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One of the central concerns of computer science is how the resources needed to per-
form a given computation depend on that computation. Moreover, one of the major re-
source requirements of computers — ranging from biological cells to human brains to high-
performance (engineered) computers — is the energy used to run/them,d.es the thermody-
namic costs of running them. Those thermodynamic costs of performing a computation has
been a long-standing focus of research in physics, going back (at least)to the early work of
Landauer, in which he argued that the thermodynamic cost of erasing a bit in any physical
system is at least kT In[2].

One of the most prominent aspects of computers, is that they are inherently non-
equilibrium systems. However, the research by/Landauer a’nd co-workers was done when
non-equilibrium statistical physics was still in its'infancy, requiring them to rely on equilib-
rium statistical physics. This limited the breadth of'issues this early research could address,
leading them to focus on the number of times a bit is erased during a computation — an
issue having little bearing on thelcentral concerns of computer science theorists.

Since then there have been major breakthroughs in nonequilibrium statistical physics,
leading in particular to themnew subfield ‘of “stochastic thermodynamics”. These break-
throughs have allowed us toput the.thermodynamic analysis of bit erasure on a fully formal
(nonequilibrium) footing. They are also allowing us to investigate the myriad aspects of the
relationship between statistich physics and computation, extending well beyond the issue of
how much work is required to erase a bit.

In this paper I review some of this recent work on the “stochastic thermodynamics of
computation”«After reviewing the salient parts of information theory, computer science the-
ory, and stechastic thermodynamics, I summarize what has been learned about the entropic
costs of performing.a broad range of computations, extending from bit erasure to loop-free
circuits to dogically reversible circuits to information ratchets to Turing machines. These
results reveal niew, challenging engineering problems for how to design computers to have
minimal thermodynamic costs. They also allow us to start to combine computer science

theoryrand stochastic thermodynamics at a foundational level, thereby expanding both.
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I. INTRODUCTION
A. Computers ranging from cells to chips to human brains
Paraphrasing Landauer, real world computation involves thermodynamic costs [3]4 and,those

costs can be massive. Estimates are that computing accounts for ~ 4% of current total US energy
usage in 2018 — and all of that energy ultimately goes into waste heat.

Such major thermodynamic costs arise in naturally occurring, biological.computershas well as
the artificial computers we have constructed. Indeed, the comparison ofsthérmodynamic costs in
artificial and biological computers can be fascinating. For example, a large fraction of the energy
budget of a cell goes to translating RNAs into sequences of amino ag¢ids (i«e.;"proteins), in the cell’s
ribosome. The thermodynamic efficiency of this computation — the amount/of heat produced by a
ribosome per elementary operation — is many orders of magnitude supérior to the thermodynamic
efficiency of my current artificial computers [4]. Are theres“tricks” that cells use to reduce their
costs of computation that we could exploit in our artificial computers?

More speculatively, the human brain consumes 10— 20% of all the calories a human being
requires to live [5]. The need to continually gather all those ext’ra calories is a massive evolutionary
fitness cost that our ancestors faced. Does this fitness costiexplain why human levels of intelligence
(i.e., of neurobiological computation) are so rare in the history of life on earth?

These examples involving both artificial and, bielogical computers hint at the deep connections
between computation and statistical physiesa, Indeed, the relationship between computation and
statistical physics has arguably been aamajor focus of physics research at least since Maxwell’s demon
was introduced. A particularly important advance was made in the middle of the last century when
Landauer (and then Bennett) famously argued that erasing a bit in a computation results in a
entropic cost of at least kT'In[2], where kp is Boltzmann’s constant and T is the temperature of a
heat bath connected to the system.

This early work svas groundéd in the tools of equilibrium statistical physics. However, computers
are highly nonequilbrium systems. As a result, this early work was necessarily semiformal, and there
were many questions it could not address.

On the _other hand, in the last few decades there have been major breakthroughs in nonequi-
librium [statistical physics. Some of the most important of these breakthroughs now allow us to
analyzeéthe thermodynamic behavior of any system that can be modeled with a time-inhomogeneous

continuous-time Markov chain (CTMC), even if it is open, arbitrarily far from equilibrium, and un-
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dergoing arbitrary external driving. In particular, we can now decompose the time-derivative of
the (Shannon) entropy of such a system into an “entropy production rate”, quantifying the rate
of change of the total entropy of the system and its environment, minus a “entropy flow rate”,
quantifying the rate of entropy exiting the system into its environment. Crucially, thesentropy
production rate is non-negative, regardless of the CTMC. So if it ever adds a nonzero amount to
system entropy, its subsequent evolution cannot undo that increase in entropya. (For this‘reason
it is sometimes referred to as irreversible entropy production.) This is the modern understanding
of the second law of thermodynamics, for systems undergoing Markovian.dynamics. In contrast
to entropy production, entropy flow can be negative or positive. So even if entropy flow increases
system entropy during one time interval (i.e., entropy flows into thefsystem)yoften its subsequent
evolution can undo that increase.

This decomposition of the rate of change of entropy is the starting point for the field of “stochastic
thermodynamics”. However, the decomposition actually holds even in scenarios that have nothing
to do with thermodynamics, where there are no heat baths, work reservoirs, or the like coupled
to the system. Accordingly, I will refer to the dynamies of.the entropy production rate, entropy
flow rate, etc. as the “entropy dynamics”’ of the [physical §yStem. In addition, integrating this
decomposition over a non-zero time interval; we see that, the total change in entropy of the system
equals the total entropy flow plus the total entropy»production. Since entropy production is non-
negative, this means that the minimal walue of total entropy flow is the total change in entropy,

which is sometimes called the “Landauer cost”.!

B. The effect of constraints on,how we are allowed to perform a computation

These recently derived equatio?s forthe entropy dynamics of physical systems allow us to revisit
the entire topic that washistorically referred to as “the thermodynamics of computation”, but now in
a richer, and fully formal'manner. For example, as discussed in Section VI in the case of bit erasure,
we now understand that any function f : X C Z — X can be implemented in a thermodynamically
reversible manner; with no (irreversible) entropy production. This result holds for functions ranging
from bit erasure, where X =0, 1}) (see Section VI), to simple algebraic functions like y = x mod 3
(where Xe=7)%othe input-output function of finite deterministic automaton (where X is the joint
state of all allowed input strings to the automaton and the internal state of the automaton). It even

"While I will foeus on CTMCs in this review, the reader should be aware that nonequilibrium statistical physics
extends beyond Markovian systems. See for example [6] and references therein, in which there is no restriction to

Markovian systems.
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holds for partial functions representing the input-output behavior of universal Turing machines (in
which X = Z encodes the set of all finite input bit strings). Importantly, this thermodynamic
reversibility holds even if f is logically irreversible (as bit erasure is).

These results are now well understood. However, they all assume that we can useran, uncon~
strained physical system to implement f, with no restrictions on how the Hamiltonian couples the
components of the full system-state, . The richness of the current research on the thermodynamics
of computation arises from the fact that if we wish to implement the function f in'a real-world
physical system, then for practical reasons, we rarely have the freedom_te, exploit an arbitrary
Hamiltonian, that couples the components of x in an arbitrary manner. Instead, in practice f must
be physically implemented by iterating one or more interconnected functions;{g;}, each of which
is constrained to lie in some highly restricted set of functions.

