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Tree height composition describes the relative abundance of trees in different height levels and performs as 
a critical characteristic for community ecology. The recent launched full-waveform spaceborne LiDAR (Light 
Detection and Ranging), i.e., Global Ecosystem Dynamics Investigation (GEDI), can map canopy height, but 
whether this observation reflects tree height composition remains untested. In this study, we firstly conduct 
numerical simulations to explore to what extent tree height composition can be obtained from GEDI waveform 
signals. We simulate waveforms for diverse forest scenarios using GEDI simulator coupled with LESS (LargE-
Scale remote sensing data and image Simulation), a state-of-the-art radiative transfer model. We devise a 
minimalistic model, Tree generation based on Asymmetric generalized Gaussian (TAG), for customizing 
tree objects to accelerate forest scene creation. The results demonstrate that tree objects generated by 
TAG perform similarly in LiDAR simulation with objects from commercial 3-dimensional software. Results of 
simulated GEDI waveforms reasonably respond to the variation of crown architectures in even-aged forests. 
GEDI waveforms have an acceptable ability to identify different height layers within multi-layer forests, 
except for fir forests with a cone-shaped crown. The shape metric of waveforms reflects the height of each 
layer, while retrieval accuracy decreases with the increases in height variations within each layer. A 5-m 
interval between layers is the minimum requirement so that the different height layers can be separated. A 
mixture of different tree species reduces the retrieval accuracy of tree height layers. We also utilize real GEDI 
observations to retrieve tree heights in multi-height-layer forests. The findings indicate that GEDI waveforms 
are also efficient in identifying tree height composition in practical forest scenarios. Overall, results from 
this study demonstrate that GEDI waveforms can reflect the height composition within typical forest stands.

Introduction

The height distribution of all trees in a forest stand, also denoted 
as tree height composition, is a crucial aspect that regulates mul-
tiple ecosystem processes such as surface roughness, energy 
transfer, water, and carbon flux exchanges. This ecosystem char-
acteristic is influenced by a complex interplay of ecological suc-
cession, including establishment, growth, competition, mortality, 
and disturbances, and further mediated by human management. 
The height composition and resulting within-canopy struc-
ture of a forest are closely tied to important ecological func-
tions, such as providing habitats for animals [1], influencing the 

micrometeorological environment, and subsequently impacting 
biochemical processes [2] and carbon uptake [3]. Therefore, 
incorporating height composition information into studies that 
utilize tree heights as inputs, particularly in heterogeneous for-
ests, can be beneficial to ecosystem research [4] and land surface 
modeling [5]. Specifically, tree height serves as a vital predictor 
for estimating aboveground biomass (AGB) in forest ecosys-
tems, as allometric equations are widely applied [6]. Neglecting 
the height heterogeneity can introduce large uncertainties when 
estimating AGB and quantifying carbon storage, especially when 
using an established relationship between AGB and tree height 
at large spatial scales [7].
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Nevertheless, the height composition is often overlooked or 
inadequately represented using simple geometric models in 
ecological studies [8]. This can be attributed to the high costs 
associated with in situ investigations for large-scale applications 
and the limited within-canopy structural information provided 
by passive optical images [9,10]. To address these limitations, 
the development of an accurate map depicting tree height com-
position holds great potential in assessing forest biomass and 
carbon stocks, which are vital for informing effective climate 
change mitigation strategies and promoting sustainable forest 
management practices [11].

The Light Detection and Ranging (LiDAR) technology is an 
active remote sensing technique that utilizes laser pulses with 
single- or multi-spectral bands to measure the distance between 
the sensor and targeted objects and is thus used as a powerful 
tool for accurately measuring the 3-dimensional (3D) structure 
of forest characteristics [10]. Over the past few decades, LiDAR 
technology has been extensively utilized to assess forest struc-
tural characteristics such as vegetation height [12], canopy 
structural complexity [13], and foliage profile [14,15] over vari-
ous spatial ranges. Direct detection of the tree height composi-
tion is possible once the height or top of all trees within the 
stand is known. The airborne LiDAR (ALS) system employs 
laser pulses with relatively small footprints (approximately at 
the level of 10-1 m in diameter) to penetrate the canopy, thus 
providing valuable information for detecting forest 3D struc-
tures. The canopy height model (CHM) retrieved from ALS 
point clouds can be used to isolate individual trees by consider-
ing local maxima as tree tops [16,17]. Recent advances in LiDAR 
technology and individual tree segmentation algorithms, includ-
ing clustering algorithms [18,19] or voxel-based segmentation 
algorithms [20,21], enhance the performance of quantifying 
forest height composition. Additionally, the tree height composi-
tion can also be indirectly reflected from ALS-derived metrics, 
i.e., a set of dimensionless scalars known as canopy complexity 
metrics [22]. While these metrics have been found to explain 
some forest characteristics and structural traits [13], they have 
limited capacity to fully characterize the forest vertical profiling 
and reflect the height compositions. A quantile-based strategy 
can extract several metrics from the frequency histogram, but 
these metrics are highly sensitive to the physical structure of the 
forest stands and are difficult to formulate a priori prediction 
and exhibit limited capacity to utilize order information of the 
vertical profiling and to be applied in a wide spatial range [23].

The spaceborne LiDAR sensors, such as the Geoscience Laser 
Altimeter System (GLAS) onboard the Ice, Cloud, and Land 
Elevation Satellite (ICESat) and the Global Ecosystem Dynamics 
Investigation (GEDI) onboard the International Space Station, 
have reinforced the ranging capability [10]. These systems allow 
for wide-ranging terrestrial sampling with a relatively larger 
footprint (approximately at the level of 101 m in diameter). By 
fitting GEDI signals with ALS tree height results and optical 
signals, several wall-to-wall tree height maps have been pro-
duced based on different spatial extrapolation approaches cov-
ering a large region [12,13,24]. These products mostly rely on 
selected relative height (RH) metrics and ignored the full profile 
of the GEDI waveforms, which contains important information 
on forest vertical structure. Thus, most of these products only 
focus on the canopy top height and do not fully consider the 
tree height layering and height composition within a forest 
stand. Full utilization of spaceborne waveform LiDAR pulses 
allows for the representation of crucial forest traits along the 

vertical dimension, including plant volume density and crown 
cover profile [25].

To the best of our knowledge, no study has yet demonstrated 
whether GEDI waveforms can represent tree height composition 
for forest stands with a diverse forest ecosystem, i.e., different 
crown architectures (CAs), and varying canopy coverages, both of 
which influences the shape of waveforms. The main obstacle is the 
absence of accurate and sufficient in situ tree height investiga-
tions and the potential geolocation bias of GEDI samples [26]. 
Fortunately, radiative transfer models (RTMs) provide a new 
opportunity to test how GEDI waveform responds to tree 
height composition under more comprehensive forest conditions. 
Current RTMs are well-suited to complex scenes and do not over-
simplify the interactions between rays and terrestrial objects [27]. 
Examples of such RTMs include FLiES (Forest Light Environmental 
Simulator) [28], DIRSIG (Digital Imaging and Remote Sensing 
Image Generation) [29], DART (Discrete Anisotropic Radiative 
Transfer) [27,30], and LESS (LargE-Scale remote sensing data and 
image Simulation) [31]. With these RTMs, researchers are empow-
ered to simulate LiDAR observations within virtual environments 
that encompass a diverse array of tree objects [13,32–35]. An RTM-
based simulation process usually entails the generation of discrete 
LiDAR point clouds and subsequent aggregation to form large 
footprint waveforms encompassing both horizontal and vertical 
energy distributions [36,37]. A comprehensive experiment based 
on RTM can help identify the bottlenecks and guide future obser-
vational based experiments.

