for the subsequent phases will complete 
this operation. The above operation enables to obtain a convolution-like multi-scale output 
map in different feature processing stages after a given input image, assuming that the 
pixel size of the input image is 𝐻 × 𝑊 × 3 and the size of the feature map at different 
stages is as shown in Equation 1:

𝐻

2𝑖 + 1 ×
𝑊

2𝑖 + 1 × 𝐶𝑖   𝑖 ∈ {1,2,3,4} #(1)

𝐶 in the formula denotes the image dimension of each stage.

Efficient Self-Attention: The original single attention (SA) module is three times the 
sequence and input into SA (Q, K, V) for calculation, 𝑄 = 𝑍𝑊𝑄 K = 𝑍𝑊𝐾   V = 𝑍𝑊𝑉, 𝑊𝑄
 𝑊𝐾 𝑊𝑉 ∈ ℝ𝐶 × 𝑑, Where Q/K/V represents the weight matrix; L represents sequence 
length, 𝐶 represents hidden channel size, and 𝑑 represents output channel size. The final 
SA calculation is shown in Equation 2:

𝑆𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝑊𝑄(𝑍𝑊𝐾)𝑇

𝑑𝐾 )(𝑍𝑊𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇

𝑑𝐾)(𝑉)#(2)

 𝑑𝐾 is the dimension of K, which is to prevent the inner product from being too large.

To improve the calculation efficiency, the calculation is simplified by reducing the K 
series, such as Equations 3 and 4:

𝐾 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝐿
𝑅,𝑑 ∙ 𝑅)(𝐾)#(3)

𝐾 = 𝐿𝑖𝑛𝑒𝑎𝑟(𝑑 ∙ 𝑅,𝑑)(𝐾)#(4)

 𝑅 represents the reduction ratio, 𝐾 is to reshape the dimension to 
𝐿
𝑅 × (𝑑 ∙ 𝑅), and then 

through 𝐿𝑖𝑛𝑒𝑎𝑟, 𝐾 is reduced from 𝑑 ∙ 𝑅 dimension to 𝑑 dimension, and finally 𝐾 ∈ ℝ
𝐿
𝑅 × 𝐶.

Mix-FFN: Reduces the nonlinearity of the function by mixing the feed-forward network 
(FFN) after the Efficient Self-Attention calculation. The calculation formula is such as 5:

𝑥𝑜𝑢𝑡 = 𝑀𝐿𝑃(𝐺𝐸𝐿𝑈(𝐷𝑐𝑜𝑛𝑣3 × 3(𝑀𝐿𝑃(𝑥𝑖𝑛)))) + 𝑥𝑖𝑛#(5)

 𝑥𝑖𝑛 is the input feature map, 𝐷𝑐𝑜𝑛𝑣3 × 3 is the depthwise convolutions with convolution 
kernel 3, 𝐺𝐸𝐿𝑈 is the activation function, and 𝑀𝐿𝑃 is the multi-layer perceptron.

2.2.2 Convolution of decoder
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Convolution is mainly used to complete the segmentation operation in the decoder. The 
decoder used in this paper is similar to UNet, which recovers through convolution 
operations at different scales. Each layer of the decoder is mainly composed of 
upsampling and convolutional layers for feature map fusion and image size restoration. 
Finally, the segmentation head is used to achieve pixel by pixel classification to predict 
the actual root system.

2.3 Extraction method of senescence root

Tasks involving senescence root extraction can be completed using the SegFormer-UN 
(small) suggested in this page. The senescence time series root dataset (RS) is used to train 
the model, which converges after 100 generations of training and infers the properties of 
the senescence root time series. This paper uses the superpixel approach (SLIC) for error 
correction because the shooting environment has an impact on the results of recognition. 
Senescence images are segmented into pixel blocks using the SLIC method, resulting in 
blocks of varying forms. To consistently cover non root pixels and protect the root block 
segmentation outcomes, a black and white prediction image is utilized. Each pixel block’s 
color weight value is calculated, and the color with a higher weight is used to replace the 
original color block. Calculate the senescence root and normal root pixels of each image 
once the temporal dataset has been repaired. Then, fit curves to the two-pixel categories, 
and contrast the results with the actual values. The algorithm is as follows.