One example of this is where f is the function implemented by a particular Boolean circuit and
the g; are Boolean gates in the circuit. Another example is where f i8 the function implemented
by a particular deterministic finite automaton. In this example there is a single g;, specifying how
the internal state of the automaton is updated based-on its current state and the current input
character, and that function is iterated using the sccesive ¢haracters of the input string until the
end of the string is reached. The crucial pointis that that gi can only couple a very limited number
of the components of the full input string x at a given time.

Most of conventional computationalieomplexity theory is, in essence, the investigation of how
the constraints on the functions {g;} affect the capabilities and resource demands of the function f
constructed from those functions|7=11]. In particular, in general for any given function f we want
to implement, and any fixed set of functions {g;} we are allowed to couple together to implement f,
there are many (typically inﬁniteQ many) different ways of using those {g;} to implement f. For
example, in general, for any fixed function f from one finite space to another, there are an infinite
number of circuits, allising thessaime set of gates {g;}, that all implement f. However, there are
hard constraints onthe,relationship among the various resources (e.g., the number of gates, the
maximal depth through the ¢ircuit from the inputs to the outputs, etc.) that each of those circuits
requires. A central concern of computational complexity theory is understanding those constraints
on the resource requiréments; and how they changes as we vary f.

Similarly, many of the interesting issues in the thermodynamics of computation concern how
the constraints on the functions {g;} affect the thermodynamic resource demands of any physical
system constructed from those functions (in other words, their entropic costs). In the words of [12],

“different implementations of the same computation (input to output) can have radically different
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thermodynamic consequences”. We can illustrate such consequences by again considering the fact
that in general there are an infinite number of circuits, all using the same set of gates {g;}, that
implement the same function f. In general, for any fixed distribution over the inputs to the
function f, those circuits will all differ in both their Landauer costs and their entropyproductions
This results in a highly nontrivial optimization problem, of finding the circuit with,least entropic
costs to perform a given function f.

This shared concern with constraints in both computational complexity theory andithe thermo-
dynamics of computation suggests that we can partially synthesize the two-fields. In particular, it
may be possible to relate the resource demands they separately investigate to each other, both in
general, and in the context of particular computational machines more specifically.

An example of what such a synthesis might look like, described below in Section XIV A, involves
the entropy dynamics of Turing machines. Loosely speaking, the Kolmoegorov complexity of a given
bit string o, with respect to a given Turing machine M, is defined as the shortest length of any
bit string x that we can input to M that results in M computing the output ¢ and then halting.
Similarly, we can define the “Kolmogorov work” of ¢ as.the smallest amount of thermodynamic work,
W, such that there is some input string = to M that desultsin M computing ¢ while requiring
work W. In general, both the Kolmogorov eemplexity,and the Kolmogorov work of o will vary
depending on the Turing machine one uses to compute 0. However, it turns out that for any Turing
machine M, the Kolmogorov complexityifor. M of computing o and the Kolmogorov work for M of

computing o have a simple (though uncomputable!) relationship with one another.

C. Roadmap

I begin with background sections, first presenting notational conventions, then reviewing the
relevant parts of information theory, and then reviewing relevant computer science theory. These
are followed by a section that summarizes the modern understanding of the dynamics of entropy in
arbitrary dynamical systems. I then briefly discuss the modern understanding of the relationship
between logical.and thermodynamic (ir)reversibility. (In short, the laws of physics no more forbid
the erasure of a bit in @ thermodynamically reversible manner than they forbid the compression of
a piston of gas intasthermodynamically reversible manner.)

Computers, by definition, are open systems. Accordingly, “where one draws the dotted line”,
saying which precise physical variables are the “computer”’, and which are not, can affect the entropic

costsione asceribes to the computer. In particular, in order to be able to use a computer multiple
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times, and have both the dynamics of the logical variables and the thermodynamic variables behave
the same way each time one runs the computer, we need to reinitialize variables internal to the
computer when it finishes its computation. Accordingly, we need to carefully specifyrhow the
entropic costs associated with the reinitialization of variables are allocated among the computer
and the offboard systems interacting with the computer. (Some of the primary sourges of confusion
in the literature arise with papers that are not fully explicit about how they do this.) The eonvention
I adopt in this paper for how to do this is presented in Section VII.

The following sections consider the entropic costs of various informatien precessing systems.
These sections are ordered from the simplest forms of information processing to progressively more
complicated forms. Those who are interested in the costs of full computational machines, in the
computer science sense of the term, can skip Section VIII, whichs eomSider simpler kinds of infor-
mation processing systems, jumping from Section VII directly to Seetion IX.

In Section VIII, I review the entropic costs of a physical process that implements a single,
arbitrary conditional distribution over its state space, without any. constraints on its rate matrices,
Hamiltonians, etc. (Bit erasure is a special example of.suchha process.)

The analysis to this point in the paper concerns information processing systems that have no
a priori constraints on their operating behavier. Howevers subcomponents of full computers only
have access to a limited number of degrees of freedom of the overall computer. These provide
major constraints on how any full computer is allowed to transform its input into an output.
(Indeed, full computers, in the Chomsky hierarchy sense, are defined by the constraints in how they
transform their inputs into their outputs.) General results concerning the relationship between such
constraints on how a subcomponent of‘axcomputer can be coupled to the rest of the computer on
the one hand, and the CONSEqUENEes for the entropy dynamics of the overall computer on the other
hand, are reviewed in Section I1X.

These results are the foundatien of a recent analysis of the entropy dynamics of “straight line”
circuits, that have nerleeps or branching structure. I review this analysis in Section X.

There have been confusing claims in the literature concerning the possible thermodynamic bene-
fits of implementing a computation using a circuit made out of logically reversible gates, as opposed
to implementing/#hat same ecomputation using a circuit made out of arbitrary (in general logically
irreversible) gates. In Section XI, I apply the convention for how to allocate entropic costs that was
introduced,in Section VII, to clarify some of these claims.

In Section XII I review some work on the Landauer costs of finite automata that only run once.

Then. in’ Section XIII I review some recent results on the thermodynamic costs of information
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ratchets, which can be viewed an extension of what are called “transducers” in computer science.
These results range from analyzing detailed physical models of systems that act as information
ratchets [13, 14] to a relatively large body of literature on infinite-time limiting behavior of the
entropy dynamics of information ratchets [15-18].

After this, in Section XIV I review recent research on the entropy dynamics of Turing Machines
(TMs) that uses modern nonequilibrium statistical physics. I also review some,earlier work that
(because it was done before modern nonequilibrium statistical physics was developed), had to use
equilibrium statistical physics to analyze TMs.

Either implicitly or explicitly, most of the work in the literature on the entropy dynamics of
computers, stretching back to the early work of Landauer but alsg includingsimodern work, has
assumed that a computational machine is implemented as the discrete-time/dynamics induced by
an underlying CTMC, e.g., a master equation. (In particular, this is theécase for all systems analyzed
in stochastic thermodynamics). In Section XV I discuss a recently disecoverd surprising limitation
of this assumption. Specifically, any non-trivial computation over.a set of “visible” physical states
cannot be implemented as the discrete-time dynamics-induced of any underlying CTMC. For such
“visible” discrete-time computation to arise, the underlging @FMC must couple the visible states
to a set of “hidden” states. In general, thé number of hidden states needed will depend on the
computation being implemented. Moreover, the ¢ontinuous-time dynamics of the joint visible-
hidden system has to proceed throughtasnonzero, countable number of successive time-intervals
which are demarcated by the raising or lowering of infinite energy barriers. The number of such
intervals will depend on both the wvisible computation being implemented and the number of hidden
states.