However, the computational cost of using RTMs to simulate 
LiDAR signals and GEDI waveforms across extensive forest con-
ditions persists as a challenge. The issue of unsatisfactory effi-
ciency in simulating reflected signal has been partially mitigated 
by the current LESS, which enhances computational efficiency 
through the integration of a state-of-the-art image renderer and 
a parallel computing module [31,38]. Another challenge is the 
lack of a computationally efficient method for generating tree 
objects with continuous CA variation. Tree CAs are important 
parameters that link the one-dimensional tree height information 
to 3D individual tree objects, which are required for RTM scene 
setup. Several methods have been proposed to abstract and 
describe the crown in RTMs, including the S-crown (simplified 
crown) method that describes the crown as geometric primitives 
(e.g., ellipsoid, cone, and cylinder [39]), the H-layer (hybrid layer) 
method that treats the canopy as one or multiple horizontal lay-
ers, and the M-surface (mesh surface) method that can abstract 
all elements of a single tree (including leaves and branches) by a 
series of triangles [40]. However, existing methods were not spe-
cifically designed for rapid adaptation to variations in tree bound-
aries, a common natural response to continuously changing 
climatic conditions [41]. While commercial software commonly 
customizes object boundaries, it requires extensive manual inter-
vention, limiting its widespread applicability [8]. Therefore, a 
lightweight method that can generate tree objects with custom-
ized boundaries and acceptable efficiency is urgently needed.

In this study, to investigate the extent to which GEDI wave-
forms can reflect the tree height composition within diverse 
forest scenarios, we simulate GEDI waveforms by GEDI simula-
tor from discrete ALS point cloud generated by LESS in both 
even-aged and multi-height-layer forests covering a wide con-
tinuous variation of CAs. To facilitate this simulation, we also 
propose a novel method, namely, Tree generation based on 
Asymmetric Generalized Gaussian (TAG), that utilizes an 
asymmetric generalized Gaussian (AGG) function to customize 
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the boundary of tree objects with an improved computational 
efficiency. This method allows users to generate tree objects 
with continuous variation, as opposed to using geometric 
primitives. We designed 4 groups of experiments, aiming to 
address the following questions: (a) Can tree objects generated 
by TAG replace 3D tree models in LiDAR point cloud simula-
tion? (b) How do GEDI waveforms respond to variations in 
CAs in even-aged forests? (c) How do the GEDI waveforms 
respond to tree height composition and variation in multi-
height-layer forests, and can the height composition of these 
forests be retrieved? (d) Can real GEDI observations be utilized 
in reflecting tree height in multi-height-layer forests? The 
answer to these questions from this simulation study provide 
necessary insights and guidance for future efforts aimed at 
retrieving forest height compositions covering more compre-
hensive forest scenarios.

Materials and Methods

GEDI waveform generation
The GEDI signal generation is a 2-step process, each step having 
undergone separate evaluations [42,43]. The initial step encom-
passes the simulation of ALS point cloud using LESS. This step 
necessitates the prior generation of individual tree objects 
within each pre-designed virtual forest scenario. Each tree 
object is constructed by TAG, as the representation of diverse 
and realistic tree structures can be ensured. Subsequently, 
the second step simulates the full waveform GEDI signal 
from the aforementioned discrete point cloud using the GEDI 
simulator. For further details of this workflow, refer to the 
following text.

Introduction of LESS
We use LESS to simulate discrete LiDAR point clouds from a 
comprehensive setting of forests in this study. LESS is a ray-
tracing-based 3D RTM that can simulate remote sensing signals 
and images over large-scale realistic scenes (http://lessrt.org/; 
last access: 2023 June 10). LESS employs a backwards path trac-
ing (BPT) method to generate images or signals (e.g., LiDAR 
signal in this study). By configuring the required parameters 
including the sensor parameters, platform parameters, and 
scenario parameters, LiDAR signals can be generated in batch 
mode with satisfactory efficiency [31].

Representation of single tree objects
We build a minimalistic model, TAG, to reflect the continuous 
variation of the CAs for each tree object, rather than employing 
constant crown geometric primitives (e.g., ellipsoid, cube, and 
cone in current LESS). TAG considers each tree as a symmetri-
cal object for all horizontal planes. That is, the object is the 
rotating result of a curve. Each tree can be divided into a trunk 
part and crown portion. Its outline on a horizontal plane can 
be described by 4 size metrics and 2 CA metrics (Fig. 1). In 
this method, tree trunks are abstracted by cylinders. Four size 
metrics are thus required to describe the structure of an indi-
vidual tree: tree height, crown height ratio (CHR, the ratio 
of crown height to tree height), trunk height ratio (THR, the 
ratio of trunk height to tree height, i.e., 1-CHR), and diam-
eter height ratio (DHR, the ratio of crown diameter to crown 
height, Fig. 1A).

We use an AGG distribution to describe the outline of the 
crown portion in TAG. The relative crown diameter D(i) at 
height i can be written as:

where

In Eqs. 1 and 2, σupper and σlower represent the standard devia-
tions of the upper and lower segments of the Gaussian curves, 
respectively. These parameters are pivotal in defining the kur-
tosis of the respective curve segments. It is discerned that 
the ratio (ULratio, σupper:σlower) is instrumental in charac-
terizing the kurtosis of the crown outline. Another crucial 
metric, Gamma, is employed to regulate the skewness and the 
contour of the Gaussian curve's tail. Specifically, Gamma influ-
ences the curve's slope and elevation near its apex and also 
modulates the curve's rate of decay. Γ(x) is a gamma function. 
All trees in this study were designed with a single peak within 
their outline to prevent the occurrence of 2 peaks in a single 
tree, which could affect height retrieval.

Once the boundary of the canopy has been specified by 
the above metrics, branches within the canopy can be either 
neglected or generated with user-specified parameters, includ-
ing branch height interval, as well as azimuth and zenith angles, 
and the length of each branch is constrained by the boundary 
of the crown [44]. These branches are then represented by 

(1)

�upper = �upper

√
Γ(1∕Gamma)

Γ(3∕Gamma)
(2A)

� lower = �lower

√
Γ(1∕Gamma)

Γ(3∕Gamma)
(2B)

Fig. 1. Diagram describing the outline of a single tree. Panel (A) illustrates the trunk 
metrics of an ash tree, and panel (B) illustrates how crown outline can be determined 
by the ULratio (top column) and Gamma (bottom column). All trees in panel (B) have 
the same size metrics: height = 4 m, crown height = 3 m, and crown diameter = 2 m. 
The unit of the coordination system in panel (B) is meters.
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M-surfaces. All leaves, represented by a series of polygons with 
specific coordinates, are randomly generated and populated 
within the tree outline, following the assignment of parameters 
that describe leaf shapes. During the leaf placement process, if 
branches are present, leaves are inclined toward the nearest 
branches. A leaf clumping factor describes the tendency of leaves 
to cluster close to branches. This method has been included in 
the latest LESS version.

