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Abstract
With the development of artificial intelligence, neural network provides unique opportunities for holography, such as
high fidelity and dynamic calculation. How to obtain real 3D scene and generate high fidelity hologram in real time is
an urgent problem. Here, we propose a liquid lens based holographic camera for real 3D scene hologram acquisition
using an end-to-end physical model-driven network (EEPMD-Net). As the core component of the liquid camera, the
first 10 mm large aperture electrowetting-based liquid lens is proposed by using specially fabricated solution. The
design of the liquid camera ensures that the multi-layers of the real 3D scene can be obtained quickly and with great
imaging performance. The EEPMD-Net takes the information of real 3D scene as the input, and uses two new
structures of encoder and decoder networks to realize low-noise phase generation. By comparing the intensity
information between the reconstructed image after depth fusion and the target scene, the composite loss function is
constructed for phase optimization, and the high-fidelity training of hologram with true depth of the 3D scene is
realized for the first time. The holographic camera achieves the high-fidelity and fast generation of the hologram of
the real 3D scene, and the reconstructed experiment proves that the holographic image has the advantage of low
noise. The proposed holographic camera is unique and can be used in 3D display, measurement, encryption and other
fields.

Introduction
Holography can restore the complete light field infor-

mation of the recorded object, which has great application
value in the fields of data storage, biological microscopic
imaging, optical micromanipulation and optical sen-
sors1–7. An important frontier area of holography is rea-
listic 3D scene reconstruction8–10. However, due to the
huge computation of 3D objects in data representation
and the influence of laser coherence, 3D holography has
the following bottlenecks11–15: 1) It is difficult to quickly

capture and reconstruct the real 3D scene with true depth.
2) The reconstructed image has serious speckle noise.
These bottlenecks seriously hinder the development and
application of 3D holography, and need to be broken
through urgently.
Generally, before calculating the hologram of a real 3D

scene, it is necessary to collect the data of the real 3D
scene with a camera, then calculate the light field dis-
tribution of the real 3D scene, and finally generate the
hologram by complex amplitude coding16,17. However,
such a process is cumbersome and costly because the
front-end data acquisition often takes a lot of time.
Although in digital holography it is possible to directly
capture the interference fringes of a real 3D scene with a
camera, such a hologram acquisition approach is usually
utilized in the fields of microscopic imaging and
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interferometry18–21. Digital holography needs to use laser
to actively illuminate the real 3D scene, which prevents
the miniaturization and integration of the system. As an
adaptive optical element, electrowetting-based liquid lens
has the advantages of fast response speed and adjustable
focal length, and is widely used in scene acquisition22–26.
Some researchers put forward the holographic near-eye
display technology based on liquid lens, but the quality of
reconstructed images is affected due to the limitation of
liquid lens aperture27. The maximum aperture of the
existing commercial electrowetting-based liquid lens is
only 5.8 mm, which leads to the limited luminous flux and
field of view in the process of light field transmission28,29.
For the hologram generation, 3D holography has made

remarkable progress in high fidelity and rapid recon-
struction of scenes in recent years with the development
of neural network technology30–33. For example, the
TensorHolo network is proposed to realize the rapid
generation of holograms on smart phones34. In order to
generate hologram of 3D scene, the end-to-end training
network based on neural network preprocessing is further
proposed35,36. In addition, some researchers propose a

model-driven deep learning network, and the effect of
high-fidelity holographic reconstruction can be rea-
lized37–39. Although some progress has achieved holo-
graphic reconstruction of real scenes, most of them only
obtain 2D scene images, and then reconstruct 3D scene
through relative depth estimation40–43. These technolo-
gies are hard to break through in the reconstruction of
true depth, and the calculation speed and reconstruction
quality need to be improved. Therefore, it is necessary to
develop a miniature holographic camera that does not rely
on coherent illumination light, so as to realize the fast
acquisition of real-world holograms from the 3D scene
capture.
To solve the above problems, a holographic camera for

obtaining high-fidelity hologram of real 3D scene is pro-
posed in this paper, as shown in Fig. 1a. Different from the
conventional cameras, the hardware module of the holo-
graphic camera employs a liquid camera based on a large-
aperture liquid lens to quickly acquire the real 3D scene.
To our knowledge, this is the first time to realize such a
large size liquid lens through the matching of two phases
without aqueous solution, so that the true depth of the