In essence, any non-trivial Visible computation is embedded in a larger, hidden computation. To
give a simple example, any [CTMC that implements a simple bit flip has to have at least one hidden
state in addition to thextwo visiblesstates of the bit, and requires at least three hidden time-intervals
to complete.

In the last section, I present some possible future directions for research. In particular, I describe
a set of “computer-science-style” open questions that concern the thermodynamic properties of
computational,machines rather than the other kinds of resources (amount of memory, number of

timestep§, etc.) traditionally considered in computer science.
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D. Topics not covered in this paper

In this paper I will review the literature on the dynamics of entropy in physical systems that
implement the computational machines considered in conventional computer science theoryn[10].
To clarify the precise topics considered in this paper, it is worth listing some of the related topics
that I do not consider.

I do not consider all computational machines, but only a few of the most gemmon ones. So. for
example, I do not consider the thermodynamics of running push-down automata. More broadly, I
do not consider the thermodynamics of running analog computers (see [19] for work on this topic).

I also do not review any work that analyzes abstract dynamical systems (e.g., cullular automata)
using mathematical techniques that just happen to have been developed in\the statistical physics
literature. The focus of this paper is not the mathematical technigques efistatistical physics, but
rather the actual statistical physics of physical systems. (Seé|20] for some interesting recent work
on applying statistical physics techniques to analyze abstract dynamical systems.)

In this paper I will not consider the thermodynamics of quantum mechanical information pro-
cessing, or indeed any aspect of quantum computation.: See 21| for a good overview of quantum
computation in general, [22, 23] specifically for overviews of the thermodynamics of quantum infor-
mation processing, [24] for a review of quantum speed limits, and [25-27] for work on the related
topic of quantum mechanical “resource.theory”.

However, it should be noted that evemif quantum computers become a reality, they may have
limited impact on the thermodynamic costs of real-world computers. One reason for this is that
quantum computers as currently understood could only reduce the costs (and increase the speed) of
an extremely limited set of possible computations, like factoring products of prime numbers. More
importantly, many of the major/challenges facing modern computing, both in terms of speed and
thermodynamic costsy do not @rise in the operation of the CPU (which is where quantum compu-
tation might be helpful), but rather in the i/o. In applications ranging from widely popularized
applications of deep learning to search engines to simple back-office database management, mod-
ern computationgexploits massive, heterogeneous data sets. Perhaps the primary difficulty faced
by computers runningthese applications is in accessing that data and performing low-level (e.g.,
cache-bagéd) processing of that data, not in the elaborate transformation of that data within a
CPU. Yet as currently envisioned, quantum computers would not help reduce the thermodynamic
costs of all thisi/o.

Similarly, I do not consider the fundamental computational limitations of physical systems in
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our universe. Some good discussions of this topic can be found in [28-32].

I will also not consider the (copious) literature on the thermodynamics of biochemical processes
in cells that can be viewed as noisy types of information processing. (See [33-39| for 'seme work
on this topic.) The key criterion for including some literature in the current papersisswhether
it concerns thermodynamic properties of one of the types of computational machine considered
in the computer science literature. (See [40-42] for some work on the preliminary issuerof how
closely the standard computational machines considered in computer science can be modeled with
biochemical systems in the first place, and see [43-47| for work concerned with modeling such
machines with arbitrary chemical reaction networks, irrespective of whether they{arise in naturally
occurring biological systems.) -

In addition, there have been recent papers, building on [48], that héve analyzed the thermody-
namics of systems that gather information about their noisy enviromment and build models from
that data, mostly using neural networks. These too are out of'scope, since their focus is not on
computation per se.

Furthermore, I do not consider the joint thermodynamics of control systems interacting with
their environment, since that would require analyzing #he énvironment as well as the controller,
along with their coupling. Some papers thathanalyze the thermodynamics of control systems in-
teracting with their environment are [49-57|."In addition, of course, there is a huge literature on
the special type of control system designed to extract work from an equilibrium heat bath, i.e.,
the thermodynamics of Maxwell’s demon. Some representative papers on this topic, showing how
to use modern nonequilibrium stasistical physics to resolve most (arguably all) of the mysteries
concerning Maxwell’s demon, aré [6, 13, 58, 59].

In addition, in all the analysi\below I identify the microstates of a physical system with the
logical variables of the associated computation (i.e., with the so-called “information-bearing degrees
of freedom” [60, 61]). Tnreal-world.¢omputers of course, it is rarely the case that microstates directly
code for logical variables. Instead the logical variables are typically identified with macrostates,
usually defined by coarse-graining the space of microstates. (Some authors prefer to characterize
the logical variables as an‘intermediate level of coarse-grained “meso-states”.) The analysis below
can be extended(to apply t6 such scenarios (see [62, 63] for examples). However, this requires
extra notational complexity, and in many cases also requires extra assumptions (concerning the
microstate.dynamics among the macrostates), and so is not pursued here.

I focus hére on the integration of topics in theoretical computer science and the theory of nonequi-

libriumpstatistical physics. I will not consider the thermodynamic properties of real-world artificial
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computers in any detail. However, it is important to note that several major engineering communi-
ties are working to reduce the entropic cost of such computers. At present, these efforts are based
on a phenomenological characterization of the thermodynamics of computation. These have led to
techniques like approximate computing (in which noise is added to the computation tesreduce the
heat it produces [64-66]) adaptive slowing (in which subcomponents of the computer are slowed
down to reduce the heat they produce) and automatic code reconstruction to, minimize-énergy
consumption [67] (using techniques similar to those in optimizing compilers).” It isimtriguing to
note that at a high level, these macroscopic phenomena of real-world computers parallel analogous
phenomena that are central to the theoretical analyses reviewed below, éven though those analyses
concern behavior on the far smaller energy scale of kgT. -

Even within these strong restrictions on the subject matter, of this paper, there are directly
relevant results in the literature that are not discussed. In particular, [68] presents preliminary the-
orems concerning the extension of computational complexity theery [7] to include thermodynamic
costs, in addition to the more conventional costs considéred in @emputer science. [68] goes on to
introduce a number of nontrivial open questions. That-paper. is aimed at the computer science the-
ory community however, and without a lot more backgroundithan what is presented in Section IV

below, it would be opaque to most physicists.»This is why.that paper is not discussed here.

II. TERMINOLOGY AND GENERAL NOTATION

In this section I introduce some,of the terminology and notation I will use. I also define “islands”,
which will be needed in much of the analysis concerning entropy production.

N
A. Notation

I take the binary values to be B = {0,1}. As usual, for any set A, A* is the set of all finite
strings of elements/from A. Given a directed acyclic graph (DAG) I, I indicate its root nodes as
R(T). I write the Kronecker delta function as

lifa=1b
5(a,b) = (1)

0 otherwise

So in partieular, the vector indexed by values b that equals 1/0 depending on whether b equals

some particular scalar a is written as d(a,.).
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I identify 1 as the Boolean TRUE, and 0 as FALSE. In agreement with this, I write the indicator
function for any Boolean function f(z) as
1if f(z) =1
f) = (2)

0 otherwise

I write £(X) (or sometimes |X|) to mean the length of any finite string X. Solgiven any integer
m, P(¢(A) = m) means P(X : £(X) = m). As usual, the concatenation of a string X aftér.a string X
is written as AX. In addition, I use the common notation that [-] and |- js&¥e thejeeiling and floor
operators, respectively.