GEDI simulator
Building upon the approach suggested by Blair and Hofton 
[36], the generation of GEDI waveforms is conducted by con-
sidering the weighted contributions of the point cloud gener-
ated by LESS in this study [43]. The point clouds are decomposed 
to represent the reflected intensity peaks originating from the 
compact laser pulses with small footprints [45]. When consid-
ering the horizontal plane, the weight assigned to each point 
(denoted as Iw,i) can be calculated based on its distance from 
the central point (xo, yo) of the footprint (Fig. 2):

where (xi, yi) represents the position of the ith point, and σf 
denotes 1/4 of the width of the GEDI footprint. The Ii is a rela-
tive weighting of each point. In this study, we follow Blair and 
Hofton [36] and adapt this weight to be equal (Ii = 1) for all 
points.

To optimize computational efficiency, we have implemented 
the vertical convolution after, rather than before, the binning pro-
cess, and have neglected the noise signal from background light 
and electronic noise within GEDI waveforms. The GEDI simula-
tor is available online (https://bitbucket.org/StevenHancock/
gedisimulator/src/master/; last access: 2023 May 20).

Simulation workflow
To execute each simulation by calling LESS SDK in Python, 
5 steps are required.

1. Environment Configuration. This step involves specifying 
the working space, importing relevant modules, and assigning 
the central processing unit (CPU) cores to be used during the 
simulation.

2. Single Tree Simulation. Once the CA parameters are 
accepted, each individual tree object can be generated. Simulation 
tasks utilizing TAG will be assigned to separate CPU cores. At 
this stage, users can choose whether or not to consider and 
simulate the branches within the canopy.

3. Scene generation. A virtual scene can be generated using 
a set of parameters. In this study, each scene has a diameter 
of 25 m matching the GEDI footprint, which is similar to the 
suggested LiDAR footprint for reflecting forest structures 
[35]. This step should be repeated until each tree's position is 
assigned.

4. LiDAR point cloud simulation. The full waveform LiDAR 
signals are simulated and decomposed into discrete point 
clouds using a Gaussian decomposition algorithm. We employ 
the following sensor configuration parameters during the simu-
lation: sensor wavelength = 1,064 nm, beam axial division = 5 
representing the cross-section of each laser pulse is divided into 
5×5 parts, platform altitude = 800 m, platform resolution = 
0.1 m, and platform range = 100 m, representing the vertical 

range where the return pulses would be recorded. The reflec-
tance and transmittance for leaves are 0.4 and 0.4, respectively, 
0.2 and 0.0 for branches, and 0.3 and 0.0 for soil.

5. GEDI waveform simulation. We generate GEDI wave-
forms using the discrete point clouds obtained in the step 4 
following the method in the previous section, with a vertical 
resolution of 1 m.

GEDI data and processing
To test whether the knowledge we obtained from RTM simula-
tions can guide real-world application, we also carry out an 
experiment using real GEDI data at the Abby Road ecology site 
(ABBY) in the United States. This study site is characterized by 
mixed forests with several canopy layers, spanning approximately 
170 km2 (Fig. 3). A CHM with a 1-m spatial resolution, derived 
from airborne LiDAR observations, is generated annually for this 
region, except for the year 2020. We selected the CHM from 2019 
in this experiment. The original point cloud records and CHM 
are accessible for download at https://data.neonscience.org/data-
products/explore (last access: January 2024).

We collected the GEDI L2a v002 product for the period from 
April to October 2019 from https://search.earthdata.nasa.gov/
search (last access: January 2024). The GEDI samples were fil-
tered based on following criteria: a “quality_flag” not equal to 
0, a “degrade_flag” not equal to 1, and a “sensitivity” greater 
than 0.95. Subsequently, 174 GEDI samples located in multi-
layer forests were selected through visual interpretation. The 
RH curves from each sample were interpolated into a uniform 
height interval using a spline function, facilitating the deriva-
tion of the waveform from these RH curves. The heights of local 
maximum intensity (HoIs) within these waveforms were then 
identified to examine their responsiveness to variations in tree 
height. The majority of these samples originated from forests 
with 2 layers (top and bottom layer), while 39 samples repre-
sented 3-layer forests (top, middle, and bottom layer). To miti-
gate the impact of geolocation bias inherent in GEDI signals, 
we excluded samples exhibiting more than 10 m of absolute 
bias between the tree height from GEDI observation (i.e., tree 
height at RH98) and the CHM.

Experimental designation
We carry out 4 experiments in this study.

Experiment 1
This experiment tests whether the tree models generated by the 
method in this study can be employed in simulating point cloud 
and GEDI signals. We compare the simulated GEDI signals 
using simplified tree models with no branches, simplified tree 
models with branches generated by a B-cluster (boundary clus-
ter) algorithm [44], and virtual 3D tree objects with explicitly 
described structures for commercial usage (obtained from https://
www.cgtrader.com/). We design 3 scenes with different tree 
species representing typical crown architectures (cone: fir, slim 
ellipsoid: ash tree, and flat ellipsoid: mango tree, see Fig. 4). 
The size metrics and CA metrics for the 3 tree species are out-
lined from the tree objects (see Table 1). The crown cover for 
each scene is 90%.

Experiment 2
This experiment investigates whether the simulated GEDI wave-
forms can respond reasonably to variations in size and CA 

Iw,i = Ii
1
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√
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metrics in even-aged (uniform tree heights) forests and whether 
these partial relationships are predictable. In this experiment, 
all trees within each forest scene are set to have the same size 
and CA metrics reflecting their uniform age. The default settings 
of the metrics are as follows: tree height = 20 m, THR = 0.25, 
CHR = 0.75, DHR = 0.4, ULratio = 2, and Gamma = 3. We 
carry out the simulation with different crown coverages: sparse 
forest (10%), medium forest (50%), and dense forest (90%). In 
this experiment, we aim to explore the feasibility of retrieving 
tree height from GEDI waveforms. To achieve this, the HoIs 
from each waveform are integrated into a linear regression analy-
sis. HoIs, representing the localized peak return energy, exhibit 
a strong correlation with crown coverage at specific heights. This 
correlation yields insightful data regarding forest height for the 
second or third tree height layers, premised on the theoretical 
knowledge of CA metrics. During the analysis, HoIs are extracted 
by identifying values that are larger than their neighbors within 
a 3-step moving window.

Experiment 3
The purpose of this experiment is to examine the variability of 
GEDI waveforms in response to multiple height layers, a com-
mon occurrence in natural forest conditions. Many forests 
consist of secondary growth, and thus exhibit multiple height 
layers, which arise from either regeneration after clearcutting 
or selective logging. We design 4 forest scenarios, each incor-
porating various scenes, to assess the waveform response to 
height variation within each layer, to different height intervals, 
to diverse crown cover for each height layer, and to the mixing 
of CAs within each layer (Fig. 4). In Experiment 3, the variation 
of tree height within each layer is quantified by the coefficient of 
variation (CV), which reflects the standard deviation in rela-
tion to the average height of each layer. A higher CV indi-
cates greater variation in tree height and increased standard 
error. For instance, in the first set with a CV of 10%, the tree 
height composition for the 10-m layer is 10±1 m. Waveforms 
with 4 increasing CV levels—5%, 10%, 15% and 20%—are 
focused. The uncertainty of the simulated GEDI waveforms 
in Experiment 3 is evaluated by conducting 10 repeated simu-
lations but with randomly generated tree positions within the 
footprints.

During the simulation, tree heights are initially generated 
randomly, adhering to the targeted CV, followed by the calcula-
tion of tree quantities for each height layer, given that the crown 
coverage is predetermined in this experiment. In this phase, all 
other tree CAs, such as ULratio, Gamma, CHR, and THR, are 
kept constant. Subsequently, tree positions were randomly gen-
erated and allocated within the designated scenes.