Algorithm 1: Extraction Method and Analysis of Senescence Root
Input: Time series images, 𝐴𝑖; The Image array of Binary Root, 𝐴𝑏; The image list, 𝐿𝑖
Output: The Senescence repair image, 𝐴𝑠; Pixel statistics table
1. Stage I: Senescence Root Extraction
2. 𝐴𝑠 = SegFormer-UN (𝐴𝑖)
3. Return 𝐴𝑠
4. Stage II: Senescence Root Image Correction
5. Region size =60 // Superpixel size
6. Ruler = 20 // Superpixel Smoothness
7. Iterate = 50 // Iterations
8. 𝐴𝑠𝑙𝑖𝑐 = Superpixel SLIC (𝐴𝑠, Region size, Ruler, Iterate) // Superpixel SLIC 
Algorithm
9. 𝐴𝑙, class = Image And (𝐴𝑠𝑙𝑖𝑐, 𝐴𝑏) // Image And Algorithm
10. for 𝑖 = 0 →class do
11.    if  𝐴𝑠𝑟[𝐴𝑙 == 𝑖] then
12.       𝐴𝑠𝑟[𝐴𝑙 == 𝑖]=0
13.    End if
14. end for
15. Return 𝐴𝑠𝑟
16. Stage III: Pixel value statistical and analysis
17. Pixel value=255 
18. for 𝑖 = 0 →𝐿𝑖 do
19.    for 𝑗 = 0 → Pixel value do
20.       𝐷𝑖[𝑖] [𝑗] = Len (𝐴𝑠[𝐴𝑠 == 𝑗]) // Calculate the total number of pixels
21.    end for
22. end for
23. 𝐶 = Polyfit (𝐷𝑖) // Polynomial Curve Fitting
24. Return 𝐷𝑖， 𝐶
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Among them, 𝐴𝑠 represents the senescence root matrix, 𝐴𝑠 represents the SLIC segmentation matrix, 
class represents the SLIC segmentation category, 𝐴𝑙 represents the image and algorithm output results, 
𝐴𝑠𝑟 represents the correction matrix, 𝐷𝑖 pixel statistical results, 𝐶 represents the fitting curve results.

2.4 Experimental setup

To compare various semantic segmentation algorithms, a total of seven models are 
selected based on the usability and reproducibility of the code. The four convolutional 
neural networks are UNet, SegNet, PSPNet, and DeepLabV3plus, TransFormer neural 
networks are TransUNet, SwinUNet, and SETR [63-65].

The training and inference of all the above models are based on the Ubuntu 22.10 
Operating System, and the configuration of the system is as follows: the processor is Intel 
i5-12400F (2.5GHz) with 32G RAM, the graphics card model is NVIDIA RTX 3060 with 
12GB graphics memory, and a memory bit width of 192 bits. The deep learning 
framework used for training is Pytorch 11.6.

All models are trained in the same training environment with the same model 
hyperparameter values to ensure fairness during training. The parameters betas are set to 
0.9 and 0.999, the initial learning rate is set to 0.0001, and the learning rate decay strategy 
uses the cosine annealing learning rate decay strategy in all of the models. They also all 
adopt the Adaptive Moment Estimation with decoupled weight decay (adamW) optimizer 
(CosineAnnealingLR). Moreover, the model training spans 100 generations. The 
appropriate data enhancement is done during the training phase to guarantee the training 
effect and boost the robustness and generalizability of the model. The common techniques 
for data augmentation include flipping, cropping, and altering image properties 
(brightness, contrast, saturation, and hue).

2.5 Evaluation of the model

To validate various model performances, the model needs to be evaluated with the help of 
evaluation metrics. In this paper, the root system and soil background are equivalent to the 
pixel-by-pixel classification of images, so it is necessary to use the confusion matrix to 
count the classification results and actual values, to further obtain a variety of 
classification basis. In this paper, four evaluation metrics are Precision (Formula 6), Recall 
(Formula 7), and IoU (Formula 8). and F1 (Formula 9), which are calculated as shown 
below:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 × 100%#(6)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 × 100%#(7)

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 × 100%#(8)

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×
𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 × 100%#(9)
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In the formula, TP stands for the number of root pixels that were accurately predicted to 
be roots, FP for the number of background pixels that were accurately predicted to be 
roots, FN for the number of background pixels that were correctly predicted to be roots, 
and TN for the number of background pixels that were accurately predicted to be 
backgrounds. IoU can assess how closely classification results for pixels match actual 
values. F1 is the harmonic average of Precision and Recall, which are used to confirm that 
the rate of pixel classification is correct. Each of the four evaluation criteria has a value 
range of 0 to 1. 

