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Abstract 

Underwater acoustic Long-Baseline System (LBL) is an important technique for submarine positioning and navigation. 
However, the high cost of the seafloor equipment and complex construction of a seafloor network restrict the dis-
tribution of the LBL within a small area, making an underwater vehicle difficult for long-distance and high-precision 
acoustic-based or inertial-based navigation. We therefore propose an acoustic LBL-based Inertial Measurement Unit 
(IMU) calibration algorithm. When the underwater vehicle can receive the acoustic signal from a seafloor beacon, 
the IMU is precisely calibrated to reduce the cumulative error of Strapdown Inertial Navigation System (SINS). In 
this way, the IMU is expected to maintain a certain degree of accuracy by relying solely on SINS when the vehicle 
reaches out the range of the LBL network and cannot receive the acoustic signal. We present the acoustic LBL-based 
IMU online calibration model and analyze the factors that affect the accuracy of IMU calibration. The results fulfill 
the expectation that the gyroscope bias and accelerometer bias are the main error sources that affect the divergence 
of SINS position errors, and the track line of the underwater vehicle directly affects the accuracy of the calibration 
results. In addition, we deduce that an optimal calibration trajectory needs to consider the effects of the three-
dimensional observability and position dilution of precision. In the experiment, we compare the effects of seven 
calibration trajectories: straight and diamond-shaped with and without the change of depth, and three sets of curves 
with the change of depth: circular, S-shaped, and figure-eight. Among them, we find that the figure-eight is the opti-
mal trajectory for acoustic LBL-based IMU online calibration. We take the maintenance period during which the accu-
mulated SINS Three Dimensional (3D) position errors are below 1 km to evaluate the calibration performance. The 
filed experimental results show that for the Micro-electromechanical Systems-grade IMU sensor, the maintenance 
period for the IMU calibrated with the proposed algorithm can be increased by 121% and 38.9% compared to the IMU 
without calibration and with the laboratory default parameter calibration, indicating the effectiveness of the pro-
posed calibration algorithm.

Keywords  Acoustic LBL, Online IMU calibration, SINS, Relay reference network

Introduction
The Ocean, as an important space for the sustain-
able development of human beings, is the main area 
for resource exploration and development (Stojanovic 
& Farmer, 2013; Yang et  al., 2020). The Ocean resource 
exploration and development need a large amount and 
accurate ocean topography information, water flow, 
water temperature, and other information, while the 
underwater vehicle is an important tool for exploring the 
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marine environment and resources, conducting deep-sea 
scientific research, and deep-sea engineering operations 
(Levin et al., 2019; Miller et al., 2018; Wynn et al., 2014).

High-precision underwater navigation is a prerequisite 
for underwater vehicles to obtain such effective informa-
tion and also a key factor that determines whether the 
vehicle can work safely and return successfully (Es-sad-
aoui et al., 2018; Paull et  al., 2013; Stutters et al., 2008). 
Due to the particularity of the working environment of 
underwater vehicles, Global Navigation Satellite System 
(GNSS) cannot be applied because the electromagnetic 
waves of GNSS attenuates rapidly underwater (Medwin 
& Clay, 1998; Paull et al., 2018). Underwater vehicles can 
only receive satellite signals emerging from the water, 
which greatly reduces the continuity, safety, and conceal-
ment of the equipment. Acoustic navigation overcomes 
the shortcoming of rapid attenuation of electromagnetic 
waves in seawater, so acoustic transmitters can be used as 
beacons for underwater vehicles (Leonard & Bahr, 2016; 
Stutters et al., 2008).

At present, Long Baseline (LBL), Short Baseline (SBL), 
and Ultra-Short Baseline (USBL) navigation are the most 
widely used in acoustic navigation (Leonard & Bahr, 
2016; Milne, 1983; Vickery, 1998). Among them, the LBL 
system can provide the most accurate position informa-
tion. It relies on acoustic ranging between the underwater 
vehicle and the seafloor beacon. When the underwater 
vehicle receives the acoustic signal from a seafloor bea-
con, the transmission time of the acoustic signal can be 
determined. By knowing the local sound velocity profile 
and geometric position of each seafloor beacon, the posi-
tion of the underwater vehicle can be determined (Kebkal 
& Mashoshin, 2017; Zhang et al., 2016a ). However, navi-
gation accuracy can deteriorate due to the large incident 
angle of the acoustic signal, and even normal navigation 
may become impossible when the underwater vehicle is 
too far from the seafloor beacon network (Fujita et  al., 
2006; Zhao et al., 2018).

In addition, the Strapdown Inertial Navigation Sys-
tem (SINS) with autonomous navigation capability can 
also be used for underwater navigation (Leonard et  al., 
1998; Stutters et al., 2008). The SINS uses the data from 
accelerometers and gyroscopes to obtain attitude, veloc-
ity, and position information through an integral opera-
tion, which is an autonomous navigation system with 
the advantages of fast measurement updating, complete 
measurement information, and no external interference. 
However, external initialization information is required 
before SINS can work, and the positioning error of the 
INS will accumulate over time (Groves, 2015; Titterton & 
Weston, 2004), which cannot meet the requirements of 
long-term and long-range underwater navigation.