For the first scenario, 3 forest height composition scenes are 
designed with different layer combinations (first: 10 m and 
20 m; second: 15 m and 30 m; third: 10 m, 20, and 30 m) 
for 3 different CAs (fir, ash, and mango; CA metrics are shown 
in Table 1). The crown cover is 90% for all scenes during simula-
tion. Secondly, we investigate the minimum height interval 
between layers that GEDI waveforms can detect. To do so, we 
simulated GEDI waveforms in 2 CAs with varying height inter-
vals of 3 m, 5 m, and 8 m as 3 scenes for different CAs. Thirdly, 
we aim to assess the capability of the waveforms to differentiate 
variations in crown cover within each height layer, since under 
some natural conditions, a layer with a higher crown cover can 
be located at any part of the canopy. For this purpose, a scenario 
including 9 forest scenes for different CAs is designed, compris-
ing 3 height layers with varying crown cover (10%, 10%, and 
30% of crown cover for the 3 height layers with a total of 50% 
coverage; 10%, 20%, and 40% with a total of 70% coverage; 10%, 
30%, and 50% with a total of 90% coverage). Finally, a com-
parison is designed for displaying the waveform response to 
mixing CAs, which are commonly observed in most natural 
forest ecosystems [41,46]. Each of the scene features 3 ash tree 
height layers with 10 m interval and introduced mango trees 
with a proportion of 25% and 50%, respectively. These 2 tree 
species are selected due to their typical crown architectures 
found in terrestrial ecosystems.

Another aim of Experiment 3 is to investigate the potential 
of using the HoI as a predictor for the height of each crown 
layers, thereby representing the height composition. The rela-
tionship between HoI and tree height is determined by the 
CA metrics, allowing us to establish the HoI-height func-
tion in even-aged forests. Leveraging the results obtained from 
Experiment 2, we estimate the parameters for HoI-height fitting 
function for each species. Subsequently, using these fitted height 
functions, we retrieve tree heights for different layers in the 4 
scenarios in Experiment 3 from HoIs of the waveforms. The 
inference results obtained from scenarios 1 and 2 are intended 
to assess the robustness of the fitted function in retrieving the 
tree height composition in multi-layer forests based on the 
height function fitted in even-aged forests. Similarly, the infer-
ence results from scenario 3 evaluate the robustness of the 
height retrieval when confronted with dynamic crown coverage 
for each layer. Lastly, the inference results from scenario 4 pro-
vide insights into the performance of height retrieval in mixed 
forests.

Experiment 4
This experiment aims to explore the effectiveness of actual 
GEDI waveforms in representing both top and sub-canopy 

Table 1. Trunk metrics and CA metrics for the 3 tree species in Experiment 1

Species Crown shape

Size metrics Architecture metrics

Tree height (m) CHR THR DHR ULratio Gamma

Fir Cone 20 0.9 0.1 0.35 6 1.5

Ash Slim ellipsoid 20 0.65 0.35 0.67 1.25 5

Mango Flat ellipsoid 20 0.4 0.6 1.5 1.25 3
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tree heights in multiple-height-layer forests, thereby assessing 
height composition retrieval performance. It seeks to deter-
mine if these real-world observations align with findings from 
prior simulation-based experiments. We also follow the height 
retrieval strategy using HoIs from GEDI waveforms to pre-
dict tree heights extracted from CHM.

Results

Evaluation of abstracted tree objects from AGG 
function
The simulated waveforms exhibit limited differences using tree 
objects from commercial software and using tree objects 
abstracted by the method in this study (Fig. 5). There are minor 
differences between waveforms using tree objects for commer-
cial usage (black line in Fig. 5) and generated by TAG (blue 
and orange line), as TAG is designed to capture a symmetrical 
crown outline. Including branches within the tree crown also 
has limited influence on the resulting waveforms. The intensity 
of GEDI waveforms mainly reflects the cloud point frequency 
at each height interval (see the diagram in Fig. 2). The limited 
influence of the trunk and branches on the waveform can 
be explained by 2 main reasons. Firstly, LiDAR instruments 

Fig.  2.  Diagram of the generation of GEDI waveform (black line in the left panel) 
from the discrete point cloud at a forest stand with Pseudotsuga menziesii. Within 
a 25-m footprint, there are 10 trees each with a height of 50 m, and 100 shrubs 
(spherical) each with a height of 2 m. The numbers and frequency of point clouds 
in each bin (i.e., 1 m in this study) are represented by green columns. The curves in 
the right panel represent the energy distribution of GEDI instrument on vertical and 
horizontal dimensions.

Fig. 3. The CHM covering the ABBY site. The canopy heights are represented by color 
palette from red to green. The blue circles represent the locations of GEDI samples 
over multi-layer forests.

Fig.  4.  Schematic representation of the workflow and the structuring of the 4 
experiments conducted in this study. (A) The workflow of GEDI simulation. (B) The 
simulation-based experiments. (C) The real GEDI data-based experiment. Gray blocks 
symbolize the virtual tree or forest scenarios. In Experiment 3, 4 distinct forest 
scenarios are depicted, each corresponding to a unique experimental objective. 
The numerical values within the green blocks indicate the height of each layer. For 
sensitivity to crown cover tests in Experiment 3, variations in color (dark green and 
dark orange) signify layer positions with the densest canopy cover and mixed tree 
species (CAs), respectively. Tree objects illustrated in this figure were crafted using 
commercial software, with the final rendering accomplished via Lumion (https://
lumion.com/, last access: September 2023).
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observe the within-canopy structure by penetrating laser pulses 
through the gaps between leaves; trunks and branches are likely 
being shaded by top leaves. Furthermore, the surface of the 
trunk and branches does not allow laser transmission (i.e., 
transmittance = 0), and their contribution to the point cloud 
frequency during waveform generation can be deemed negligible. 

This is also supported by Qi [44], who reported a high consis-
tency of simulated reflectance using tree objects generated by 
M-surface and B-cluster methods (the correlation coefficient, 
R2, is 0.99). Additionally, by abstracting the crown with an AGG 
function, the boundaries of the tree object are closer to the 
natural trees. This improvement overcomes the slight simu-
lation bias caused by using the S-crown method since this 
method usually mismatches the crown boundary between geo-
metric primitives and natural trees [44].

The waveform responses to canopy architecture in 
even-aged forests
In the even-aged forest scenes where all trees have similar 
height, the resulting waveforms can be divided into crown and 
terrain parts (Fig. 6). The integral intensity of the crown portion 
(number of crown-intercepted LiDAR returns) has a nonlinear 
positive relationship with the crown cover. The integrated value 
of crown portions increased from ~60% to ~75% when the 
maximum crown cover increased from 10% to 50% but only 
increased from ~75% to ~95% when the maximum crown cover 
increased from 50% to 90%, indicating that the LiDAR returns 
intercepted by the crown increased only slightly after the crown 
cover reached a certain threshold. Simultaneously, the varia-
tions in the trunk and crown height proportions are insulated 

Fig. 5. Simulated waveforms using virtual tree objects (in black), simplified tree objects 
with branches (in blue), and simplified tree objects without branches (in orange) in 3 
scenes [fir, ash tree, and mango tree in panels (A), (B), and (C), respectively].