3. Results 

3.1 Segmentation results

This paper compares a total of eight models, including PSPNet, SegNet, UNet, 
DeeplabV3plus, TransUNet, SwinUNet, SETR, and the method proposed in this paper. 
Each model is trained using the same configuration for 100 epochs, and all model losses 
reach convergence, and the model training effect is tested based on the test set to obtain 
the evaluation indexes. Considering the indicators and segmentation results 
comprehensively, the optimal model is selected. The numerical comparison results of the 
model indicators are shown in Table 1. The SegFormer-UN (Small) proposed in this paper 
uses a lightweight backbone with relatively small FLOPs and Params. The mIoU and 
mRecall indicators are also higher than other comparative models at 81.06% and 86.29%, 
respectively. Since mPrecision and mRecall are a pair of contradictory values, mF1 is used 
to measure the quality of both. The mF1 value of SegFormer-UN (Small) is 88.47%. The 
best evaluation indicators are obtained when a deeper backbone model SegFormer-UN 
(Large) is used, with the largest values of mIoU, mRecall, and mF1, which are 81.52%, 
86.87%, and 88.81%, respectively. The deeper backbone increases FLOPs and Params, 
but still lower than that of the other TransFormer neural networks.

Table1-Evaluation Metrics of the model

Method Flop(M) Params(M) Root IoU (%) Root Recall (%) Root Precision (%) F1(%)

UNent 786318.75 34.53 80.87% 85.46% 91.75% 88.33%

DeepLabV3plus 95122.49 22.44 78.03% 82.07% 91.49% 86.14%

PSPnet 28367.25 1.51 76.43% 79.61% 92.49% 84.83%

SegNet 937999.47 39.79 79.79% 85.27% 90.09% 87.52%

SETR 275440.73 85.88 75.86% 81.07% 88.53% 84.37%

TransUNet 351034.49 91.52 79.53% 84.33% 90.92% 87.31%

SwinUNet 136384.82 41.34 79.99% 85.07% 90.73% 87.67%

SegFormer-UN(Small) 15528.10 5.81 81.06% 86.29% 90.96% 88.47%

SegFormer-UN(Large) 60972.07 23.11 81.52% 86.87% 90.98% 88.81%

The root segmentation results are shown in the Figure 4. Among the aforementioned 
models, except for SETR, all segmentation models exhibit excellent results in root 
segmentation. The segmentation of root edges is smooth, and overall recognition is clear, 
although there are some differences in certain details. However, the SETR model shows 
more spikiness in the segmentation of root edges, and there are instances of interrupted 
root recognition. 

D
ow

nloaded from
 https://spj.science.org at N

anjing A
gricultural U

niversity on M
arch 21, 2024



  Plant Phenomics                                                        Manuscript Template                                                                        Page 11 of 
21

Fig4. Root Segmentation Image

Our improved method handles the boundaries of root systems more effectively (as 
indicated by the blue box in Figure 5). SegFormer-UN can recognize and connect the low-
contrast roots, and recognize more and more complete roots, while other models exhibit 
discontinuities in root recognition, and some models are unable to identify certain roots. 
However, when dealing with the issue of significant soil particle occlusion, the results of 
all the aforementioned models are not ideal (as highlighted by the red box in Figure 4). 
Due to severe soil particle occlusion, some roots are in a blurred and indistinct state, 
making it challenging for all segmentation models to accurately identify the roots. 
However, the model proposed in this study, along with SwinUNet and TransUNet, 
performs relatively better compared to other models in segmenting obscured roots.

Image

DeepLabV3plusGround truth PSPNet

our method SwinUNet TransUNet

SegNetSETR UNet
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Fig5. Root Segmentation Results