The integrated navigation system of SINS/LBL is 
precise and stable, with good reliability and conceal-
ment (Chen et  al., 2015; Zhang et  al., 2016b). However, 
it requires a reliable seafloor reference network. Due to 
the high cost of the seafloor equipment and complex 
construction of a seafloor network, most of the seafloor 
reference networks are small-scaled with a limited num-
ber of seafloor beacons, for example the Dense Ocean-
floor Network System for Earthquakes and Tsunamis 
(DONET) in Japan (Matsumoto & Araki, 2021), which 
are insufficient for long-term and long-distance under-
water navigation services. When the underwater vehicle 
cannot receive acoustic signals for a long time, the SINS/
LBL integrated navigation system cannot work accurately 
due to error accumulation.

One potential solution for the limited seafloor bea-
cons is using acoustic signals to calibrate the Inertial 
Measurement Unit (IMU) of the SINS online. By receiv-
ing high-quality acoustic signals from the seafloor refer-
ence network, the acoustic ranging signal can be used to 
calibrate the IMU error and reduce the cumulative error. 
This enables the underwater vehicle to maintain a certain 
level of accuracy and navigate to the next seafloor refer-
ence network relying solely on the SINS when it cannot 
receive the acoustic signal. In fact, the concept of a relay 
reference network is proposed in literatures (Yang et al., 
2020, 2023), which means that several small-scaled sea-
floor reference networks can be deployed within a certain 
distance. In this way, the relay reference network can be 
used to reduce the high cost of seafloor beacon deploy-
ment and maintenance while ensuring reliable underwa-
ter navigation services.

According to the different calibration environments, 
IMU calibration can be divided into laboratory in-field 
calibration and out-field online calibration (Poddar et al., 
2017). Laboratory offline calibration refers to the use of 
relevant testing equipment, such as high-precision turn-
tables, to obtain the sampling data and then perform 
offline processing to complete the calibration. Outfield 
online calibration means that the IMU and the carrier are 
in a fixed connection state without relying on high-pre-
cision equipment such as a turntable, and the carrier is 
used to maneuver to complete the excitation of the error 
related to the IMU. The online calibration of IMU error is 
completed by using information fusion technology com-
bined with external reference information.

Compared with the laboratory in-field calibration, the 
out-field online calibration has the following main advan-
tage. Considering that the IMU error changes with the 
service time, the external environment, and the impact 
of the carrier, the error parameters and characteristics 
of the IMU in different states are also different. Consid-
ering that the online calibration environment is the real 
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application environment of the IMU, the calibration 
results in the real application environment have higher 
accuracy and reliability. The difficulty of the online cali-
bration lies in designing different calibration paths, excit-
ing the observability of different system errors, and on 
this basis, improving the convergence speed and accuracy 
of the IMU error (Goshen-Meskin & Bar-Itzhack, 1992).

At present, there is very few research on using acous-
tic signals to calibrate IMU online. However, there are 
some studies on the use of other sensors, for example the 
Global Positioning System (GPS) technique, to calibrate 
IMU on land or aerial vehicles (Meyer & Jacob, 1994; 
Crassidis, 2006; Aggarwal et  al., 2008; Han et  al., 2009; 
Poddar et  al., 2017; Lee et  al., 2020; Ru  et al., 2022). In 
these works, the accurate kinematic motion determined 
with GPS is taken as reference to calibrate the IMU 
errors. Usually, the deterministic and random errors of 
the gyroscope and accelerometer are estimated together 
with the state of the vehicles through the GPS/IMU 
integrated model. For example, Meyer and Jacob (1994) 
introduced the high accuracy navigation and landing sys-
tem using the integrated GPS/IMU system. The in-flight 
calibration of the IMU was performed with the Kalman 
filter technique. The results demonstrated the effective-
ness of the in-flight calibration, enhancing integrity, user 
acceptance, and confidence for the landing system, even 
in critical phases of flight such as an automatic landing. 
Therefore, GPS has been proved to be an effective tech-
nique to calibrate the IMU error online. However, due 
to the complex ocean environment and large variation 
of sound speed, there exist differences in using acoustic 
signal to calibrate IMU compared to the electromagnetic 
wave-based sensors like GPS. In addition, in terms of 
maneuverability, underwater vehicles have certain limita-
tions in roll and pitch compared to aerial vehicles. There-
fore, it is necessary to conduct a detailed analysis of the 

different factors that affect the calibrating accuracy of 
IMU using acoustic signals.

In the study, we aim to improve the underwater navi-
gation performance of the IMU by acoustic long base-
line calibration. The acoustic-based online calibration 
filter model is proposed, and we systematically analyze 
the factors that affect the calibration accuracy, including 
different types of IMU errors, different calibration tra-
jectories, and different precision of the IMU. The paper 
is organized as follows. In Sect.  "Acoustic-based online 
calibration filter model", the acoustic LBL-based IMU 
calibration filter model is introduced in detail. Then, 
the experimental results and analysis are presented in 
Sect. "Experimental results and analysis". Finally, the con-
clusions are in Sect. “Conclusion”.

Acoustic‑based online calibration filter model
To address the issue of error accumulation of the SINS 
when an underwater vehicle operates in complex ocean 
environments for a long time, we propose and implement 
an acoustic-based online calibration filter model for IMU 
sensors. Figure 1 illustrates the model, which comprises 
three modules: IMU error model, online calibration fil-
ter model, and error feedback model. When an external 
acoustic measurement signal is received, the system per-
forms a measurement update and feeds back the updated 
IMU error through the error feedback model, which ena-
bles acoustic signals to calibrate IMU errors online.