In general, random variables are written with upper case letters,/and instances of those random
variables are written with the corresponding lower case letterss, When the context makes the
meaning clear, I will often also use the upper case letter indicating a‘random variable, e.g., X, to
indicate the set of possible outcomes of that random variable. “For any distribution p(z) defined
over the set X, and any X’ C X, I write p(X’) = Y, oy p(x). Given some set X, I write the set
of all distributions over the elements of X whose support isirestricted to some subset X' C X as

4
Ax. Finally, given any conditional distribution 7 (y|x)‘and a distribution p over X, I write mp for

the distribution over Y induced by 7 and p;

(mp)(y) == Yo, 7(yle)p(x) (3)

zeX

B. TIslands

Computational machines are:most often defined in terms of single-valued, logically-irreversible
state-update functions. Often that update function f operating over the entire domain X can
be expressed as a setgofsdistinet funetions {f;}, “operating in parallel”, each with its own distinct
domain and distinct image.»Intuitively, one might expect that one should analyze the entropic costs
of such an update function f by appropriately averaging the entropic costs of each of the distinct
parallel functionss{ fi}» That is indeed the case, as elaborated in this subsection.

Suppose that & given physical process implements a single-valued function f over a space X.
The islands of fraré defined as the pre-images of f, i.e., the sets {f~1(x) : x € X} [69]. T will

write theset of islands of a function f as L(f). As an example, the logical AND operation,

m(cla,b) = §(c,a A b)
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has two islands, corresponding to (a,b) € {{0,0},{0,1},{1,0}} and (a,b) € {{1,1}}, respectively. I
write the set of all distributions over an island ¢ € L(f) as A.. I make the obvious definitions that for
any distribution p(x) and any ¢ € L(f), the associated distribution over islands is p(c) =32, . p(x).
As shorthand, I also write p°(z) = p(x|X € ¢) = p(z)I(z € ¢)/p(c).

Note that the islands of a dynamic process depends on how long it runs. For example, suppose
X ={a,b,c}, 7 is a single-valued, deterministic function, and w(a) = a,7(b) =4, while @(€) = b.
Then 7 has two islands, {a, b} and {c}. However if we iterate m we have just(a singletisland, since
all three states get mapped under 72 to the state a.

In the more general case where the physical process implements an arbitrary{stochastic matrix
7 that may or may not be single-valued, we extend the definition 6f islands.te be the transitive

closure of the equivalence relation,
r~a & 32" w2 |z) > 0,7(afa’) > 0 (4)

(Note that z and 2’ may be in the same island even if there ismo,z” such that both P(z"|z) > 0

and P(2'|x) > 0, due to the transitive closure requirementy). Equivalently, the islands of 7 are a

partition {X*} of X such that for all X* x & X*, y
supp(2|z) N U supp7(2'|z") = @ (5)
z'eX o eXi r'eX

Although the focus of this paper is,computers, which are typically viewed as implementing
single-valued functions, most of .the results below also hold for physical processes that implement
general stochastic matrices as well, if'ene uses this more general definition of islands. Note that for
either single-valued or non-single-valued stochastic matrices 7, the islands of 7 will in general be a
refinement of the islands of 42, sibeemdnay map two of its islands to (separate) regions that are
mapped on top of one another/by 7%, This is not always the case though, e.g., it is not the case if

m permutes its islands:

III. INFORMATION THEORY

In this section I review the parts of information theory that are relevant for this paper, and
specify the notation I will use. I also introduce some new information theoretic concepts, which
arise naturally in the analysis of the entropy dynamics of circuits presented below in Section X.

The Shannon entropy of a distribution over a set X, the Kullback-Leibler (KL) divergence

between,two distributions both defined over X (sometimes called the “relative entropy” of those
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2
2 two distributions), and the cross-entropy between two such distributions, respectively, are defined
5 as
6
7
8 Z p(z) Inp(z (6)
9 zeX
10 p(z)
I D) (X)) = 3 (@) 25 (7)

zeX

12
12 SpX)|r(X)) = S(p(X)) + D(p(X)|r(X)) (8)
15 = - Z YInr(z 9)
16 zeX
17
18 (I adopt the convention of using natural logarithms rather than logarithms,base/2 for most of this
19 ~
20 chapter.) I sometimes refer to the second arguments of KL divergence'and of cross-entropy as a
;; reference distribution. Note that the entropy of a distribution plis justthe negative of the KL
23 divergence from p to the uniform reference distribution, up to an overall (negative) constant.
24
25 The conditional entropy of a random variable X conditionedson a variable Y under joint distri-
;? bution p is defined as
28
29 p(X[Y)) = p(y)Sp(Xy))
30 yey
31
32 == D w)ply) nply) (10)
33 zeEXYeY
34
35 and similarly for conditional KL divergence and conditional cross-entropy. The chain rule for
36
37 entropy |70] says that
38
zg S(p(XY)) S(p(Y)) = S(p(X,Y)) (11)
41 N
42 Similarly, given any two distributions p and r, both defined over X x Y, the conditional cross
Zi entropy between themyequals the associated conditional entropy plus the associated conditional KL
45 divergence:
46
47
48 SpXY)|r(X[Y)) = S(pX[Y)) + D(pX]Y)[lr(X]Y)) (12)
49
50 =— Z p(z,y) Inr(zly) (13)
51 r€EX,yeYy
52
53 The mutual information between two random variables X and Y jointly distributed according
>4 to pistdefined as
55
56
57 L,(X;Y) = S(p(X)) +5(p(Y)) - S(p(X,Y)) (14)
58
59
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= S(p(X)) = S(p(X]Y)) (15)

(I drop the subscript p where the distribution is clear from context.) The data processing.inequality
for mutual information |70] states that if we have random variables X, Y, and Z, and Z.is a
stochastic function of Y, then I(X;2) < I(X;Y).

Where the random variable is clear from context, I sometimes simply write S(p), D(p||r), and
S(p||r). I also sometimes abuse notation, and (for example) if a and b are specifiedy write S(A4A =
a|B = b) to mean the conditional entropy of the random variable §(A, a) conditioned on the event
that the random variable B has the value b. When considering a set of random variables, I usually
index them and their outcomes with subscripts, as in X1, Xo, ... and &£1yzay.. .. I'also use notation
like X1 2 to indicate the joint random variable (X1, X»). .

When considering a set of random variables, I usually index them sand their outcomes with
superscripts, as in X1, Xo,... and x1,22,.... I also use notation like X > to indicate the joint
random variable (X1, X3).

One extension of mutual information to more than two random variables is known as total

correlation, or multi-information |71]: IS
T(p(x: X)) = (DS GXMY S(p(12.) (16

which when the context is clear I abbreviate as I(p(XLg?m)). I sometimes use this same nota-
tion when X has just two components, in, which case multi-information is the same as mutual
information. Like mutual information, multi-information is always non-negative [71|. The multi-
information of a distribution p over Xy, is a measure of the amount of information I can learn
from the random variables X1, X% .. considered together, that I cannot extract from them consid-
ered in isolation from one amothér. In other words, it is a measure of the strength of the statistical
dependencies of the variables Xy, Xo, ..., under p.