Fig. 6. Simulated waveforms with different trunk metrics [THR in panel (A) and CHR in panel (B)] and crown architecture metrics [ULratio in panel (C) and Gamma in panel 
(D)]. The simulated results with different metrics are given in different gray colors. The percentage in each subpanel represents the maximum crown cover in this simulation.
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from the energy proportions of the crown signal and terrain 
signal. Since all trees within each scene share the same size and 
CA metrics, the 2 trunk-related metrics, THR and CHR, deter-
mine the ratio of trunk and crown height to the total tree height 
in GEDI signals (i.e., THR + CHR = 1, Fig. 6). With an increase 
in THR (decrease in CHR), the range of the crown portion 
decreases, while the length of the trunk range increases, and 
vice versa. This phenomenon indicates that we can only use 
CHR, rather than both CHR and THR, in estimating the sen-
sitivity of HoI to tree height.

The ULratio and Gamma determine the shape of crowns and 
thus the resulting GEDI waveform (Fig. 6). The skewness of the 
crown boundary is mainly determined by the ULratio. Its influ-
ence can be divided into 3 stages: ULratio < 1 means the crown 
outline skewed to the upper part; ULratio = 1 means the crown 
outline is a curve of normalized distribution, at this moment, 
the boundary of the crown is close to an ellipsoid; and ULratio 
> 1 means the crown outline skewed to the lower part (Fig. 6C). 
A reciprocal of ULratios leads to symmetrical crown outlines. 
Gamma determines the kurtosis of the crown outline and GEDI 
signals and thus has limited influence on the length of the crown 
and trunk parts of GEDI waveforms (Fig. 6D).

The sensitivity to the other 2 size metrics, tree height and 
DHR, is not shown in this experiment. All the trees in this 
experiment have a height of 20 m, meaning that the top signals 
of the GEDI waveforms are approximately 20 m. Increasing the 
tree height can thus increase the range of the resulting GEDI 
waveforms and vice versa. During the simulation, we kept 
the crown cover constant (10%, 50%, and 90%). A variation 
in DHR only influences the tree amount within each scene but 
not on the crown cover.

Within an even-aged forest characterized by a single tree 
height layer, we observed statistically significant correlations 
between the HoI and 3 metrics (Fig. 7). Unlike the peak inten-
sity of the waveform, HoI demonstrates insensitivity to varia-
tions in crown cover. The HoI exhibits a positive relationship 
with THR but a negative relationship with CHR with satisfac-
tory confidence (R2 = 0.85 and 0.88, respectively, Fig. 7A and 
B). An increase in ULratio leads to a decrease in the peak height 
of GEDI waveforms (R2 = 0.95, Fig. 7C). An increase in Gamma 
has no effect on the HoI (Fig. 7D).

The waveform responses to tree height variation in 
multi-height-layer forests
The waveform responses to height variation
The GEDI waveforms demonstrate a noticeable increase in 
uncertainty as tree height variation amplifies, as indicated 
by the standard error observed across 10 repeated simula-
tions (Fig. 8). In scenes where tree height variation is limited 
(i.e., CV = 5%), the maximum height captured by the GEDI 
waveforms closely approximates the actual tree height. For 
instance, in scene 1, the maximum height matches a tree 
height of 20 m, while in scenes 2 and 3, it corresponds to a 
tree height of 30 m. As the CV increases, indicating a greater 
likelihood of taller trees existing, the observed maximum 
waveform height also rises.

The variation in the simulated waveforms is influenced not 
only by the increasing CV but also by the CAs. Notably, fir 

Fig. 7. The sensitivity of the HoI of waveforms (colored circles) to trunk and crown 
architecture metrics, including (A) THR, (B) CHR, (C) UL ratio, and (D) Gamma. The 
color of these circles represents the peak intensity. The fitting function and R2 are 
labeled in each panel.

Fig. 8. Diagram of GEDI waveforms in 3 tree height scenes for fir in panel (A), ash 
tree in panel (B), and mango tree in panel (C). Different CVs are depicted by various 
colors in the waveforms. The shading within each waveform signifies the standard 
error across 10 simulations. The height retrieval results from the HoIs for each 
crown layer are illustrated through colored columns. In these columns (bar plots), 
the central short line denotes the average prediction, and the error bars convey the 
95% confidence range pertinent to the retrievals. Numerical labels on each retrieval 
reflect the number of waveform peaks detected in a series of 10 simulations. Each 
height layer displays 4 retrieval results, each symbolizing 1 of the 4 CVs, and is color-
matched with the corresponding waveforms.
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forests demonstrate a higher tolerance to tree height uncertain-
ties, resulting in a consistent pattern in simulated waveforms 
across different CVs. This behavior can be attributed to the 
relatively short trunk heights (THR = 0.1) of fir trees, which 
leads to a coupling between the lower portion of taller fir trees 
and shorter fir trees. However, this coupling effect hampers the 
accurate detection of waveform peaks from different layers and 
the determination of height composition within fir forests.

The waveforms obtained from ash and mango forests exhibit 
a stronger response to tree height variation, enabling the retrieval 
of each height layer with a considerable degree of confidence, 
even the tree heights in current scenarios are different from the 
samples for fitting in Experiment 2 (R2 for both species are 0.99, 
see Fig. S1). Since the ULratios for these 2 species are the same 
and Gamma has no effect on the relationship between HoI and 
tree height, we estimate the sensitivity of HoI to tree height 
based on the results in Fig. 7C (Table 2). Due to the relatively 
shorter crown height of mango trees and a lower CHR, the HoI 
values for specific height layers in mango forests are higher 
compared to those in ash forests. With the exception of fir for-
ests, the height of HoI can be utilized to confidently retrieve 
the tree height for each layer under limited CV conditions. 
However, as the CV increases, the retrieval uncertainty also 
increases. When the CV exceeds 15%, some waveform peaks 
corresponding to medium or lower sections of the canopy 
become overlapped with adjacent layers, leading to a potential 
loss of distinction between height layers.

Although the crown cover is identical for each layer, the top 
layer in the waveforms consistently exhibits the highest inten-
sity compared to the lower layers. This phenomenon stems 
from the fact that the top layers intercept a greater portion of 
the downwelling radiative energy during radiative transfer, 
consequently resulting in a higher likelihood of generating 
LiDAR returns. As a consequence, there is a possibility of fail-
ure in accurately detecting waveform peaks for the lower 
layers.

The waveform responses to different height intervals
The capability of GEDI waveforms to differentiate canopy layers 
and their performance in height retrieval are influenced by the 
spacing between the crown layers and the CA (Fig. 9). We did 
not conduct this analysis or subsequent analysis for fir forests, 
as previous findings suggest that different canopy layers cannot 
be effectively distinguished using GEDI waveforms in those 
forests. In general, the height retrieval performance in mango 
tree forests surpasses that in ash tree forests. This discrepancy 
arises from the relatively shorter crown portions in mango 
trees, which results in a smaller likelihood of waveform peaks 
from adjacent layers becoming overlapped. When the interval 
between layers is 3 m, only one peak can be distinguished 
within any of the waveforms, making it impossible to detect 
height layers. There is a significant underestimation in tree 
height using the HoI and the height function from the “The 
waveform responses to height variation” section, suggesting 
different height layers are coupled together. The HoI-height 
function no longer performs accurately. Similarly, the medium 
layer (15 m height) in both forests with a 5-m interval cannot 
be reliably differentiated. On the other hand, the top layer can 
consistently be detected and retrieved, while the bottom layer 
can be detected only when the CV is below 10%. Increasing the 
interval to 8 m allows for successful detection and retrieval of 
nearly all 3 layers in both forests when the CV is below 10%. 