The observability of IMU errors
Observability analysis can determine the optimal maneu-
vering mode for the underwater vehicle to stimulate 
system errors such as bias. Meanwhile it can also ana-
lyze the observability of each error under the specific 
maneuvers, which provides theoretical support for con-
structing the IMU error model. In this paper, Singular 
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Fig. 1  The flowchart of the acoustic-based online calibration filter model
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Value Decomposition (SVD) method (Goshen-Meskin 
& Bar-Itzhack, 1992) based on piecewise linear invari-
ant systems is used to analyze the observability of sys-
tematic errors. The main process involves dividing the 
entire system into several time segments using piecewise 
linear invariant processing, where each segment can be 
considered as a linear time-invariant system. The observ-
ability matrix of the system in the ith time segment Qi is 
as follows:

where F i is the constant value of the state matrix of 
the system in the ith time period, H i is the observation 
matrix of the system, and T is the transpose of a matrix.

Combining the observability matrices at each period 
of the system together, the Total Observability Matrix 
(TOM) of the system is as follows:

where �ti is the time span of the ith period, and e means 
natural constant.

Introducing Qs(r) as the extraction Observability 
Matrix (SOM) of the System,

The SOM can be used as a substitute for the TOM to 
achieve observability analysis. The SVD (Goshen-Meskin 
& Bar-Itzhack, 1992) is applied to perform the singular 
value decomposition of Qs(r):

where S =

[

Dn

0(l−n)∗n

]

 , Dn is a diagonal matrix formed by 

the singular values σi (i = 1, 2, · · · , n) of Qs(r) , with 
σ1 ≥ σ2 · · · ≥ σm ≥ 0, σm+1 = σm+2 = · · · σn = 0   ; 
U =

[

u1 u2 ... ul

]

 and V =
[

v1 v2 ... vn
]

 are unitary 
matrices of dimensions l and n , respectively. By associat-
ing the ith singular value with the state variable that cor-
responds to the maximum value in the ith column of 
matrix V, the singular value of each state variable can be 
obtained.

The observability value of a particular state variable in 
the system can be determined as the ratio of its singu-
lar value σi to the singular value σ0 corresponding to an 
external observable variable, which can be used to assess 
the calibration accuracy of each state variable.

(1)Qi =

[

HT
i (H iF i)

T ...
(

H iF
n−1
i

)T
]T

(2)Q(r) =











Q1

Q2e
F1�t1

...

Qre
Fr−1�tr−1 ···eF1�t1











(3)Qs(r) =
[

QT
1 QT

2 QT
3 ...

]T

(4)Qs(r) = USV T

The model of IMU errors
During the operation of the underwater vehicle, the meas-
urement errors of IMU deviate significantly from their 
offline calibration values in the laboratory environment. 
To effectively calibrate and feedback IMU errors in under-
water environments, this study uses an IMU error model 
(Stutters et al., 2008; Titterton & Weston, 2004) as follows:

where δωb
ib =

[

δωb
ibx

δωb
iby δωb

ibz

]T
 and 

δf b =
[

δf bx δf by δf bz

]T
 represent the measurement 

errors of the gyroscope and accelerometer in the body-
fixed coordinate system, respectively.

δG =





0 δGyz −δGzy

−δGxz 0 δGzx

δGxy −δGyx 0



 and 

δA =





0 δAyz −δAzy

−δAxz 0 δAzx

δAxy −δAyx 0



 represent the misalign-

ment matrices of the gyroscope and accelerometer, respec-
tively. In these matrices, 
δGij

(

i = x, y, z; j = x, y, z; i �= j
)

 represents the mis-
alignment coefficients for the three gyroscopes, and 
δAij

(

i = x, y, z; j = x, y, z; i �= j
)

 represents the mis-
alignment coefficients for the three accelerometers. The 
subscripts indicate the influence of the j-axis on the i-axis. 
δK g = diag

[

δKgx δK gy δK gz

]

 and 
δK a = diag

[

δK ax δK ay δK az

]

 represent the scale factor 
matrices of the gyroscope and accelerometer, respectively. 

ε
b =

[

εbx εby εbz

]T
 and ∇b =

[

∇b
x ∇b

y ∇b
z

]T
 represent 

the bias matrices of the gyroscope and accelerometer, 

respectively. ω
b
ib =

[

ωb
ibx

ωb
iby ωb

ibz

]T
 and 

f b =
[

f bx f by f bz

]T
 represent the ideal outputs of the gyro-

scope and accelerometer, respectively, in the body-fixed 
coordinate system.

The state equation of calibration
The Kalman filtering technique is an effective method to 
calibrate IMU errors. In the previous section, we estab-
lished the IMU error model. To enable online calibration 
for both the gyroscope and accelerometer, we expand the 
errors as state variables. As a result, a 27-dimensional 
online calibration filter state equation is formulated.

In the equation, Ft is the state transition matrix, 

(5)
δωb

ib =
[

δK g + δG
]

ω
b
ib + ε

b

δf b = [δK a + δA]f b +∇
b

}

(6)X t+1 = F tX t +W t
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F t =
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









−(ωn
in×) Fφv Fφp −C

n
b 03×3 03×3 03×3 03×3 03×3

(Cn
bf

b)× F vv F vp 03×3 C
n
b 03×3 03×3 03×3 03×3
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Tab
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
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























where ωn
in represents the angular velocity vector of the 

navigation frame relative to the inertial frame, Cn
b repre-

sents the transformation matrix from the body frame to 
the navigation frame, f b represents the output of the 
accelerometer in terms of specific force, T gb and Tab rep-
resent the correlated time constants in modeling the 
gyroscopes and accelerometers’ biases as a first-order 
Markov model, T gs and Tas represent the correlated time 
constants in modeling the gyroscopes and accelerome-
ters’ scale factors as a first-order Markov model, T gk and 
Tak represent the correlated time constants in modeling 
the gyroscopes and accelerometers’ misalignments as a 
first-order Markov model.