Real 3D scene

SLM

EEPMD-Net

Liquid camera

Reconstructed image

Holographic camera

Physical model

Holographic camera

Holographic camera hardware EEPMD-Net

Holograms of RGB channels

Real 3D scene

a

b

Fig. 1 Schematic diagram of the holographic camera. a Concept map from real scene to holographic 3D reconstruction. b Structure of the
proposed holographic camera
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high-quality 3D scene can be obtained within 100ms. As
the software part of the holographic camera, an end-to-
end physical model-driven network (EEPMD-Net) is
designed to generate the hologram of real 3D scene cap-
tured by the liquid camera. The full-focused image and
depth map of the 3D scene are input to the EEPMD-Net.
In the proposed EEPMD-Net, the encoder and decoder
networks based on receptive field block and compound
convolution algorithm are proposed to realize low noise
phase calculation. By comparing the intensity information
between the depth-fused reconstructed image and the
target scene, the composite loss function is constructed to
optimize the hologram phase. The red, green, and blue
(RGB) holograms of the real 3D scene can be calculated in
parallel within 53ms based on the EEPMD-Net. When the
holograms are loaded on a spatial light modulator (SLM)
for reconstruction, the peak signal-to-noise ratio (PSNR)
of the color reconstructed image can reach ~28 dB. The
proposed holographic camera solves the two bottleneck
problems of difficult scene acquisition and low recon-
struction quality in existing holography, provides a new
idea for high-fidelity 3D reconstruction of real scenes, and
is expected to find new applications in many fields such as
3D display, measurement encryption and so on.

Structure and principle
Structure of the proposed holographic camera
The proposed holographic camera consists of a hard-

ware based on the liquid camera and a software module
based on the EEPMD-Net, as shown in Fig. 1b. The liquid
camera is used to quickly capture the depth information
of multiple focal planes of a real 3D scene. If the captured
3D scene information is directly used for diffraction cal-
culation, it will be impossible to obtain high-fidelity
holograms. For this reason, the EEPMD-Net is proposed
to be the software module of the holographic camera.
Based on the designed image fusion and depth calculation
methods, the EEPMD-Net is able to process the infor-
mation of a real 3D scene with multi-focal planes into a
full-focused image and a depth map. Driven by the phy-
sical model and utilizing the trained encoding and
decoding networks, the EEPMD-Net can quickly calculate
the holograms of RGB channels of the real 3D scene. The
corresponding relationship between the driving voltage of
the liquid lens and the true depth can be established in the
shooting process of the liquid camera. Therefore, by
reasonably setting the parameters of the EEPMD-Net,
high-fidelity holograms of the real 3D scene can be
obtained.

Design of the liquid camera based on liquid lens
The liquid camera is the core device of the hardware of

the holographic camera (supplementary information S1).
The liquid lens is used for focal length adjustment, and

the solid lens group supports the main optical power. The
total optical power of the liquid camera Φ can be
expressed as follows:

Φ ¼ Φs þΦ1 � ds1ΦsΦ1 ð1Þ
where Φs and Φl are the optical powers of the solid lens
group and the liquid lens respectively, and dsl is the
distance between the optical principal planes of the liquid
lens and the solid lens group. When the liquid camera is
used to capture targets with different depths in the real
scene, only the applied voltage needs to be adjusted, and
no mechanical movement of any components is needed.
This mode ensures the fast response and high-accuracy
adjustment of the liquid camera.