I sometimes use superseript eonditioning bars to indicate conditional versions of these informa-
tion theoretic quantities. In particular, given two joint distributions p®® and r®® over a product
space X%0 = X%x X% Léometimes write the conditional KL divergence between p and r of X¢
given X? as

al,b
DO = 3 plat ) m (17)
xa,xb

I write S(7p) to refer to the entropy of distributions over Y induced by p(z) and the conditional

distribution 7, as defined in Eq. (3). I use similar shorthand for the other information-theoretic
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1
2
2 quantities, D(-||-), S(-||-) and Z(). In particular, the chain rule for KL divergence and the data-
5 processing inequality for KL divergence, respectively, are [70]:
6
; 1. For all distributions p,r over the space X% x X?,
9 a b a b
10 D(p(X?, X7)[|r(X*, X7))
11
12 = D(p(X")[[r(X")) + D(p(X“|X")[Ir(X°| X)) (18)
13
14
15 2. For all distributions p, r over the space X and conditional distributions m(y|z),
16
17 D(p|lr) > D(pllr) (19)
18
19 ~
20 (Note that by combining the chain rule for KL divergence with the ‘chain rule for entropy, we get a
21 .
2 chain rule for cross entropy.)
;i Some of the results reviewed below are formulated in termsrof the multi-divergence between
25 two probability distributions over the same multi-dimensional, space. This is an information-
26
27 theoretic measure recently introduced in [69], which can be viewed as an extension of multi-
;2 information to include a reference distribution. It is definedrassfollows:
30
31 D(p(X1; Xa, .. )[[r(XagXa; .. )
32

P\, T2, ... T4
33 = Z p(r1,x2,...)In E = iH E 13 (20)
34 o r\r1,r2,... i P \T;
35
36 = D(p(X12,..)llr(Xae.... ZD i)l (X)) (21)
37
gg When the context is clear I sometimes abbreviate this as D(p(Xi2,.)|7(X1,2,...)).
40 Multi-divergence measures ho& much of the divergence between p and r arises from the cor-
41
42 relations among the variables Xq, Xg,..., rather than the marginal distributions of each variable
Zi considered separatelysaSée App. A for a discussion of the elementary properties of multi-divergence
45 and its relation to conventional. multi-information, e.g., as a measure of the “joint information”
46
47 among a set of more than two random variables.
48 . . . .. . .. .
49 Finally, thedifference between conventional multi-information and multi-divergence is another
?1) new information-theoretic quantity, called cross multi-information:
52
53 Z(p(X1; Xo;..)||r(X1; Xa3..))
54
55 =ZI(p(X12,.)) = D(p(X12,.)[[r(X12,.))
56

o [Zs DlIr(x >>}—s<p<xl,2,...>|r<X1,2,...>>
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(When the context is clear, I abbreviate cross multi-information as Z(p(X12,...)||7(X1,2,...)).)

Adopting an information-theoretic perspective, Z(p(Xi 2, .)||r(X1,2,..)) is the reduction in ex-
pected codeword length if we use one type of coding rather than the other. Under thefirst, less
efficient coding scheme, a codeword is created by concatenating codewords producedrseparately
for each component of x; using distinct codebooks that are separately optimized for each of those
components, where all of these codebooks are optimized for r while events are actually generated
by sampling p. Under the second, more efficient coding scheme, a codeword is created by using a
single codebook that is optimized for joint events (x1,z2,...). Thus, Z(p(Xae Jr(Xi2,.)) = 0if
r is a product distribution.

As shorthand, I often write Z(p), D(pl|r), and Z(p||r) when the set of randem variables X
is clear from context. In the usual way, if 7(x) and p(x) both equal 0 for some z’s, then I implicitly

redefine D(p||r) and D(p||r) to be the limit as those probabilities go to,zero.

IV. COMPUTATIONAL MACHINES

The term “computer” means many different things in the liferature. To avoid this imprecision,
here I will instead use the term computational machine, defining it to mean one of the members
of the Chomsky hierarchy [10].

In this section I introduce the particular computational machines whose entropy dynamics I
will consider in this paper. These machines are introduced in order of increasing computational
power; the set of computations that straight-line circuits can perform are a strict subset of the
set of computations that finite automata can perform; these in turn are a strict subset of the set
of computations that transducers,can perform; and these in turn are a strict subset of the set of
computations that a Turing machine ean perform.?

However, I will alsosconsider some digital systems that “process information”, but occur as
subsystems of some computational machines, and are less computationally powerful than any of
them. As an example, the information processing system that has perhaps been studied more than
other one in thesphysics literature is simple bit erasure, which is not a member of the Chomsky
hierarchy. Another example.is a single gate in a circuit, e.g., a XOR gate. I will sometimes refer
to these Kinds ofrextremely simple information processing systems as sub-computers, and use

the term (computational) device to refer to either sub-computers or full-fledged computational

2The reader shiould be warned that there are some statements in the recent nonequilibrium statistical physics literature

to the effect that transducers are as computationally powerful as Turing machines. These are mistaken.
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machines. I will sometimes make the further distinction that a device considered as an abstract
mathematical transformation (as in computer science theory) is a “logical device”, while a device

considered as a physical system (as in entropy dynamics) is a “physical device”.

A. Bayes nets

Although Bayes nets are not normally viewed as computational machines, they provide a natural
framework for investigating several kinds of computational machines, in particular straight-line
circuits (considered in the next subsection). Accordingly, I summarize what Bayes mets are in this
subsection.

Formally, a Bayes net C'is a tuple (V, E, F, X) [72]. The pair (V, E) sp\eciﬁes the vertices and
edges of a directed acyclic graph (DAG). X is a Cartesian produety] [, X4, where each X, is the
space of the variable associated with node v. F' is a set of ¢onditional distributions, one for each
non-root node v of the DAG, mapping the joint value of the (variables at the) parents of v, z,,(,),
to the value of (the variable at) v, z,.

An input node is a root node, and an output/node is\a leaf node. I assume that no output
node is also an input node. I indicate the set of all nodes that are the parents of node v as pa(v).
For any Bayes net C, I write the conditional distribution implemented at its node v (specified in
F)as 7l (Tv|Tpa(w))- When C' is implicit, I sometimes shorten this to m,. Note that this conditional
distribution reduces to a prior distribution, m, (z,) whenever v is a root node,

In terms of this notation, thé conditional distribution implemented by the overall Bayes net is

mC(rlay) = [ 75 (@olzpaw)
veV

Similarly, the combination /of the\distribution pin(zin) and the conditional distributions at the
non-root nodes of the Bayes\net specifies a joint distribution over x € X, the joint space of all

nodes in the Bayes net, given by
p(x) = pin(zm8)7C (2] 21N)

This joint distribution in turn specifies a conditional distribution of the joint state of the output
nodes of the Bayes net, given the joint state of the input nodes. As an important example, when
the distributionssin F' are all single-valued functions, this conditional distribution reduces to a
single-valued input-output function implemented by the Bayes net as a whole. In general, there
are an infinite number of Bayes nets that implement the same conditional distribution of outputs

given inputs.
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For each node v in the Bayes net, I write the distribution formed by marginalizing p(z) down
to X, as py(xy). I also write the marginal distribution over the joint state of the parents of any
node v in the Bayes net as pp,(v)(Tpa(v))- I refer to these two distributions as the distribution pix

propagated to v and to pa(v), respectively.