The state vector is X t =
[

ϕ, δv, δp, εb,∇b, δK g , δK a, δG, δA]Tt

.Among these, the vector ϕ represents the attitude angle 
errors along the East (E), North (N), and Up (U) directions 
in the local navigation coordinate system, the vector δv 
represents the velocity errors along the E,N,U directions 
in the local navigation coordinate system, δp represents 
the three-dimensional position error in the geodetic coor-
dinate system, εb and ∇b represent the biases of the gyro-
scope and accelerometer along the X, Y, Z directions in 
the body-fixed coordinate system, δK g and δK a represent 
scale factor coefficients of the gyroscope and accelerom-
eter along the X, Y, Z directions in the body-fixed coor-
dinate system, and δG and δA represent misalignment 
coefficients of the gyroscope and accelerometer along the 
X, Y, Z directions in the body-fixed coordinate system.

The noise vector of the system is as follows:

where wrg and wra represent the random white noise of 
the gyroscope and accelerometer, wgb and wab represent 
the driving noises of the gyroscope bias and accelerom-
eter bias, wgs and was represent the driving noises of the 
gyroscope scale factor and accelerometer scale factor, 
and wgk and wak represent the driving noises of the gyro-
scope misalignment and accelerometer misalignment.

The measurement equation of calibration
The SINS/LBL filter corrects the system state vector 
using the measurement equation. The observation vector 

(7)W t =
[

wrg ,wra, 01∗3,wgb,wab,wgs,was,wgk ,wak

]T

t

for LBL is the distance between the vehicle and the sea-
floor beacon. During the measurement update, the obser-
vation innovation is obtained by subtracting the observed 
value calculated by SINS from the actual observation 
value. The measurement equation for the tightly coupled 
SINS/LBL integrated navigation system is as follows:

where ρSINS
i,t  represents the distance between the i th sea-

floor beacon and the IMU sensor calculated by SINS at 
time t, ρLBL

i,t  represents the distance between the i th sea-
floor beacon and the transducer observed at time t.
H t represents the measurement update matrix, and its 

expression is as follows:

where Ei,t =





















∂ρSINS
i,t

∂x

∂ρSINS
i,t

∂y

∂ρSINS
i,t

∂z





















T

 , Cn
g = Cn

eC
e
g , 

Cn
e =





− sin � − sin L cos � cos L cos �
cos � − sin L sin � cos L sin �
0 cos L sin L





T

  , 

C
e
g =





−(RN + h)sinLcos� −(RN + h) cosL sin � cos L cos �

−(RN + h) sin L sin � (RN + h) cos L cos � cos L sin �
�

RN

�

1− a2
�

+ h
�

cos L 0 sin L



 , 

Mpv,t =





0 1
(RM+h)

0
1

(RN+h) cos L
0 0

0 0 1



.

RN represents the curvature radius of the meridian 
circle at vehicle position, RM represents the curvature 
radius of the prime vertical circle at vehicle position, h 
represents the elevation, L represents the latitude at time 
t , � represents the longitude at time t , Cn

b,t represents the 
coordinate rotation matrix from the body-fixed coor-
dinate system to the local navigation coordinate system 
at time t , δlb represents the lever arm between the IMU 
sensor and the transducer, a represents the first eccen-
tricity of the Earth, V t =

[

v
p
1,t , · · · , v

p
i,t

]T represents the 
measurement noise vector,vpi,t represents the distance 
error between the i th seafloor beacon and the transducer 

(8)Zt =







ρ
SINS
1,t − ρ

LBL
1,t

· · ·

ρ
SINS
i,t − ρ

LBL
i,t






= H tX t + V t

(9)H t =









−E1,tC
n
gMpv,t

�

C
n
b,tδl

b
�

× 01×3 −E1,tC
n
g 01×18

. . .

−Ei,tC
n
gMpv,t

�

C
n
b,tδl

b
�

× 01×3 −Ei,tC
n
g 01×18








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at time t , b represents the body-fixed coordinate system,n 
represents the local navigation coordinate system,g rep-
resents the geodetic coordinate system, and e represents 
the Earth-centered, Earth-fixed coordinate system.

The feedback of calibration
Discretizing the state equation and measurement equa-
tion given by Eqs. (6) and (8), the state update process of 
the filter is as follows:

the measurement update process of the filter is as follows:

where, Xk , Xk+1/k , and Xk+1 represent the estimated 
state vector at time K  , the prediction state vector, and 
the estimated state vector at time K + 1 , respectively. Pk , 
Pk+1/k , and Pk+1 represent the error covariance matrix 
of the state variable at time K  , the prediction error covar-
iance matrix, and the error covariance matrix of the state 
variable at time K + 1 , respectively. Qk represents the 
system noise matrix. F k+1/k represents the state transi-
tion matrix. K k+1 , Hk+1 , Rk+1 , and Zk+1 represent the 
Kalman filter gain matrix, measurement update matrix, 
observation noise matrix, and observation innovation, 
respectively.