In order to realize a liquid lens with large aperture and
high stability, the following requirements should be met
when we prepare two types of electrowetting liquid filling
materials. The propane-1,3-diol is used as polar solvent to
replace common water. In the case of dielectric failure,
this solvent will not have electrolytic reaction in the
conductive liquid of the liquid lens, thus preventing the
generation of electric sparks and bubbles. In addition,
tetrabutylammonium chloride (TBAC) with proper con-
centration is added as the solute of propane-1,3-diol, thus
enhancing the conductivity of the conductive liquid and
adjusting the refractive index and density. While ensuring
density matching, 1-bromo-4-ethylbenzene mixed with
ISOPARTM V fluid is used as the insulating liquid. This
insulating liquid has very low surface tension and can
match the surface energy of hydrophobic materials.
Therefore, a large initial contact angle of the biphasic
liquids is ensured, and the liquid lens is allowed to drive
the liquid-liquid interface to move at an aperture of
10 mm while maintaining a low driving voltage. More-
over, the viscosity of the biphasic liquids needs to be
moderate. Too low viscosity will lead to excessive oscil-
lation of the liquid-liquid interface, while too high visc-
osity will lead to excessive damping, both of which will
increase response time. By controlling various parameters
of the biphasic liquids, the liquid lens with 10 mm large
aperture has the fast response, low driving voltage and
sufficient range of optical power variation. This lays a
foundation for the liquid camera to achieve an ideal field
of view, fast response, large focus range and high stability.
According to the electrowetting effect, when the voltage

applied to the upper electrode and lower electrode varies,
the contact angle between the liquid-liquid interface and
the lens cavity changes, resulting in the change of the
curvature of the liquid-liquid interface, thereby altering
the optical power of the lens. The relationship between
the electrowetting contact angle θ and the applied voltage
V can be described based on the Young-Lippmann
equation. Then, the optical power Φl of the liquid lens
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can be calculated:

Φ1 ¼
2γci cos θ0 þ CV 2
� �

n2 � n1ð Þ
2γciD

ð2Þ

where γci is the interfacial tension between the conductive
liquid and the insulating liquid, θ0 is the initial contact
angle when no voltage is applied, C is the total capacitance
per unit area of the dielectric layer and the hydrophobic
layer, D is the aperture of the liquid lens, n1 and n2 are the
refractive indexes of the conductive liquid and the
insulating liquid, respectively.

Principle of the EEPMD-Net
The structure and mechanism of the proposed EEPMD-

Net are shown in Fig. 2. The input of the EEPMD-Net is
the full-focused image and depth map of the real 3D
scene, and the output is the holograms of RGB channels
of the real 3D scene. The EEPMD-Net includes five steps
from the acquisition of real 3D scene to hologram
generation.
Firstly, by using the proposed scene fusion and depth

calculation method, the multi-layers of the real 3D scene
captured by the liquid camera are processed into the full-
focused image and the depth map of the real 3D scene.
Each color of the full-focused images is connected with
the depth map of the real 3D scene in the channel
dimension, and the size of the concatenated image tensor
is 3×2×H×W (where H is the height and W is the width).

Secondly, the concatenated image tensor is input into
network I. Network I is used to encode the concatenated
image tensor and output the target amplitude and phase
field of the real 3D scene with the tensor size of
3×2×H×W. Thirdly, a physical model fpm is chosen and
the target amplitude and phase fields of the real 3D scene
are propagated forward by a distance of z0, resulting in the
amplitude and phase fields on the SLM. Then, the com-
plex amplitude on the SLM (with a tensor size of
3×2×H×W) is input into network II. Network II is used to
encode the hologram of the real 3D scene and output the
holograms of RGB channels with a tensor size of
3×1×H×W. Finally, the physical model fpm is used to back-
propagate the hologram by the distance of zi (i= 1, 2,…)
to get the reconstructed image of the ith layer of the real
3D scene. After each color channel of the full-focused
image of the real 3D scene is trained, the RGB channel
holograms can be generated quickly.
It should be noted that three color channels of the full-