However, this success becomes challenging when the CV 
exceeds 15%. For instance, in ash tree forests with CV below 
10%, only a few failures are observed in detecting the medium 
layer with an 8-m interval (2 failures for a 5% CV and 1 failure 
for a 10% CV). Nevertheless, as the CV exceeds 15%, the likeli-
hood of failure increases (7 failures for both 15% and 20% CV).

The waveform responses to different crown cover
The above 2 experiments assume a constant canopy density 
for each layer (30%), while this canopy cover fraction can 
be different under actual conditions. We conduct the third 
experiment to test the performance of GEDI waveform in 
retrieving height layering when the canopy coverage varies 
across layers. Our findings reveal that the top layer can always 
be reliably detected using GEDI waveforms, regardless of the 
location of the densest canopy locates (Fig. 10). For the mid-
dle and bottom layer, the layer height can be successfully 
retrieved either when the total canopy cover is low or the 
densest canopy cover is at the bottom layers. These outcomes 
suggest that waveform intensity may not always accurately 
reflect the differences in crown cover between layers, given 
that a significant portion of energy is intercepted by the top 
layer(s). Similar to the results in previous sections, the height 
of each layer can also be retrieved by the function for the 2 
species respectively, demonstrating its robustness under vary-
ing crown cover. The capacity to detect waveform peaks and 
retrieve tree height using HoI is generally maintained under 
most circumstances where the CV is less than 10% (at least 8 
peaks can be detected in 10 simulations). An increased CV 
may result in a tree transitioning to an adjacent layer, causing 
a blurred wave trough between layers and compromising the 
accuracy of the detection.

Fig. 9. Diagram of GEDI waveforms in 3 canopy layers with different height resolutions 
(3 m, 5 m, and 8 m) for ash tree forests in panel (A) and mango forests in panel (B). 
Other symbols have the same meaning in Fig. 8.
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The waveform responses to mixing crown
Our results demonstrate that even when crown layers consist 
of 2 different CAs, the resulting waveforms generally exhibit 3 
distinct peaks, albeit with a higher degree of uncertainty com-
pared to waveforms obtained from homogeneous forests (Fig. 
11). The inclusion of mango trees into ash tree forests leads to 
limited variations in the width of each peak, since the difference 
of CHR between the 2 species is limited. Moreover, when the 
height CV exceeds 15%, the peak of waveforms from some 
scenes diminishes, mirroring the observations in pure forests.

Notably, inferring the height retrieval functions fitted in 
pure forests (uniform CA metrics) into mixing forests intro-
duces a greater level of uncertainty in height retrieval than 
in pure forests, compared with Fig. 8. These findings highlight 
that the proportion of tree species with distinct crown shapes 
also influences waveform characteristics and may impact the 
accurate retrieval of tree height composition. The mixture of 
different CAs results in a weaker relationship between HoI 
values and tree heights, thus introducing greater uncertainty 
in height retrieval. In forest environments where diverse tree 
species coexist, significant differences in CA metrics may pose 
challenges in accurately detecting the height composition.

Height retrieval likelihood
We have compiled metrics to evaluate the likelihood of using 
HoIs in height retrieval (Fig. 12). Our findings indicate that in 
forests with a height CV under 10%, HoIs are reliably detected, 
enabling accurate height retrieval. However, as CV increases, 
the detection rate of HoIs decreases markedly. The success of 
detection is primarily dependent on the spacing between tree 
layers. For instance, a 15-m interval between layers yields a 
success rate exceeding 90% (see the first column in Fig. 12A). 
If this interval is reduced, the success rate drops significantly 
(Fig. 12A and B), with intervals less than 5 m resulting in suc-
cess rates below 50%. Additionally, the formation of HoIs is 
closely linked to the amount of radiative energy received; thus, 
a lower height for the densest layer tends to improve the success 
rate (Fig. 12C).

Height retrieval using real GEDI observation
The analysis reveals that tree heights for both top and bottom 
layers can be reasonably predicted from HoIs with an accept-
able confidence (R2 values of 0.39 and 0.43, respectively; see 
Fig. 13). The waveform peaks, originating from the top heights 

Fig. 10. Diagram of GEDI waveforms in the ash tree (A to C) and mango forests (D to F) with different tree covers [50% in panels (A) and (D), 70% in panels (B) and (E), and 90% 
in the panels (C) and (F)]. The height interval of different layers is 10 m. The crown cover of each layer is labeled in the figures. Other symbols have the same meaning in Fig. 8.
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of each layer, reflect the corresponding crown layer heights (Fig. 
14A). However, due to geolocation mismatches in GEDI obser-
vations, the tree heights in 43% of the GEDI samples did not 
align with those from the CHM, exhibiting an absolute bias 
greater than 10 m. Furthermore, there were instances where 
HoIs of non-top layers were not detected due to the tree height 
variation within a specific layer, especially in the middle layer, 
resulting in a decreased success rate in height retrieval for these 
layers. As shown in the “The waveform responses to tree height 
variation in multi-height-layer forests” section, layers with a 
narrow height range often failed to be distinguished in the HoI 
analysis. This issue is exemplified in Fig. 14B, where, at a spe-
cific footprint, tall trees (height > 45m) created 2 waveform 
peaks, while only one prominent peak was observed below 
30 m due to the small height difference between several ~30-m 
trees (<5 m).

Discussion

Applying LESS in LiDAR signal simulation
This study aims to answer the question of whether and to what 
extent large footprint LiDAR waveforms can reflect the height 
composition. Employing RTMs significantly reduces the cost 
of collecting LiDAR signals from airborne remote sensing and 
can simulate GEDI waveforms from more comprehensive forest 
scenarios [27,35,47]. As a state-of-the-art RTM, LESS employs 
a backward path tracing and parallel computing technique and 
thus can greatly reduce memory usage compared to forward 
path tracing models and enhance computational efficiency [38]. 
For example, in this study, a simulation over a forest scene with 
100 pre-constructed 30-m-high trees costs 102.4 ± 2.4 s on a 
16-core, 2.20-GHz CPU (10 simulations). Furthermore, this 
efficiency can be further improved by incorporating graphic 

Fig. 11. Simulated GEDI waveforms in mix forests. The original experimental setup 
consisted of a 3-layered ash tree forest with heights of 10 m, 20 m, and 30 m with 
the same crown cover of 30%. A gradually increasing proportion of 25% and 50% 
[panels (A) and (B)] of mango trees are introduced into the original scenario at top 
1, top 2, and all 3 layers, respectively (exhibited in the first, second, and third column, 
respectively). The mixing strategy is visually depicted by an orange block. Other 
symbols have the same meaning in Fig. 8.

Fig. 12. A synthesis of HoI detection rate across 4 scenarios in Experiment 3. The 
x-axis in each panel delineates different scene configurations: layer combination on 
panel (A), interval between layers in panel (B), the position of the densest layer in 
panel (C), and the position of mixing layers in panel (D). The y-axis is the success 
rate of HoI detection. CVs are represented by corresponding colors and increasing 
size of symbols, to avoid overlapping. The solid block and triangle represent the ash 
tree and mango tree, respectively, in panels (A), (B), and (C). The hollow circle and 
rhombus represent the 25% and 50% mixing proportion in panel (D).