The error feedback model is as follows:

ω̃
b
ib and f̃

b
 represent the measurement outputs of the 

gyroscope and accelerometer, respectively.
In Eq. (11), Xk+1 and the error covariance matrix Pk+1 

are estimated. As the filter continues to update for a cer-
tain period, the error covariance matrix Pk+1 gradually 
tends towards zero, which implies that the estimated 
state vector Xk+1 approaches the true value. Substituting 
this value into Eq. (12) yields the theoretical outputs wb

ib 
and fb of the gyroscope and accelerometer.

Experimental results and analysis
Experimental scenarios and data sources
The experimental data used in the study were obtained 
from a shallow sea experiment conducted on Lingshan 
Island, Qingdao, Shandong Province on August 24, 2022. 

(10)
Xk+1/k = F k+1/kXk

Pk+1/k = F k+1/kPkF
T
k+1/k +Qk

(11)

K k+1 = Pk+1/kH
T
k+1(Hk+1Pk+1/kH

T
k+1 + Rk+1)

−1

Xk+1 = Xk+1/k + K k+1(Zk+1 −Hk+1Xk+1/k)

Pk+1 = (I − K k+1Hk+1)Pk+1/k

(12)
ω
b
ib =

�

I − δK g − δG
�

�

ω̃
b
ib − ε

b
�

f b = [I − δK a − δA]
�

f̃
b
−∇

b
�











The experimental area is depicted in Fig.  2, where the 
actual track line of the experimental vessel is presented. 
Five acoustic beacons were installed on the seafloor, 
and acoustic transducers were mounted on the bottom 
of the test vessel to receive the signals from the seafloor 
beacons. Additionally, the test vessel was equipped with 
a GNSS receiver, a Micro-Electro Mechanical Systems 
(MEMS)-grade IMU EPSON G370, and a tactical-grade 
IMU XW-G17660-v2.1, as illustrated in Fig. 3.

Table 1 shows the primary performance parameters of 
the EPSON G370. The gyroscope bias and accelerometer 
bias of the XW-G17660-v2.1 are 0.3 (°)/h and 1 × 10–6 m/
s2, respectively. The measurement update frequency 
of transducer is 0.5  Hz, and the IMU update frequency 
is 100  Hz. Note that the sea surface vessel is used as 
“underwater vehicle” in the study. Though the test vessel 
is equipped with GNSS receiver, it is neither combined 
with the acoustic measurement nor the inertial meas-
urement. The GNSS position is used as the reference to 
validate the positioning accuracy based on the acoustic-
based and inertial-based positioning results.

In order to calibrate the IMU sensor using acoustic 
signals, the study conducted both simulation and field 
experiments. In the simulation experiment, the IMU 
errors can be pre-set and used as the evaluation crite-
ria for calibration accuracy. In the field experiment, it is 
not possible to obtain the true IMU error parameters in 
advance. Therefore, assessing the quality of calibration 
results directly is not feasible. In such cases, the cali-
brated error parameters can be fed back to the SINS. The 
time taken for SINS Three Dimensional (3D) position 
error to diverge by 1 km can be used as an indicator to 
evaluate the calibration accuracy.

35°49′50′′N

35°49′37′′N

35°49′24′′N

35°49′11′′N
120°19′36′′E 120°19′48′′E 120°20′00′′E 120°20′12′′E 120°20′24′′E

Fig. 2  Actual track line of the experimental vessel
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The performance analysis of acoustic navigation
Before using acoustic signals to calibrate IMU errors 
online, an analysis of the acoustic navigation perfor-
mance was performed. The GNSS Real-Time Kinematic 
(RTK) was used to calculate the position of the onboard 
GNSS receiver, which was then adjusted to the position 
of the transducer at the bottom of the vessel using the 
lever arm, serving as a reference to obtain the acoustic 
navigation position error. In Fig.  4, the blue spiral line 
represents the measured vessel’s trajectory, while the red 
stars indicate the five pre-deployed seafloor beacons. As 
the measuring vessel progresses, the transducer located 
at the vessel’s bottom receives the acoustic signals from 
the seafloor beacons. Given the coordinates of the sea-
floor beacons, the position of the transducer can be 
calculated.

Comparing the acoustic navigation position with the 
reference position of the transducer determined by 

GNSS, the position error of acoustic navigation can be 
obtained, as shown in Fig. 5.

From Fig. 5, we can see that the overall navigation error 
in the E direction is less than 2  m inside the network 
and less than 6  m outside the network. In the N direc-
tion, the overall navigation error is less than 2 m inside 
the network and less than 4  m outside the network. In 
the U direction, with the constraints of pressure gauges, 
the overall navigation error is less than 1  m inside the 
network and less than 2 m outside the network. In detail, 
the Root Mean Square (RMS) error for the acoustic navi-
gation during the spiral track is 1.68, 1.34, 0.38 m in the 
E,N,U direction, respectively.

Due to the cumulative error of SINS, the position error 
will reach approximately 1000 m within a certain period. 
Taking MEMS-grade IMU as an example and assuming 
the bias of 36.8 (°)/h, the cumulative position error can 
theoretically reach 1 000 m within 126 s. Therefore, in the 
underwater environment the meter-level acoustic naviga-
tion is attainable because the IMU can be calibrated to a 

Acoustic equipment IMU equipment

Fig. 3  Acoustic and IMU equipment used in the experiment

Table 1  Main performance parameters of EPSON G370

Sensor Parameters EPSON G370

Accelerometer Repeatability 2 × 10–5 m/s2

In-run bias stability 1 × 10–7 m/s2

Scale factor 1‰

Misalignment 0.01°

Velocity random walk 0.025 m/(s·h1/2)

Gyroscope Repeatability 0.01 (°)/s

In-run bias stability 0.8 (°)/h

Scale factor 1‰

Misalignment 0.01°

Angular random walk 0.06 (°)/h1/2

400
Transducer
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200
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−200

N
or
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−400
−400 −200

East (m)
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Fig. 4  The trajectory of test vehicle and locations of the seafloor 
beacons
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certain accuracy level, which improves the navigation 
accuracy of SINS.