focused images of the real 3D scene are trained simulta-
neously. When calculating the loss of the EEPMD-Net,
the comparison between the intensity information of the
depth-fused reconstructed image and the enhanced 3D
scene is obtained by using an unsharp mask filter (sup-
plementary information S2.1). There are three steps to
obtain the depth-fused reconstructed image. Firstly, the
depth map is segmented according to the gray value and
layers of the depth map, and binary masks with different
depths are obtained. Then, the inner product of the binary
mask and the layered reconstructed image at the same
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Fig. 2 Structure and mechanism of the EEPMD-Net
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depth is calculated to obtain the masked reconstructed
image. Finally, the masked reconstruction images of each
layer are summed pixel by pixel to obtain the depth-fused
reconstructed image. By using the constraints between the
intensity information of the depth-fused reconstructed
image and the enhanced 3D scene, the speed of the
EEPMD-Net to calculate high-fidelity hologram is opti-
mized. The EEPMD-Net contains network I and network
II which are composed of the down-sampling block,
receptive field block, up-sampling block, parameter rec-
tified linear unit functional layer, and tangent hyperbolic
functional layer (supplementary information S2.2–S2.4).
In the EEPMD-Net, the band-limited angular spectrum

method is used to simulate the propagation of light waves
(supplementary information S2.5). The band-limited
angular spectrum method solves the numerical errors
problem of the traditional angular spectrum method for
far-field propagation. This is achieved by limiting the
bandwidth of the propagating optical field and eliminating
excess high-frequency information. Moreover, in order to
make the generated image visually closer to the target
image while retaining more details and texture informa-
tion, a composite loss function consisting of perceptual
loss, multiscale structural similarity loss, total variance
loss and mean-square error loss is used in the EEPMD-
Net (supplementary information S2.6).

Results
Fabrication and performance test of the liquid camera
The liquid camera is integrated firstly with a self-

fabricated liquid lens, a solid lens group, a self-developed
liquid lens driver and an image sensor, as shown in
Fig. 3a, b. The focal ratio of the solid lens group (M12-
HF12, Shenzhen Jinghang Technology Co., Ltd) is 2.8, the
focal length is 12 mm, and the mechanism length is
approximately 19 mm. A photosensitive chip with the
type of Sony IMX178 is used in the image sensor. The size
of the sensor area is 1/1.8”, and the pixel size is 2.4 μm.
The liquid lens driver is self-developed based on
STM32G070 and it can provide sufficient driving voltage
for the liquid lens with a voltage adjustment step of
~0.2 V. As for the liquid lens, the material of the elec-
trodes is aluminum, and the inner surface of the upper
electrode is coated with a dielectric layer (Parylene C,
~3.15 dielectric constant, ~3 μm thickness) and a hydro-
phobic layer (TeflonTM AF 2400, ~100 nm thickness).
Between the upper and lower electrodes, a plastic spacer
is employed to separate them, ensuring effective insula-
tion between the lower and upper electrodes. Equal
volumes of conductive liquid and insulating liquid are
sequentially injected, and meticulous sealing is achieved
with a two-component epoxy resin.
The specific parameters of the proposed biphasic liquids

are shown in Table 1. The flexible electrodes are

connected to the upper and lower electrodes using con-
ductive silver paste and then assembled into the plastic
shell. To achieve an ideal field of view for the liquid
camera, the liquid lens is designed with a large aperture
and a relatively small thickness. Through simulation and
optimization, we manage to reduce the thickness of the
liquid lens to just 6 mm while maintaining a 10mm
aperture, resulting in a diameter-to-thickness ratio of
1.67. The liquid lens and solid lens group are riveted
through a custom-made housing, and the liquid lens is
closely attached to the solid lens group. In addition, in the
visible light band, the transmission of the proposed
biphasic non-aqueous electrowetting liquids is always
greater than 95%, and the total transmission of the liquid
lens is greater than 90%, including window glass (sup-
plementary information S3.1).
After testing, the response time of the fabricated liquid

lens is 91 ms and the range of optical power is
−5m−1 ~ 7.03 m−1. The relationship between response
time and voltage and the relationship between optical
power and voltage of the liquid lens are shown in
Fig. 3c, d, respectively (supplementary information S3.2).
The resolution and magnification of the liquid camera at
different depths with different voltages are recorded
during the shooting of the real 3D scene, which is used as
the basis for depth calculation (supplementary informa-
tion S3.3).