In order to further validate the effectiveness of the improved model, we conduct ablation 
experiments on a series of methods adopted in this paper, and the comparison results are 
shown in Table 2. The experimental methods include: improvement of two up-sampling 
methods sub-pixel (SegFormer-Sub-pixel) and deconvolution (SegFormer-Trans-Conv), 
UNet decoder (SegFormer-UN), Depthwise separable convolution+UNet decoder 
(SegFormer-DU), and DeeplabV3plus decoder (SegFormer-DP). The results show that the 
model structure using the improved up-sampling method alone has decreased compared to 
the original model evaluation indicators. Among them, the mIoU, mRecall, mPrecision, 
and mF1 of SegFormer-Trans-Conv have decreased by 79.09%, 84.17%, 90.34%, and 
86.98%, respectively; the mIoU, mRecall, mPrecision, and mF1 of SegFormer-Sub-pixel 
decreased to 78.99%, 84.02%, 90.37%, and 86.90%, respectively. The performance of the 
model varies after changing the decoder. The SegFormer-DP indicator value decreases, 
and the required Params also increases. The SegFormer-UN and SegFormer-DU indicators 
have both improved and reduced model FLOPs and Params. Among them, SegFormer-UN 
has the greatest improvement, with four indicators of 81.52%, 86.87%, 90.98%, and 
88.81% and the FLOPs and Params of model have been slightly reduced. As we continue 
to increase the depth of the model backbone, the improvement effect becomes more 
obvious. The four indicator values increase by 1.34%, 1.49%, 0.34%, and 0.99%, 
respectively, compared to the original model, but these will be accompanied by a doubling 
of FLOPs and Params.

Table2-Evaluation Metrics of the model

Method Flop(M) Params(M) Root IoU (%) Root Recall (%) Root Precision (%) F1(%)

SegFormer(Small) 125096.17 6.08 80.18% 85.38% 90.64% 87.82%

SegFormer-Trans-Conv (Small) 135087.00 6.28 79.09% 84.17% 90.34% 86.98%

SegFormer-Sub-pixel (Small) 125096.17 6.08 78.99% 84.02% 90.37% 86.90%

SegFormer -DP (Small) 38425.59 7.81 79.54% 84.57% 90.61% 87.33%

SegFormer -DU (Small) 10218.50 3.93 80.92% 86.34% 90.66% 88.37%

SegFormer -UN(Small) 15528.10 5.81 81.06% 86.29% 90.96% 88.47%

SegFormer -UN(Large) 60972.07 23.11 81.52% 86.87% 90.98% 88.81%

3.2 Extraction of time-series root senescent features

Senescence root color weights can be calculated automatically based on annotated images 
using the SegFormer-UN model, which leads to better root extraction performance 
(Processing time and image recognition) than image processing. Based on deep learning 
extraction methods, GPU can be used to accelerate inference operations and complete a 
512× 512 dpi image inference takes about 1 second, and completing a complete image 
takes about 4 minutes. It is possible to notice that root senescence is increasing by using 
an improved model to extract the sequence senescence root dataset with ten-day intervals, 
as illustrated in Figure 6A. Similar to this, although deep learning can swiftly extract 
roots, there still exist senescent and normal root systems in the same root system in a 
mixed state. The mixed colors will entirely be replaced by colors with large weight based 
on the superpixel correction results displayed in Figure 6B. Using superpixel correction 
and conducting manual recognition for comparison, it was found that the accuracy of 
aging root system identification relatively improved after correction. Small blocks of 
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misclassified roots are corrected without affecting the overall root system classification. 
Therefore, from a pixel perspective, the corrected identification results for aging root 
systems are more accurate. The training and inference configurations are the same as those 
for root segmentation. 

Fig6. (a)Time series senescence root results; (b) Senescence correction results

3.3 Exploration of Time Series Root Senescence Law

Due to the similarity of adjacent images in temporal data, dimensionality reduction and 
clustering are used to find the maximum difference between images and to find the 
proportion of normal and senescence root pixels under temporal and statistical nodes 
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(Figure 7A and Figure 7B). The clustering results prove that the temporal dataset is 
classified into ten-time intervals with different time intervals according to the growth 
order. The proportion of senescence root in the initial growth stage is zero, and the 
proportion of senescence root increases with time. However, compared to normal root, the 
proportion of senescence root is not significant, and the trend of senescence root in the 
later stage of root growth is increasing. The trend of senescence root changes over time is 
consistent with the observation results of the naked eye. For the normal root, the 
percentage of the normal root system increases due to the early stage of being in the 
growth phase with vigorous root growth, and the total root grows slowly in the middle and 
late stages, and the true ratio of the normal root decreases accordingly after the senescent 
root system increased. This paper performs cubic polynomial fitting on the proportion of 
normal and senescence pixels. The fitting results are shown in the figure, and the two 
curves have good fitting effects. The R-Squared (𝑅2) of the senescence fitting curve is 
0.98, and the Mean Squared Error (MSE) is 0.00025. The 𝑅2 of the normal fitting curve is 
0.94, and the MSE is 0.00113.