B. Straight-line circuits

A (straight-line) circuit C'is a tuple (V, E, F, X) that can be viewed as‘aspecial type of Bayes
net [72-74|. Intuitively, the DAG of the Bayes net, (V| E), is the wiring/diagram of the circuit. In
conventional circuit theory, the all conditional distributions in the set Fraresingle-valued functions.

Note that following the convention in the Bayes nets literature, with this\ definition of a circuit
we orient edges in the direction of logical implication, i.e., in the direction®f information flow. So
the inputs to the circuit are the roots of the associated DAG, and the outputs are the leaves. The
reader should be warned that this is the opposite of the convention in computer science theory.
When there is no risk of confusion, I simply refer to a“circuit C, with all references to V, E, F' or
X implicitly assumed as the associated elements défining €3 JJust like in Bayes nets, we refer to
the maximal number of nodes on any pathgoing from a root node to a leaf node of a circuit as
the depth of that circuit. (In other conventions; the depth is the number of links along that path,
which is one less than the number of nodes on it)

I use the term gate to refer to any men-root'mode in a circuit. In the special case where all
non-output nodes in a circuit have outdegree b and there is a single output node, the circuit is
called a (circuit) formula. In theseontext of formulas, I use voyr to indicate the single element of
Vour. In the context of circuits, I use the term AQO circuit to mean a circuit with a single gate,

N
and write AO(C) to mean an AQ circuit that implements the same conditional distribution 7¢

C.

as
Finally, I sometimes usethe terms “gate”; “circuit”, etc., to refer to physical systems with physical
states, and sometimes to refer to the associated abstract mathematical conditional distributions in
a DAG. The intended, meaning should be clear from context — when I need to be explicit, I will
refer to physical/eircuits and computational circuits.
Straight line circuits are an example of non-uniform computers. These are computers that can
only work with inputs of some fixed length. (In the case of a circuit, that length is specified by the

3A miore general type of circuit than the one considered here allows branching conditions at the nodes and allows
loops:. Such circuits cannot be represented as a Bayes net. To make clear what kind of circuit is being considered,

sometimes the branch-free, loop-free type of circuit is called a “straight-line” circuit [9].
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number of root nodes in the circuit’s DAG.) One can use a single circuit to compute the output for
any input in a set of inputs, so long as all those inputs have the same length. If on the other hand
one wishes to consider using circuits to compute the output for any input in a set thatfcontains
inputs of all possible lengths, then one must use a circuit family, i.e., an infinite setrof,circuits
{C; i € Z"}, where each circuit C; has i root nodes.

In contrast to non-uniform computers, uniform computers are machines that can work with
arbitrary length inputs.? In general, the number of iterations a particular uniform eomputational
machine requires to produce an output is not pre-fixed, in contrast to the case with any particular
nonuniform computational machine. Indeed, for some inputs, a uniform computational machine
may never finish computing. The rest of this section introduces some of thé more prominent

uniform computational machines.

C. Finite Automata

One important class of (uniform) computational machines are the finite automata. There are
several different, very similar definitions of finite atitomatay seme of which overlap with common

definitions of “finite state machines”. To fix the discussion, here I adopt the following definition:

Definition 1. A finite automaton (FA) is a5-tuple (R, A, r2,r4, p) where:

~

. R is a finite set of computational states;

NS}

. A is a finite (input) alphabet;

3. r° € R is the start state;

N
4. 7 € R is the accept state; and

5. p: Rx A — Risthe update function, mapping a current input symbol and the current

computational statesto a next computational state.

A finite stringof successive input symbols, i.e., an element of A*, is sometimes called an (input)
word, written as X. Té operate a finite automaton on a particular input word, one begins with the
automaton in its start state, and feeds that state together with the first symbol in the input word

into the'update function, to produce a new computational state. Then one feeds in the next symbol

4The reader should be warned that computer scientists also consider “uniform circuit families”, which is something

that is related but different.
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in the input word (if any), to produce a next computational state, and so on. I will sometimes
say that the head is in some state r € R, rather than say that the computational state of the
automaton is 7.

Often one is interested in whether the head is in state 4 after the last symbol fromuthe input
word is processed. If that is the case, one says that the automaton accepts that input word. In this
way any given automaton uniquely specifies a language of all input words that that automaton
accepts, which is called a regular language. As an example, any finite language (eonsisting of a
finite set of words) is a regular language. On the other hand, the set of all palindromes over A, to
give a simple example, is not a regular language.

Importantly, any particular FA can process input words of arbitfary lengths This means that
one cannot model a given FA as some specific (and therefore fixed ‘width) circuit, in general. The
FA will have properties that are not captured by that circuit. In this ‘Sense, individual FAs are
computationally more powerful than individual circuits. (This'dees not mean that individual FAs
are more powerful than entire circuit families however; see the discussion in Section IV E of how
circuit families can be even more powerful than Turing.machines.)

Finite automata play an important role in many different fields, including electrical engineering,
linguistics, computer science, philosophy, biology, mathematics, and logic. In computer science
specifically, they are widely used in the design of hardware digital systems, of compilers, of network
protocols, and in the study of computation,and languages more broadly.

In all these applications of FAs, the automaton is viewed as a system that maps an input word

to an output computational state. This motivates the following alternative definition of an FA:

Definition 2. A word-based finite automaton is a 6-tuple (R, A, r?, A, p*, T) where:

N
1. R is a finite set of computational states;

\S}

. A is a finite (input) alphabet;
3. r° € R is the start state;

4. v € Rfis the accept state;
5. T @Y is the-€ounter; and

6.pr: Bx A X ZT — R is the (computational state) update function, mapping a current
input word, current counter pointing to one of that word’s symbols, and current computational

state, to a next computational state.
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When I need to distinguish FAs as defined in Def. 1 from word-based FAs, I will refer to the former
as symbol-based FAs.
To map a symbol-based finite automaton (Def. 1) with update function p into an“equivalent

word-based update function p, we set
p(r, A%, 7) = p(r, A7) (22)

At the first iteration of a word-based FA, not only is the computational state set to thestart state,
but the counter has the value 0. In addition, at the end of each iterationsm ofithe FA, after its
computational state is updated by p, the counter is incremented, i.e., 7, — 7, 4 1. From now on
I will implicitly move back and forth between the two definitions ofan FA asiis‘convenient.

To allow us to analyze a physical system that implements the Tunning of an FA on many
successive input words, we need a way to signal to the system when one input word ends and then
another one begins. Accordingly, without loss of generality we assume that A contains a special
blank state, written b, that delimits the end of a word. (I write’ A for A\ {b}, so that words are
elements of A* .

In a stochastic finite automaton (sometimes called a “prgbabilistic automaton”), the single-
valued function p is replaced by a conditional distribution./In order to use notation that covers all
iterations 7 of a stochastic finite automaton, I write this update distribution as m(r;11|r;, A;). The
analogous extension of the word-baséd definition of finite automata into a word-based definition
of a stochastic finite automata is immediate. For simplicity, from now on I will simply refer to
“finite automaton”, using the acronym “FA”, to refer to a finite automaton that is either stochastic
or deterministic.