Fig. 13. Scatter plot between HoIs from GEDI waveforms and tree heights from CHM. 
Top, middle, and bottom layer of the canopy are represented by different colors. 
Statistical information (sample counts N and R2) and linear fitting functions are also 
labeled in corresponding colors.
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processing units into calculation [48]. To reduce the cost of gen-
erating tree objects with customized boundaries, we also design 
a novel and efficient method, TAG, based on the AGG function. 
TAG focuses on customizing the outline of each individual tree 
by a series of CA metrics and can reflect the continuous varia-
tion in crown shape, which opposes the S-crown method that 
employs geometric primitives [39]. The leaves are presented by 
triangle meshes and are then randomly generated and populated 
within the crown outline, i.e., follows the M-surface method. 
The acceptable consistency in Experiment 1 demonstrates that 
this method can be an ideal substitution for commercial soft-
ware to customize tree objects. It also reduces the calculation 
cost by multi-processing: the generation of each single tree occu-
pies only one CPU core; thus, the preparation of the tree object 
inventory (over 10,000 trees in this study) can be accelerated by 
employing computing clusters.

The combination of satisfactory model performance and 
acceptable computational efficiency is crucial for generating 
a large number of waveforms from diverse forest scenes [49]. 
A machine learning algorithm that aims to detect forest verti-
cal structure would require an extensive training set that 
includes diverse forest scenarios [24]). Commercial software 
often faces challenges when generating tens or even hundreds 

of tree objects within each LiDAR footprint, which makes 
it an impractical and costly option to be applied in a wide 
range [8]. The TAG method presented in this study provides 
a promising alternative, which can efficiently capture the out-
line of each tree and produce simulation results that are com-
parable to commercial software. This method enables us to 
build an inventory that includes over 1,000,000 tree objects, 
covering the continuous variation in tree height and crown 
area that cannot be achieved by other methods aside from 
our AGG-based method. Although some trees in our study 
may not exist in nature, this diverse inventory is beneficial 
for training deep learning networks. Future GEDI simulations 
that involve more complex forest scenes, such as those with 
multilayer trees featuring diverse crown areas, can utilize these 
objects directly.

Implication of this study
HoI as height retrieval feature
In this study, we investigate the applicability and performance 
of height composition retrieval within diverse forest scenarios 
by employing HoI as the primary input feature for height retrieval. 
HoI represents a local maximum of canopy cover along the 
vertical axis and provides information about peak width 
and peak intensity of LiDAR waveforms [50]. Consequently, 
it captures a significant portion of full-waveform shapes [51]. 
Traditional percentile-based strategies commonly used for top 
tree height retrieval [12] cannot reflect the tree heights within 
the second or third layers, leading to biases when estimating 
AGB or other forest structural traits [52]. Meanwhile, HoI 
serves as a more robust feature for detecting tree heights within 
non-top layers. Adams [50] suggested that HoIs exhibit a strong 
relationship with tree heights through a comprehensive evalu-
ation. The simulation results from Experiment 2 demonstrates 
that the relationship between HoI and tree heights responds to 
the variation of CA metrics confidently, and the results from 
Experiment 3 demonstrates that HoI-height functions are robust 
when being inferred into the multi-layer forest scenarios. Results 
from Experiment 4 support the findings from simulation exper-
iments and further demonstrate the applicability of employing 
HoIs in height retrieval.

It is essential to clarify that in certain scenarios, such as those 
with significant height CV within each layer, there might be 
difficulties in detecting HoIs for adjacent layers and conse-
quently in retrieving tree heights (see the examples in the “The 
waveform responses to tree height variation in multi-height-
layer forests” and “Height retrieval using real GEDI observa-
tion” sections, especially the limited success rate of retrieving 
the tree height of the middle layer in Fig. 14). However, this 
does not imply an inability to reflect tree heights or height 
compositions. Our current method primarily focuses on iden-
tifying discrete waveform peaks, overlooking the waveform 
broadening caused by adjacent tree layers. Future algorithms, 
possibly leveraging deep learning on series data, may offer valu-
able insights.

Height retrieval in multilayer forests
Results from Experiment 3 demonstrate that GEDI waveforms 
can effectively reflect and retrieve the tree height within mul-
tilayer forests, and the capacity of the waveforms to capture the 
multi-layer height structure is influenced by both the CA char-
acteristics and the interval between different layers. Specifically, 
the height of different layers in fir forests cannot be reliably 

Fig. 14. Two examples (A and B) for GEDI waveforms (left panel) and corresponding 
footprint CHM (right panel). The tree tops within the GEDI footprint are labeled in the 
right panels. The positions of these 2 examples are labeled on each figure.

Table 2. Functions for estimating the tree heights of ash tree 
and mango tree forests

Species Height function

Ash tree Height = 1.23 × Hol

Mango tree Height = 1.15 × Hol
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detected, and in ash and mango tree forests, layers with a height 
interval of less than 5 m may not be effectively distinguished. 
As demonstrated in the “The waveform responses to different 
height intervals” section, the height functions can accurately 
detect the tree height composition even with varying height 
intervals, as long as a greater than 5-m interval between layers 
is present to generate waveform peaks. It is crucial to acknowl-
edge that the complexity of the canopy can adversely affect 
the retrieval performance of GEDI waveforms. Typically, in 
a homogeneous forest with consistent CAs, the height of each 
layer can be confidently retrieved using HoIs when there is no 
more than a 10% height variation. However, due to factors such 
as interspecies competition and intraspecies phenotypic diver-
sity, it is rare to encounter a forest where all crowns possess 
identical CAs. A comparison between Figs. 8 and 11 reveals 
that a 25% mixing proportion negatively impacts the successful 
detection of HoIs, subsequently escalating the uncertainty in 
height retrieval. An increase in the mixing proportion further 
amplifies these retrieval uncertainties.

We consolidated the success rates of HoI detection across 4 
scenarios in Experiment 3 (see the “Height retrieval likelihood” 
section), highlighting that under certain conditions, height 
retrieval accuracy can improve even without HoI detection. 
The results reveal that HoI detection remains consistent in 
environments with minimal height variation (e.g., CV < 10%). 
Additionally, a wider interval between tree layers improves the 
likelihood of HoI detection, as shown by the resulting trend of 
reducing height interval from 15 to 3 m. However, when the 
interval is less than 5 m, the probability of detecting HoIs for 
non-top layers is considerably reduced.

A major contribution of the numerical simulations (Experi-
ments 1 to 3) in this study is their role in guiding the retrieval 
of height composition using real GEDI observations, which 
is the primary focus of Experiment 4. In this experiment, we 
employed actual GEDI observations to support our numerical 
simulation conclusions. The findings align with our previous 
results, confirming that waveform HoIs can effectively discern 
tree heights in both top and sub-canopy layers, thus accu-
rately representing tree height composition. Additionally, our 
hypothesis that layers with a height difference of less than 5 m 
may be indistinguishable is supported by the actual GEDI 
data (Fig. 14). This outcome reinforces the value of RTM-
based simulations in providing insights for future use of GEDI 
waveforms to determine height compositions. It highlights 
the importance of considering variables such as height vari-
ability, height intervals, crown coverage, and the presence of 
mixed forest types.