Fig7. (a) Time series senescence cluster analysis results; (b) Pixel ratio histogram of 
normal and senescence root at time nodes; (c) Pixel fitting curves for normal and 
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4. Discussion 
4.1 Data annotation logic

We employ two forms of labeling rather than unique senescent labeling to label the data 
due to labeling expense and training issues. First of all, when compared to a senescent 
label, semantic segmentation reduces labeling time by two hours, and integrating two 
datasets can cut total labeling time. There isn’t a strict restriction for the number of 
senescent labels in the dataset because the data we gather consists of serialized images 
with a high degree of similarity. Second, we merely employ the black box model of deep 
learning in our senescent extraction to simply understand the color difference of the root 
system.

4.2 Model analysis

The findings of the model comparison show that the TransFormer neural network’s index 
evaluation is superior to that of the convolutional neural network. This is a result of the 
self-attention mechanism’s capacity for direct global relationship modeling, which 
increases the image’s receptive field and gathers additional contextual data. However, in 
terms of processing and parameters, a TransFormer neural network frequently exceeds a 
convolutional neural network. The SegFormer model reported in this research improves 
the self-attention mechanism, producing the smallest SegFormer(Small) model with fewer 
parameter values and better performance than traditional convolutional neural networks. 
However, the details on the root of the TransFormer neural network are more detailed, 
which is also a result of the self-attention mechanism’s capacity to process global 
information. The processing results of the TransFormer neural network and the 
convolutional neural network in terms of actual image segmentation do not differ 
significantly.

Although the output results of the model are not significantly different from the rest of the 
convolution and TransFormer, the detailed recovery of the feature map is still insufficient. 
The original model decoding method is the output feature map of the four TransFormer 
blocks, using a straightforward and lightweight MLP plus sampling method for feature 
stitching fusion output results.

The initial approach in this paper was improved using two different upsampling methods 
(subpixel, deconvolution), in light of earlier studies by this experimental group, and it is 
evident from the experimental results that the above two methods are ineffective for model 
enhancement. This is due to the fact that adjusting the upsampling alone is insufficient to 
restore the target, there is an unavoidable loss of details in the preceding procedures, and 
the contextual information from the backbone extraction is not effectively used.

As target information and dimensions are restored, this paper adopts a tweak in the 
decoder structure to minimize detail loss. This paper uses the DeeplabV3plus decoder 
structure initially but does a bad job of utilizing scale feature maps, which leads to subpar 
processing results for root. While gradual convolution and feature stitching improve 
semantic segmentation, we adopted the UNet decoder structure for feature restoration. By 
using a skip connection to mix data from various trunk stages throughout the upsampling 
recovery process, low-level detail data and high-level semantic data may be recovered and 
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combined more effectively, improving segmentation accuracy. After improvement, we 
discovered that the model’s computational complexity was lowered by an eighth 
compared to the original decoding structure, and the number of parameters decreased by 
around 0.27M, shortening training time. This is owing to the original model’s excessive 
usage of hidden layers and the MLP structure, which also causes the loss of spatial 
information in the feature map, resulting in a huge number of parameters.

To further simplify the model, the use of Depthwise separable convolution instead of 
convolution further reduces the number of parameters and computational complexity. 
Depthwise separable convolution first uses deep convolution to perform spatial 
convolution on each channel of the feature map, and then uses point-by-point convolution 
to fuse the channel information, which simplifies the convolution operation through step-
by-step operations. Although the number of parameters is reduced compared to the 
convolutional method, the evaluation indicators are not as good as those of the 
convolutional indicators.

The SegFormer -UN training results achieved were the best of all models, and in addition 
to making improvements to the decoder, we also attempted to enhance the depth of the 
backbone, which entails an increase in computation and parameter count. Although the 
model’s parameter count has increased considerably compared to SegFormer (Small), 
SwinUNet, and TransUNet, and there are certain advantages, the computation increase is 
not considerable.