Image capture and depth calculation
The liquid camera is used to capture a real 3D scene

containing four signs. Benefiting from the rapid response
of the liquid lens, the images with different focusing
depths are quickly captured by simply changing the
driving voltage. Four regions of interest are marked, each
with a square area of 550×550 pixels, as shown in Fig. 4a.
The images are captured under the driving voltages from
10 V to 40 V, and the magnifications of the images are
corrected. The purpose of magnification correction is to
prevent the targets from escaping from the marked
regions due to the lens focus breathing effect, ensuring
consistency in clarity comparison under different driving
voltages. Then, the clarity evaluation value (CEV) of the
marked regions is calculated by implementing convolu-
tion of images and Laplacian operator. Figure 4b shows
the normalized CEVs of the four marked regions under
different driving voltages. By fitting the CEV curves with
the resolution data (supplementary information S3.4), the
depths of the main target signs within the marked regions
can be obtained. The depth values of the four regions are
calculated as 100mm, 150 mm, 200 mm and 250mm,
respectively, which are consistent with the actual settings.
Figure 4c shows the images captured when the max-

imum CEVs of the marked regions are reached respec-
tively, and it can be seen that the focused images of the
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target signs are clearly captured. After obtaining focused
images and the depth of the target sign, it is necessary to
extract the complete shape of the target sign. The mask
generation method is developed to realize it (supple-
mentary information S4.1). After extracting the complete
shape of each target sign, the fused full-focused scene and
depth map are obtained based on the setting layers
(supplementary information S4.2). Then, the fused scene
and depth map are input to the EEPMD-Net for hologram
calculation.

Holographic reconstruction
In order to verify the advantages of the proposed

holographic camera, we transmit the hologram obtained

by the holographic camera to the SLM for optical
reconstruction, as shown in Fig. 5. The reconstruction
system consists of a red laser, a green laser, a blue laser,
two reflectors (including reflector I and reflector II), two
dichroic mirrors, a spatial filter, a collimating lens, a beam
splitter (BS), an SLM, a 4 f system (including a filter, lens I
and lens II), a holographic camera, and a laptop. The
wavelengths of the RGB lasers are 671 nm, 532.8 nm, and
471 nm, respectively. The resolution of the SLM manu-
factured by Xi’an CAS Microstar Science and Technology
Co., Ltd. is 1920 × 1080 and its pixel pitch is 6.4 μm. The
camera used to capture the reconstructed images is a
Canon EOS 6D Mark II. The spatial filter and collimating
lens are used to generate parallel light. Then the parallel
light passes through the BS and illuminates the SLM. The
4 f system is used to eliminate the undesirable light. The
three color holograms are loaded on the SLM in time
sequence. When three color lasers illuminate holograms
of corresponding colors respectively, color reconstructed
image of the real 3D scene can be captured.
In order to validate that the proposed EEPMD-Net can

improve the quality of the holographic image, the error
diffusion (ED) method, the double-phase (DP) method,
and the stochastic gradient descent (SGD) method are
used for comparison. The recorded object is a 2D object
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Fig. 3 Fabrication of the liquid camera and performance test of the liquid lens. a Component of the liquid camera. b Photo of the liquid
camera. c Response time of the liquid lens. d Optical power of the liquid lens under different applied voltages