Typically in the literaturesthereis a set of multiple accept states — called “terminal states”, or

“accepting states” — not just one. Sometimes there are also multiple start states.

D. Transducers - Moore machines and Mealy machines

In the literature the definition of FA is sometimes extended so that in each transition from
one computational state to the next an output symbol is generated. Such systems are also called

“transducers” in therfcomputer science community.

Definition'3. A transducer is a 6-tuple (R, A,T, 7%, x4, p) such that:

1. R _isda finite set, the set of computational states;
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2. A is a finite set, called the input alphabet;
3. T is a finite set, called the output alphabet;
4. 7° € R is the start state;

5. 14 € R is the accept state;

6. p: RxA— R xT is the update rule.

Sometimes the computational states of a transducer are referred to as the states ofiits head. I refer
to the (semifinite) string of symbols that have yet to be processed by a transducer at some moment
as the input (data) stream at that moment. I refer to the string of symnbols that have already
been produced by the information ratchet at some moment as the.output (data) stream at that
moment.

To operate a transducer on a particular input data stream, one begins with the machine in its
start state, and feeds that state together with the first symbol in the input stream into the update
function, to produce a new computational state, ands@mnew output symbol. Then one feeds in the
next symbol in the input stream (if any), to produce & next gomputational state and associated
output symbol, and so on.

In a stochastic transducer, the single-valued funetion p is replaced by a conditional distribu-
tion. In order to use notation that coversiall.iterations ¢ of the transducer, I write this update
distribution as m(v;t1,7i+1|7i, Ai). Stochastic transducers are used in fields ranging from linguis-
tics to natural language processingi(in particular machine translation) to machine learning more
broadly. From now on I implicitly mean “stochastic transducer” when I use the term “transducer”.®

As with FAs, typically inthe literature transducers are defined to have a set of multiple accept
states, not just one. Sometimes there are also multiple start states. Similarly, in some of the
literature the transition function“allows the transducer to receive the empty string as an input
and /or produce the/empty string as an output.

A Moore machine is a transducer where the output v is determined purely by the current state
of the transducer, r. In contrast, a transducer in which the output depends on both the current

state x and the current input A is called a Mealy machine.

5The reader should Be'warned that some of the literature refers to both FAs and transducers as “finite state machines”,
using the termy“acceptor” or “recognizer” to refer to the system defined in Def. 1. Similarly, the word “transducer” is
sometimes used loosely in the physics community, to apply to a specific system that transforms one variable — often

energy =— into another variable, or even just into another form.
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As a final comment, an interesting variant of the transducers defined in Def. 3 arises if we remove
the requirement that there be accept states (and maybe even remove the requirement of start states).
In this variant, rather than feeding an infinite sequence of input words into the system; each of
which results in its own output word, one feeds in a single input word, which is infinitely long;
producing a single (infinitely long) output word. This variant is used to define so-called “automata
groups” or “self-similar groups” [75].

Somewhat confusingly, although the computational properties of this variant efstransducers
differs in crucial ways from those defined in Def. 3, this variant is also called “transducers” in the
literature on “computational mechanics”, a branch of hidden Markov model theory{|76]. Fortunately,
this same variant have also been given a different name, information ratchets;in work analyzing
their statistical physics properties [13]. Accordingly, here I adopt that term for this variant of

(computer science) transducers.

E. Turing machines

Perhaps the most famous class of computational/machines age Turing machines [8-10|. One rea-
son for their fame is that it seems one can model any computational machine that is constructable by
humans as a Turing machine. A bit more formally, the Church-Turing thesis states that, “A function
on the natural numbers is computable.by a human being following an algorithm, ignoring resource
limitations, if and only if it is computable by a Turing machine.” The “physical Church-Turing
thesis” modifies that to hypothesize that the'set of functions computable with Turing machines
includes all functions that are computable using mechanical algorithmic procedures admissible by
the laws of physics [29, 30, 77, 78].

In part due to this thesis, Tl?ing machines form one of the keystones of the entire field of
computer science theory, and in particular of computational complexity [7]. For example, the
famous Clay prize questiomof whether P = NP — widely considered one of the deepest and most
profound open questions in mathematics — concerns the properties of Turing machines. As another
example, the theory of Turing machines is intimately related to deep results on the limitations of
mathematics, like' Godel’s incompleteness theorems, and seems to have broader implications for
other parts of philesophy as well [79]. Indeed, it has been argued that the foundations of physics
may be restricted by some of the properties of Turing machines [28, 80].

Along these lines, some authors have suggested that the foundations of statistical physics should

be modified/to account for the properties of Turing machines, e.g., by adding terms to the definition
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of entropy. After all, given the Church-Turing hypothesis, one might argue that the probability
distributions at the heart of statistical physics are distributions “stored in the mind” of the human
being analyzing a given statistical physical system (i.e., of a human being running a particular
algorithm to compute a property of a given system). Accordingly, so goes the argumentjthe costs
of generating, storing, and transforming the minimal specifications of the distributiens concerning
a statistical physics system should be included in one’s thermodynamic analysis, of thoseichanges
in the distribution of states of the system. See [81-83)].

There are many different definitions of Turing machines that are “computationally equivalent”
to one another. This means that any computation that can be done with one type of Turing
machine can be done with the other. It also means that the “scaling function”»ef®ne type of Turing
machine, mapping the size of a computation to the minimal amount efresources needed to perform
that computation by that type of Turing machine, is at most a polynemial function of the scaling
function of any other type of Turing machine. (See for example,the relation between the scaling
functions of single-tape and multi-tape Turing machines [8].) Thefollowing definition will be useful

for our purposes, even though it is more complicated than strictly needed:

- 4
Definition 4. A Turing machine (TM) is a 7-tuple (R, A, b,v, 72,74, p) where:

1. R is a finite set of computational states,

NS

. A is a finite alphabet containing at leastithree symbols;
3. b€ A is a special blank symbol;

4. v €Z is a pointer;
N
5. 72 € R is the start state;

6. 7 € R is the aceept state; and

7. p: RXZ XA® — RXZ x A*® is the update function. It is required that for all triples
(r,v, T) gthat if wewrite (r',v', T") = p(r,v,T), then v' does not differ by more than 1 from v,
and the weétor T isidentical to the vectors T' for all components with the possible exception

ofdhe compoment with index v .5

5Technically the update function only needs to be defined on the “finitary” subset of R x Z x A, namely, those

elements.of R X Z x A® for which the tape contents has a non-blank value in only finitely many positions.
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r4 is often called the “halt state” of the TM rather than the accept state. (In some alternative,
computationally equivalent definitions of TMs, there is a set of multiple accept states rather than
a single accept state, but for simplicity I do not consider them here.) p is sometimes ealled the
“transition function” of the TM. We sometimes refer to R as the states of the “head’’«ofsthe TM4
and refer to the third argument of p as a tape, writing a value of the tape (i.e., semi-infinite string
of elements of the alphabet) as T. The set of triples that are possible arguments to thesupdate
function of a given TM are sometimes called the set of instantaneous descriptionsi(IDs) of the
TM. (These are sometimes instead referred to as “configurations”.) Note that assan alternative to
Def. 4, we could define the update function of any TM as a map over an associated space of IDs.