Accuracy improvement with different types of calibration 
parameters
The observability of the IMU errors, such as the scale fac-
tor and misalignment, is generally low when the under-
water vehicle maneuverability is weak (Paull et al., 2018). 
Accurate calibration of such errors typically requires 
complex maneuvers such as climbing and rolling, which 
is often challenging for underwater vehicles. In this sec-
tion, we employ simulation methods to study the impact 
of different types of IMU errors on the divergence of 
SINS position error.

The experiment simulated five different scenarios: 
without feedback of IMU errors, with feedback of scale 
factor, with feedback of misalignment, with feedback 
of bias, and with feedback all the three types of IMU 
errors. The simulation was based on the EPSON G370 
IMU parameters used in the experiment with the follow-
ing paraments: gyroscope bias of 36.8 (°)/h, accelerom-
eter bias of 2 × 10–5 m/s2, gyroscope scale factor of 1‰, 
accelerometer scale factor of 1‰, gyroscope misalign-
ment of 1.74 × 10–4, and accelerometer misalignment of 
1.74 × 10–4. The results are presented in Table 2.

Comparing the scheme without feedback of IMU 
errors and the scheme with feedback of bias, the time 
taken for SINS position error to reach 1 km is longer by 
33.97 s. This accounts for 95.6% of the total improvement 
time, which indicates that the main error accumulation 
of the SINS is caused by the biases of gyroscope and 
accelerometer. Therefore, accurate calibration of these 
biases can not only reduce the complexity of the calibra-
tion model, but also effectively suppress the rate of SINS 
error divergence.

Accuracy improvement with different calibration 
trajectories
Simulation experiment on the influence of different 
calibration trajectories
To investigate the impact of different calibration trajec-
tories on the accuracy and convergence speed of IMU 
calibration using acoustic signal, the experiment simu-
lated seven cases: straight and diamond-shaped calibra-
tion trajectories with and without the change in depth, 
and three sets of curve calibration trajectories with the 
change in depth: circular, S-shaped, and figure-eight tra-
jectories as presented in Figs. 6 and 7.

The simulated IMU parameters were gyroscope bias 
of 36.8 (°)/h and accelerometer bias of 2 × 10–5 m/s2. The 
convergence process of gyroscope bias and accelerometer 
bias along with their covariance matrices for the simu-
lated straight and diamond-shaped calibration trajecto-
ries with and without the changes in depth are shown in 
Figs. 8 and 9.

From Figs. 8 and 9, we can see that for both the straight 
and diamond-shaped calibration trajectories, the perfor-
mances for the trajectories with the change in depth out-
perform those without the change in depth, particularly 
in the U direction of the gyroscope bias. From the shaded 
areas in Figs. 8 and 9, it can be observed that the change 
in depth enhances the convergence speed of gyroscope 
bias in the U direction, improving the calibration effect 
of gyroscope bias in the U direction. The exact calibra-
tion results of gyroscope bias and accelerometer bias are 
presented in Table 3.
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Fig. 5  Acoustic navigation error in the ENU direction during the experiment

Table 2  The performance of the feedback of different types of 
IMU errors

Type of feedback error Scale factor Misalignment Bias All

Improvement time (s) 0.60 0.95 33.97 35.54

Percentage of total 
improvement time

1.70% 2.70% 95.60% 100%
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Comparing Figs. 8 and 9, together with Table 3, we can 
see that for both the trajectories with and without depth 
variation, the calibrated gyroscope bias and accelerome-
ter bias from the diamond-shaped trajectory are closer to 
the preset biases than those from the straight trajectory.

As shown in Fig. 6, the diamond-shaped includes turn-
ing maneuvers, which is different from the straight. To 
discover the reason for the different performance of the 
straight and diamond-shaped trajectories, an observabil-
ity analysis was conducted for gyroscope bias and accel-
erometer bias during uniform straight-line maneuver 
and turning maneuver. The analysis results are shown in 
Fig. 10. It is noted that to stand out the advantage of the 
turning maneuver trajectory, the depth variations are not 
simulated in Fig. 10 of the observability analysis.

From Fig. 10, we can see that comparing to the straight 
calibration trajectory, the observability of gyroscope 
bias in the U direction and accelerometer biases in the 
E and N directions improves when turning maneuvers 
are present. For the straight trajectory only with uni-
form straight-line maneuver, the observability of gyro-
scope bias in the U direction is quite weak due to the 
lack of the depth variations. We find that the diamond-
shaped trajectory with turning maneuver can improve 
the observability of the gyroscope bias in the U direction 
significantly. In fact, when the effects of depth variations 
are taken into consideration, like the turning maneuvers, 
the observability of gyroscope bias in the U direction can 

be improved. However, in the case of the observability 
of accelerometer bias, the situation is different. For the 
straight calibration trajectory only with uniform straight-
line maneuver, the observability of accelerometer biases 
in the E and N directions is weak and can be improved 
with the turning maneuvers, which is consistent with the 
experimental results in Table 3. It is noted that due to the 
gravity excitation, the observability of accelerometer bias 
in the U direction is always strong for both the uniform 
straight-line maneuver and the turning maneuver. There-
fore, the observability analysis in Fig.  10 highlights the 
advantages of the turning maneuvers for the calibration 
of the gyroscope bias and accelerometer bias.