4.3 Senescent root extraction

4.3.1 Traditional methods

Before classification, the taproot must be removed because its existence will prevent 
correctly extracting senescent roots from the root segmentation image after it has been 
obtained [66]. To build the full root, first, remove the majority of the vertical taproot from 
the predicted image using the opening operation, then calculate the root edge using the 
image gradient, enlarge it using blur and threshold, and finally combine it with the 
opening operation results. Lastly, lateral root extraction is achieved by images and 
operations. The categorization root pixel block is then intentionally picked to determine 
the mean and variance of the pixels (one normal root and two senescent roots). The 
senescent root pixels are filtered by mean and variance to retain the normal root pixels, 
and the retained results are filtered and sharpened.  The senescent root pixel is then 
removed once again by means and variance, and both the final filtered image and the 
original image are pixel enhanced. If the calculated value is greater than 0, the original 
image pixel block is assigned to the filtered image until the sliding window is finished. 
Pixel enhancement involves calculating the two-norm difference between the two image 
pixel blocks in accordance with the sliding window with the initial pixel core size of 2 and 
the maximum pixel size of 4. [67]. Figure 8 depicts the image processing procedure.

Mean and variance of RGB channel pixels value are easily determined by artificially 
creating three separate pixel blocks, and the outcome of removing the senescent root is 
acquired after pixel-by-pixel processing. The lower, darker root system has been 
eliminated, leaving only the top, light-colored live root visible in the image. While some 
pixel values around the classification threshold are deleted from the local result map, the 
upper portion of the normal root of the complete root system is mistakenly left behind. 
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Senescent root and normal root are now separated on the same root, however, this is an 
atypical occurrence. The computation time for extraction is too long compared to deep 
learning because this method cannot be computed using GPU; it takes roughly 31 minutes 
to calculate one image, and this time rises when dealing with dense distributions of roots.

Fig8. (a) Flowchart for removing the taproot; (b) Flowchart for extracting senescence root

4.3.2 SegFormer-UN

At present, color classification based on deep learning is widely used in different fields 
and has high practicability. For instance, Ziyuan Yang et al. classified feces using deep 
learning to extract shallow information in the medical industry [68]. Liu et al. successfully 
identified the apple root system in agriculture using various seedling root colors [69]. As a 
result, the strategy described in this work, which is based on deep learning, is effective.  
The modified model for root senescent extraction has a high extraction effectiveness in the  
inference stage, according to experiments, and it extracts data quickly. This is due to the 
trained model’s ability to automatically determine the senescent root’s classification 
threshold and utilize GPU acceleration to speed up processing. The use of the SegFormer 
(Small) model in the inference stage is characterized by short processing time and high 
extraction efficiency. Considering the application of this method to mobile devices, a 
relatively smaller model is chosen. Compared to image processing, the overall training 
samples are small and the cost is relatively low, although the model costs extra during 
training. Zhu et al. showed that manually tracking and extracting the senescence root from 
time series information takes a lot of time [70]. This study improves efficiency by achieving 
one-stop, quick identification and analysis with deep learning and image processing.

More image processing is required in this piece since deep learning approaches have an 
issue with intermittent error recognition. Then, we classify senescence photos into pixel 
blocks, which are further separated into blocks with various forms, using the super-pixel 
approach. Then, we cover the image with binary prediction, keeping only the necessary 
root, and recolor the processing output to mostly remove false positives. Although the 
aforementioned method can fix a tiny percentage of wrong colors, it cannot fix vast 
mistake recognition areas. There are many errors in root senescence identification, 
including subjective annotation errors and the impact of model performance. However, 
compared to purely manual recognition, the efficiency improvement brought about by the 
model is beyond what can be achieved manually. Moreover, varied shooting environments 
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might result in varying exposure, brightness, and contrast amongst temporal data photos, 
which can result in inaccurate root recognition as a result of the aforementioned factors. 

5. Conclusion
This paper uses TransFormer neural networks to recognize roots and extract senescence 
roots from temporal pictures. In comparison to TransFormer and generic convolutional 
neural networks, the SegFormer-UN model performs better and can accurately partition 
cotton roots. The best root mIoU, mRecall, and mF1 index values were obtained by the 
model, which were 81.52%, 86.87%,and 88.81%, respectively. It is more accurate to use 
the real root segmentation image connection. The updated picture based on SegFormer-
UN was proven to be more precise and effective in root extraction than conventional 
image processing techniques after two senescence root extraction approaches were 
verified. But, we are unable to receive full acknowledgment. We will eventually broaden 
the variety of root senescence samples and enhance network performance. The senescence 
laws of cotton root can be investigated using the senescence root extraction technique 
created by our research center.
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