Crown cover retrieval
The findings presented in the “The waveform responses to dif-
ferent crown cover” section demonstrate the effectiveness of 
HoI-height functions in forest scenarios where there are varia-
tions in crown coverage between layers. However, it is impor-
tant to note that the variations in crown coverage within 
different layers may not always be accurately reflected in this 
study, primarily because the top layers tend to intercept a greater 
amount of laser energy. Consequently, the current method enables 
us to detect the presence of trees within each layer rather than 
providing precise information regarding the amount or cover-
age of trees. Tang [15] proposed a method for retrieving the 
vertical leaf area index (LAI) profile based on the gap theory 
[16,53]: the gap probability at a particular height is inversely 

related to the LAI, as laser energy can only penetrate that height 
through gaps [54]. This approach enables a confident retrieval 
of the vertical LAI profile covering wide regions [55]. By incor-
porating certain prior knowledge, such as CA metrics describ-
ing the single crown coverage and total crown coverage from 
optical imagery, it becomes promising to retrieve more quan-
titative information about tree height composition.

Uncertainties
In the analysis, we mainly concentrate on the waveform responses 
to forest structural traits and to diverse height compositions, thus 
leaving several uncertainties that might influence the results. 
When using LESS or other RTMs to simulate waveforms, the posi-
tion of each tree within the forest must be specified [27,31,56]. 
Our investigation reveals that the positional uncertainty of trees 
cannot be overlooked, particularly when the crown cover is below 
50%. This uncertainty arises due to the non-uniform distribution 
of energy within the horizontal plate of the footprint (Fig. S2). 
However, the tree position-induced uncertainty influences the 
intensity, rather than the HoI of waveforms (Fig. S3). Additionally, 
we only consider a spherical distribution for leaf angle distribu-
tion (LAD). One advantage of full waveform is that it captures 
the normalized frequency, rather than the absolute amount, of 
discrete cloud points from Gaussian decomposition, indicating 
its lower sensitivity to the probability of scattering and more sen-
sitivity to the crown cover of each height slice. The uncertainties 
introduced by different LADs settings are comparable to the 
uncertainty caused by tree positions (Fig. S4). Finally, leaf bio-
chemical traits, such as chlorophyll content, carotenoids, and 
mesophyll structure, can affect the optical properties of leaves, 
but these factors are not considered in current experiments. The 
variation in these traits can alter the optical properties of leaves 
and subsequently affect the transfer process of lasers and wave-
forms [35,57]. Our simulation indicates that changes in leaf 
reflectance and transmittance have a minimal impact on simu-
lated waveform (Fig. S5). This is due to their impact on leaf scat-
tering and overall LiDAR returns throughout the canopy, as 
observed by Yang et al. [58].

The influence of under-canopy topography, particularly slope, 
within the LiDAR footprint, is currently overlooked in this study. 
Terrestrial slope impacts the GEDI signal in 2 significant ways. 
In a genuine large footprint LiDAR system, the received laser 
energy comprises multiple components: direct reflectance from 
the terrain and canopy, canopy-diffused energy, and terrain-
reflected energy further diffused by the canopy. Notably, terrain 
slope influences the proportion of received laser energy, altering 
the overall waveform shape. An increase in terrain slope broadens 
both the vegetation and ground sub-waveforms [35], significantly 
affecting wood volume retrieval performance [33,59]. Sloped 
terrains also introduce a time decay in energy transfer, causing 
inevitable height variations within homogeneous tree height for-
est stands. This variation affects the accuracy of retrieved tree 
heights and height compositions [35]. This study primarily aims 
to explore the GEDI waveform's potential in reflections where 
terrain effects are not as pronounced as in wood volume estima-
tion studies [59]. Never theless, further research is still essential 
to quantify terrestrial slope-induced effects and ascertain their 
manifestation in actual full LiDAR waveforms.

A challenge in Experiment 4 incorporating real GEDI obser-
vation is the geolocation bias of GEDI observations, typically 
exceeding 20 m, leading to a considerable likelihood of mis-
matches between GEDI-derived tree heights and those from 
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the CHM (43%). This issue also poses a constraint for footprint-
scale GEDI-based studies. Beyond the current filtering strategy, 
implementing a post-processing approach or using an updated 
product could substantially reduce this adverse impact [60]. 
Additionally, in this experiment, we manually differentiated 
tree layers without a strict description of tree height composi-
tion within the GEDI footprint. For a more thorough analysis, 
the application of an automatic tree crown segmentation method 
would be beneficial.

Future work
In this study, we demonstrate that height composition can be 
detected by full LiDAR waveforms since the response of the 
waveforms against the variation in tree metrics and tree height 
are all shown to be predictable. Future retrieval can be carried 
out under the help of sequence-based machine learning algo-
rithms, such as the 1D convolutional neural network. The 
numerical simulation strategy employed in this study demon-
strates valuable potential to save the cost of field measurements. 
The considerable efficiency of TAG and LESS enables the gen-
eration of a sufficient training set from diverse forest scenarios 
for pre-training a complex network. A fine-tuning step transfer-
ring this pre-trained network can significantly improve the 
training efficiency and model performance [61].

Several ecological studies can benefit from a more detailed 
and accurate understanding of tree height composition. Firstly, 
an improved estimation of AGB in secondary or managed for-
ests, where trees emerge following natural or human distur-
bances, can be achieved by considering different height layers 
[7]. One significant issue that hampers satisfactory AGB esti-
mation in secondary forests is that a considerable portion of 
AGB (30% to 50%) is hidden by non-top layer trees that are 
often neglected [62]. Secondly, several recent gridded stand age 
products cover large regions [63], but only few of them incor-
porate tree height information as input features, thereby neglect-
ing the intrinsic nexus with each other [64] and its primary 
contribution to stand age estimation [13]. The current descrip-
tion of height composition undoubtedly can constrain the for-
est age predictions, thereby enhancing our understanding of 
forest demography and its role in carbon sequestration [65].

Conclusion
The aim of this study is to investigate whether GEDI waveforms 
can reflect the tree height composition. We utilize a state-of-
the-art RTM, LESS, to simulate discrete point clouds from for-
est stands and propose a method, TAG, based on the AGG 
function to create tree objects with continuous variation in CAs 
while maintaining acceptable efficiency. The GEDI waveforms 
are aggregated from discrete ALS point cloud considering the 
energy distribution on horizontal and vertical dimensions by 
GEDI simulator. Our findings suggest that tree objects can 
effectively replace virtual tree objects for commercial usage in 
waveform simulations. In even-aged forest scenes, GEDI wave-
forms exhibit reasonable responses to CA metrics. In multi-
height-layer forest scenes, the shape of the waveforms is 
determined by the tree height composition and CA metrics. 
HoIs can be used to effectively retrieve the tree height of each 
layer. The variations in tree height influence the GEDI wave-
forms and, thus, the retrieval performance of the height within 
different layers. A greater than 10% of height CV causes a con-
siderable likelihood of failure to retrieve the height composition. 

GEDI waveforms can be utilized to identify and retrieve the 
height of different crown layers with layer intervals greater than 
5 m and with limited tree height variation, but cannot confi-
dently project the difference in crown cover between different 
layers. Finally, a mixing of CAs influences the waveform char-
acteristics and height composition retrieving. Beyond numerical 
simulation, an experiment integrating actual GEDI observa-
tions confirms the satisfactory performance of tree height 
retrieval. This underscores the vital role of simulation in direct-
ing remote sensing applications. Overall, our study highlights 
the promising potential of using GEDI waveforms to detect the 
height composition and within-canopy structures. The results 
of the current study provide necessary guidance for retrieving 
tree height composition using real GEDI observations covering 
more comprehensive forest scenarios in the near future.
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