Furthermore, to figure out the optimal calibration tra-
jectory, we simulate three more sets of curve trajectories 
and try to find the mechanism for the optimal trajectory 
design. Since the depth variation has been proved to be 
important for the gyroscope bias and accelerometer bias 
calibration, all the three trajectories consider the depth 
variations, as presented in Figs. 11 and 12.

Figures  11 and 12 represent the convergence process 
of gyroscope bias and accelerometer bias with the circu-
lar, S-shaped and the figure-eight calibration trajectories, 
respectively. The accuracy of calibrated gyroscope bias 
and accelerometer bias for these three trajectories are 
presented in Table 4.

Comparing Table  4 with Table  3, for the circular, 
S-shaped, and figure-eight calibration trajectories, the 
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calibration results surpass those of the straight and 
diamond-shaped calibration trajectory. This is primar-
ily attributed to the turning maneuvers present in the 
curve calibration trajectories. Among these three trajec-
tories, the calibration performance for the figure-eight 

trajectory stands out as the most optimal. The major 
difference among these three trajectories lies in their 
respective observation structures. We separately cal-
culated the Position Dilution Of Precision (PDOP) val-
ues at each moment for the circular, S-shaped, and 
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figure-eight trajectories. The results show that the aver-
age PDOP value for the circular trajectory is 5.5498, for 
the S-shaped trajectory is 4.5029, and for the figure-eight 
trajectory is 4.2666. This indicates that the figure-eight 
calibration trajectory possesses a better observation 
structure, resulting in the optimal acoustic calibration of 
the inertial navigation.

Lastly, in the study, we define the calibration conver-
gence by the time taken for the IMU errors in the covari-
ance matrices to converge to 10% of the preset error. 
Therefore, from Figs.  8 and 9, it can be observed that 
comparing the straight trajectory with and without the 
change in depth, as well as the diamond-shaped with and 
without the change in depth, it is clear that the conver-
gence speed for the gyroscope bias in the U direction is 
faster when depth variations are considered, than those 
without considering depth changes. From Figs. 11 and 12 
of three curve trajectories, the convergence speed for the 
gyroscope bias in the U direction remains approximately 
consistent. Comparing Figs. 11 and 12 with Figs. 8 and 9, 
the convergence speeds of these curve trajectories for the 
gyroscope bias in the U direction are slightly lower than 
those of the straight and diamond-shaped trajectory with 
the change in depth. In addition, the convergence speed 
of gyroscope biases in the E and N directions and the 
accelerometer biases in the E, N and U directions are gen-
erally comparable for these seven calibration trajectories.

Field experiment on the influence of different calibration 
trajectories
In order to further verify the results of the above simula-
tion experiment, a field experiment was conducted based 
on the data obtained in Qingdao shallow sea experi-
ment on August 24, 2022. Firstly, based on the measured 
data from the test vessel, only the data for straight and 
diamond-shaped trajectory without the change in depth 
is available. On the other hand, the calibration trajec-
tory practically needs balancing between complexity and 
operability. Therefore, in this experiment, a comparison 
is made between the calibration effects for the straight 
and diamond-shaped trajectories without the change in 
depth. The results are illustrated in Figs. 13 and 14.

From Figs. 13 and 14, it can be observed that the con-
vergence speeds of calibrated gyroscope bias and accel-
erometer bias for both the straight and diamond-shaped 
trajectories are consistent with the simulation results. In 
terms of calibration accuracy, the calibration results for 
IMU errors using the straight and diamond-shaped tra-
jectories are presented in Table 5.

Since it is impossible to obtain the true gyroscope and 
accelerometer biases in advance during the field experi-
ment, it is not possible to directly determine which 
calibration result has higher accuracy. In this study, the 
biases obtained from the straight and diamond-shaped 
trajectories are separately fed back into SINS. The time 
taken for the SINS position error to reach 1 km is used 
as the indicator to measure the accuracy of each calibra-
tion. The results after the feedback are shown in Fig. 15. 
The maintenance time for the diamond-shaped trajectory 
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is 239 s, while that for the straight-line trajectory is 200 s. 

Table 3  Calibration results of gyroscope bias and accelerometer bias for the straight and diamond-shaped trajectories in the 
simulation experiment
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Therefore, it can be inferred that the calibration using the 
diamond-shaped trajectory achieves higher calibration 
accuracy, which is consistent with the results of the simu-
lation experiment.

Accuracy improvement with different precision IMU
Due to the different error accumulation characteristics of 
different grade IMU, the effectiveness of acoustic-based 
IMU online-calibration may differ. Therefore, this section 
primarily analyzes the impact of different-grade IMU 
on the calibration. The data used in the analysis is from 
Qingdao shallow sea experiment conducted on August 
24, 2022, which included a MEMS-grade and a tactical-
grade IMU. The MEMS-grade IMU has a gyroscope bias 

of 36.8 (°)/h, while the tactical-grade IMU has a gyro-
scope bias of 0.3 (°)/h. The calibration was performed 
separately for both systems, and the results were fed back 
into the SINS. The time taken for SINS position error 
to reach 1 km and the corresponding improvements are 
presented in Fig. 16 and Table 6.