Table 1 Parameters of the proposed biphasic liquids

Parameters Conductive liquid Insulating liquid

Density (g/cm3) 1.048 1.048

Refractive index 1.4386 1.4902

Dynamic viscosity (mPa·s) 44.56 2.27

Conductivity (μS/m) 73 -

Interfacial tension (mN/m) 17.7
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of a “castle” with a recording distance of 300 mm. The
resolutions of the recorded object and the hologram are
990 × 1760 and 1072 × 1920, respectively. The color
reconstructed images are shown in Fig. 6.
The “castle” obtained by the ED method shows the

obvious ringing phenomenon, and the edges and local
texture information of the “castle” are blurred and

distorted. The “castle” obtained by the DP method has
improved quality, and some of the edge information of the
“castle” is preserved, but the ringing phenomenon still
exists, and the local texture information is still unclear.
The SGD method takes the longest calculation time, and
the interfering stripes and speckle noise affect the clarity
of the “castle”. The EEPMD-Net shows advantages in
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terms of calculation time and reconstruction quality, and
the edges, details, and texture information of the “castle”
are better preserved with few ringing phenomena and
interference fringes. In addition, according to the com-
parison of the local enlarged images in Fig. 6, the color
reconstructed image obtained by the EEPMD-Net is the
closest to the original image, which indicates that it has
significant advantages in improving the quality of recon-
structed images (supplementary information S5.1).
Then the RGB holograms of the real 3D scene are cal-

culated using EEPMD-Net. The resolutions of both the
real 3D scene and the depth map are 1849 × 2773. The
calculation times of the RGB holograms of the real 3D
scene are 53ms, 46 ms, and 27ms, respectively. The color
reconstructed images of the real 3D scene are shown in
Fig. 7. The PSNR and structural similarity (SSIM, sup-
plementary information S5.2) are used to evaluate the
quality of the color reconstructed images. Four layers of
signs (“no parking”, “sidewalk”, “intersection” and “traffic
light”) are used as the real 3D scene. The actual spacing
between the signs is 50 mm. In order to shorten the length
of the optical path, the spacing between the signs is set to
10mm at a ratio of 5 to 1 when calculating the RGB
holograms of the real 3D scene. Then, the EEPMD-Net is
trained after setting the benchmark distance to 300mm
and the layer spacing to 10mm. Therefore, the recording
distances of the “no parking”, “sidewalk”, “intersection”

and “traffic light” signs are 300mm, 310 mm, 320mm,
and 330 mm, respectively. The layer spacing of the holo-
graphic reconstructed image is determined by the training
parameters of the EEPMD-Net. However, because the
holographic reconstructed image also has focal depth, it is
difficult for the camera to obtain a good focus or blurring
effect when the layer spacing is small. In order to facilitate
shooting, the layer spacing is set to 10 mm.
Meanwhile, the magnified images and the values of

PSNR and SSIM of each sign are given. From the images
and the values of PSNR and SSIM, it can be seen that the
EEPMD-Net is able to realize high-quality holographic
reconstruction, and the texture and layered details of the
real 3D scene are well reconstructed. In addition, the
proposed holographic camera can also be used for
dynamic holographic 3D AR reconstruction, and the
experimental results are shown in supplementary infor-
mation S5.3 (Videos of the dynamic real scenes and
holographic reconstruction are shown in videos 1 and 2).

Discussion
Most currently reported holographic display systems

focus more on realizing the recording and reconstruction
of the virtual 3D objects. In this paper, we propose a
holographic camera based on the liquid camera and the
EEPMD-Net. The liquid camera to acquire the real 3D
scene with true depth is demonstrated. In addition, the
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Fig. 6 Comparison of the reconstructed images by using different methods. a–d Original object. e–h Reconstructed images using the EEPMD-
Net. i–l Reconstructed images using the ED method. m–p Reconstructed images using the DP method. q–t Reconstructed images using the SGD
method
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EEPMD-Net from the acquisition end of a real 3D scene
to the output end of a high-fidelity hologram with true
depth is proposed. The comparison of the performance
parameters of the proposed holographic camera with
other systems is shown in Table 2. The proposed EEPMD-
Net can realize the training of real 3D scenes with more
layers and different layer spacings, which can be achieved
only by changing the number of layers and layer spacings
in the model training parameters. There is still much
work that can continue to be refined in future research.
Currently, depth estimation techniques based on deep
learning have become an important branch in the field of
machine vision. Combining the depth estimation techni-
que with the proposed EEPMD-Net is one of the direc-
tions to further improve the model performance.
Moreover, it can also be attempted to further shorten the
inference time of the model, which requires continued
improvement of the network structure, including the
adoption of new modules or the use of distillation tech-
niques to reduce the number of parameters of the model.
In this work, a holographic camera is proposed for

acquiring the hologram of real 3D scene at true depth for
the first time. The self-developed liquid camera, which is
the core hardware of the holographic camera, is utilized to
efficiently and accurately acquire images and the depth

information of the real 3D scene. The core element of the
liquid camera is an advanced electrowetting liquid lens
with a large aperture of 10 mm. Then, the acquired scene
information is input into the EEPMD-Net to realize the
fast calculation of the hologram of the real 3D scene
within 150ms. Experimental results demonstrate that our
proposed holographic camera is capable of realizing
dynamic and low-noise hologram of the real 3D scene at
true depth. The PSNR of the reconstructed image can
reach ~28 dB. The proposed holographic camera is
expected to be applied in the fields of 3D display, optical
measurement, optical encryption, and so on.

Materials and methods
Training detail
The EEPMD-Net is built and trained with the PyTorch

deep learning framework. The PyCharm integrated
development tool is used as the platform for building the
EEPMD-Net. To train and test the EEPMD-Net, a hybrid
dataset consisting of the CREStereo dataset and the
DIV2K dataset is used as the training dataset and vali-
dation dataset. The CREStereo dataset is a dataset
obtained by Blender’s synthetic rendering technique,
which contains complex scenes consisting of various
objects with fine structures. Also, the CREStereo dataset
provides accurate depth maps of these scenes. Since the
CREStereo dataset is very large, 200 scenes are randomly
selected from the CREStereo dataset as the training
dataset and 50 scenes as the validation dataset. The
DIV2K dataset contains 900 high-definition images, of
which 800 images are used as the training dataset and 100
images are used as the validation dataset. The MiDaS
depth estimation is used to obtain the depth maps for the
DIV2K dataset and the Adam optimizer is used to train
the EEPMD-Net. The hyperparameters in the optimizer
are default values except for the learning rate. The

a

c d

PSNR = 25.2436
SSIM = 0.9783

PSNR = 26.8361
SSIM = 0.9758

PSNR = 27.0363
SSIM = 0.9513

PSNR = 28.1316
SSIM = 0.9795

b

Fig. 7 Experimental results of the color reconstructed images of the real 3D scene. a–d Reconstructed images when the “no parking”,
“sidewalk”, “intersection” and “traffic light” signs are focused, respectively

Table 2 Comparison of characteristics between the
proposed system and other systems

Methods Hologram

resolution

Response

time

Calculation

time

PSNR

Proposed 1920 × 1080 91 ms ≤53 ms >25 dB

Yu et al.10 720 × 720 47 ms 48ms 18 dB

Wang et al.27 1920 × 1080 >200 ms >1000ms <15 dB
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training of the EEPMD-Net is divided into two stages. The
first stage is the pre-training stage of the model, where the
CREStereo dataset is used and the learning rate is 0.0004.
The second stage is the fine-tuning stage of the model,
and the DIV2K dataset is used in this stage with a learning
rate of 0.0001. The number of training epochs for the first
stage is 80 and the number of training epochs for the
second stage is 50 with a mini-batch size of 1. The model
is trained on a computer running Windows 11 operating
system with an Intel Core i9-10980XE CPU and an
NVIDIA GeForce RTX 3090 GPU (see supplementary
information S5.4 for loss curves).
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