The results indicate that compared to the case without 
feedback, the MEMS-grade IMU shows a 38.9% improve-
ment in maintenance time after the feedback of the labo-
ratory bias and a 121% improvement after the feedback of 
the acoustic-based online calibration bias. On the other 
hand, the tactical-grade IMU exhibited a 1% improve-
ment in maintenance time after the feedback of the 

Table 4  Calibration results of gyroscope bias and accelerometer bias for the three sets of curve calibration trajectories in the 
simulation experiment

Project ε
b
x((°)/h) ε

b
y((°)/h) ε

b
y((°)/h) ∇b

x(10−8 m/s2) ∇b
y(10−8 m/s2) ∇b

z (10−8 m/s2)

Preset bias 36.8 36.8 36.8 2000 2000 2000

Bias of circular trajectory 36.8 36.68 37.19 1990 2010 1998

Bias of S-shaped trajectory 36.8 36.91 36.94 1991 2007 2001

Bias of figure-eight trajectory 36.8 36.70 36.73 2004 1998 2000
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laboratory bias and a 56.9% improvement after the feed-
back of the acoustic-based calibration bias.

From the above results, it can be found that acoustic-
based calibration for low-grade IMU has a more signifi-
cant impact on improving the position accuracy than 
high-grade one. This may be caused by the factor that 
high-grade IMU exhibits slower error divergence rates; 
therefore, the percentage improvement is not as signifi-
cant as low-grade IMU. Comparing the feedback of the 
laboratory bias with the feedback of the acoustic-based 
calibration bias, the latter has a greater effect on sup-
pressing the rate of error divergence of SINS. This may be 
caused by the factor that gyroscopes have a temperature-
dependent bias known as thermal bias, which represents 
the change in bias value relative to the room tempera-
ture bias within the specified operating temperature 
range. Therefore, the acoustic-based calibration bias can 
better reflect the actual bias during inertial navigation 
experiments.

Conclusion
High-precision underwater navigation is a prerequisite 
for underwater vehicles to explore the marine environ-
ment and resources and to conduct deep-sea scientific 
research and deep-sea engineering operations. To pro-
vide long-term and high-precision underwater naviga-
tion for an underwater vehicle, we proposed an acoustic 
LBL-based IMU calibration algorithm and analyzed the 
impacts of different types of calibration parameters, dif-
ferent calibration trajectories, and different-grade IMUs 
on the underwater navigation accuracy improvement. 
The conclusions are as follows.

(1)	 The acoustic LBL-based IMU online calibration 
model is presented in detail. We presented the 

model of IMU errors, the state equation of calibra-
tion, and especially the measurement equation of 
calibration. In the measurement equation for the 
tightly coupled SINS/LBL integrated navigation 
system, the observation innovation is obtained by 
subtracting the distance between the seafloor bea-
con and the IMU sensor calculated by SINS as well 
as the distance between the seafloor beacon and the 
transducer.

(2)	 We analyzed the impacts of different IMU error 
parameters on the calibration accuracy of IMU 
using acoustic signals. Taking the EPSON G370 
IMU parameters as an example, experiments simu-
late the impact of three main types of IMU errors 
on error divergence. The results demonstrate that 
the bias has a predominant effect on error diver-
gence, accounting for as much as 95.6% of the total 
effects.

(3)	 We analyzed the impacts of different calibration tra-
jectories on the calibration accuracy of IMU using 
acoustic signals. We find that an optimal calibration 
trajectory needs to consider the effects of the three-
dimensional observability and PDOP. In the experi-
ment, we compared the calibration effects of seven 
calibration trajectories: straight trajectory with and 
without the change in depth, diamond-shaped tra-
jectory with and without the change in depth, and 
three curve trajectories with the change in depth: 
the circular, S-shaped, and figure-eight trajectory. 
Among them, we find that the figure-eight trajec-
tory is the optimal one for acoustic LBL-based IMU 
online calibration.

(4)	 Finally, the impacts of different-grade IMU on the 
calibration accuracy of IMU using acoustic signals 
are presented. The experimental data from both 
MEMS-grade and tactical-grade IMU were ana-
lyzed. The experiment shows that acoustic calibra-
tion has a more pronounced effect on improving 
the accuracy of low-grade IMU compared to high-
grade one. For the MEMS-grade IMU sensor, the 
maintenance time of the IMU calibrated by the pro-
posed algorithm can increase by 121% compared to 
the IMU without calibration while that by the labo-
ratory default calibration parameter can increase by 

Table 5  Calibration results of gyroscope bias and accelerometer bias in the field experiment

Items ε
b
x((°)/h) ε

b
y((°)/h) ε

b
z ((°)/h) ∇b

x  (10−8 m/s2) ∇b
y  (10−8 m/s2) ∇b

z  (10−8 m/s2)

Bias of straight trajec-
tory

49.3 31.7 − 6.21 − 872.8 644.8 5915

Bias of diamond-
shaped trajectory

49.5 44.2 62.9 628.6 773.1 5982

Table 6  The percentage increase in maintenance time 
compared to the case without feedback

Items Laboratory bias (%) Online-
calibration 
bias (%)

MEMS-grade IMU 38.9 121.0

Tactical-grade IMU 1.0 56.9



Page 15 of 16Wu et al. Satellite Navigation             (2024) 5:7 	

38.9%, indicating the effectiveness of the proposed 
calibration algorithm.

In the future, when a relay reference network is 
designed and established, we plan to conduct the field 
experiment to calibrate the different-leveled IMU sensors 

with the proposed algorithm, thus achieving the goal of 
long-term and long-distance underwater navigation.
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