Any TM (R, %, b, v, p,77, p) starts with 7 = 77, the counter set £0 a specifi¢ initial value (e.g,
0), and with T consisting of a finite contiguous set of non-blank symbels, with all other symbols
equal to b. The TM operates by iteratively applying p, until the computational state falls in 4, at
which time it stops. (Note that the definition of p for 7 = r* islarbitrary and irrelevant.)

If running a TM on a given initial state of the tape resultsiin, the TM eventually halting, the
state of 7" when it halts is called the TM’s output. The initial state of T' (excluding the blanks) is
sometimes called the associated input, or program. (Howeve?, the reader should be warned that
the term “program” has been used by some/physicists'te _mean specifically the shortest input to a
TM that results in it computing a given output.) We also say that the TM computes an output
from an input. In general, there will betinputs for, which the TM never halts. The set of all those
inputs to a TM that cause it to eventually halt is called its halting set.

As mentioned, there are many wariants of the definition of TMs provided above. In one par-
ticularly popular variant the single tapesin Definition 4 is replaced by multiple tapes. Typically
one of those tapes contains the in,gut, one contains the TM’s output (if and) when the TM halts,
and there are one or more intermediate “work tapes” that are in essence used as scratch pads. The
advantage of using thissmore complicated variant of TMs is that it is often easier to prove theorems
for such machines thanfor singlé-tape TMs. However, there is no difference in their computational
power. More pregisely, one can transform any single-tape TM into an equivalent multi-tape TM
(i.e., one that computesithe same partial function), as well as vice-versa |8, 11, 84].

Returning to/#he TM variant defined in Definition 4, a universal Turing machine (UTM),
M, is one that can be used to emulate any other TM. More precisely, a UTM M has the property
that for any other TM M’, there is an invertible map f from the set of possible states of the tape

of M" into the set of possible states of the tape of M, such that if we:
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1. apply f to an input string ¢’ of M’ to fix an input string o of M;
2. run M on o until it halts;

3. apply f~! to the resultant output of M:;

then we get exactly the output computed by M’ if it is run directly on o”.

An important theorem of computer science is that there exists universal TMs. Intuitively, this
just means that there exists programming languages which are “universal”, in that we ¢an use them
to implement any desired program in any other language, after appropriate translation of that

program from that other language. This universality leads to a very important concept:

Definition 5. The Kolmogorov complexity of a UTM M to compute-a-string o € A* is the
length of the shortest input string s such that M computes o from.s.

Intuitively, (output) strings that have low Kolmogorov complexity for seme specific UTM M are
those with short, simple programs in the language of M. For, example, in all common (universal)
programming languages (e.g., C, Python, Java, etc.), the first m digits of m have low Kolmogorov
complexity, since those digits can be generated using a relatively short program. Strings that have
high (Kolmogorov) complexity are sometimes referred(to as “i:lcompressible”. These strings have
no patterns in them that can be generated by a simple program. As a result, it is often argued that
the expression “random string” should only be used for,strings that are incompressible.

It is common to refine the definition of “halting set” implicitly, to include only those input strings
such that the TM halts with its_head positiomed on the last symbol in that input string. Use this

1'is a proper prefix of

refined definition from on. Suppose we have two strings s' and s? where s
s2. If we run the TM on s', it can detect when it gets to the end of its input, by noting that the
following symbol on the tapéis a blank. Therefore, it can behave differently after having reached
the end of s' from how it behaves when it reaches the end of the first £(s!) bits in s2. As a result,
it may be that both of these input strings are in its halting set, but result in different outputs.

A prefix (free)/ TM is one in which this can never happen: there is no string in its halting set
that is a proper prefix of another string in its halting set.”

It is not trivial/to comstruct prefix single-tape TMs directly. For that reason it is common to use prefix three-tape
TMs, in which there is a/separate input tape that can only be read from, output tape that can only be written
to, and work tape that can be both read from and written to. To ensure that the TM is prefix, we require that
the head cannot ever back up on the input tape to reread earlier input bits, nor can it ever back up on the output
tape, to overwrite earlier output bits. To construct a single-tape prefix TM, we can start with some such three-tape
prefix. TM and transform it into an equivalent single-tape prefix TM, using any of the conventional techniques for

transforming between single-tape and multi-tape TMs.
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We can use the Kolmogorov complexity of prefix TMs to define many associated quantities,
which are related to one another the same way that various kinds of Shannon entropy are related
to one another. For example, loosely speaking, the conditional Kolmogorov complexity of string s
conditioned on string s', written as K (s|s’), is the length of the shortest string x suchrthat if the
TM starts with an input string given by the concatenation xs’, then it computes s and halts. If we

restrict attention to prefix-free TMs, then for all strings =,y € A*, we have [84]
K(z,y) < K(z) + K(zly) + O(1) < K(z) + K(y) + O(1) (23)

(where “O(1)” means a term that is independent of both x and y). Indeed, in a eextain technical
sense, the expected value of K (z) under any distribution P(z € A*) equals the Shannon entropy of
P. (See [84].) -

The coin-flipping prior of a prefix TM M is the probability distributionfover the strings in M’s
halting set generated by IID “tossing a coin” to generate those strings, inra Bernoulli process, and
then normalizing.® So any string o in the halting set has probability:271°! /€ under the coin-flipping
prior, where € is the normalization constant for the TNhin question.

The coin-flipping prior provides a simple Bayesian interplftation of Kolmogorov complexity:
Under that prior, the Kolmogorov complexity of any string & for any prefix TM M is just (the log
of) the maximum a posterior (MAP) probability'that any string ¢’ in the halting set of M was the
input to M, conditioned on o being the output of that TM. (Strictly speaking, this result is only
true up to an additive constant, given by,the logrofithe normalization constant of the coin-flipping
prior for M.)

The normalization constant €)for any fixed prefix UTM, sometimes called “Chaitin’s Omega”,
has some extraordinary properties. For examiple, the successive digits of € provide the answers to all
well-posed mathematical problems\. Soiif we knew Chaitin’s Omega for some particular prefix UTM,
we could answer every problem in mathematics. Alas, the value of € for any prefix UTM M cannot
be computed by any TM(either M or some other one). So under the Church-Turing hypothesis,
we cannot calculate €. (See also [20] for a discussion of a “statistical physics” interpretation of
Q) that results if wewiew the coin-flipping prior as a Boltzmann distribution for an appropriate
Hamiltonian,so thiat Q plays the role of a partition function.)

It is newypconventional to analyze Kolmogorov complexity using prefix UTMs, with the coin-
flipping/prior, sifi¢e this removes some undesirable technical properties that Kolmogorov complexity

8Kraff’s inequality guarantees that since the set of strings in the halting set is a prefix-free set, the sum over all its
elements of their probabilities cannot exceed 1, and so it can be normalized. However, in general that normalization

constant ismuncomputable, as discussed below. See [84].
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has for more general TMs and priors. Reflecting this, all analyses in the physics community that
concern TMs assume prefix UTMs. (See [84] for a discussion of the extraordinary properties of such
UTMs.)

Interestingly, for all their computational power, there are some surprising ways inewhich TMs
are weaker than the other computational machines introduced above. For example, there are an
infinite number of TMs that are more powerful than any given circuit, i.e., given any ¢ireuit C,
there are an infinite number of TMs that compute the same function as C'. Indeed, anysingle UTM
is more powerful than every circuit in this sense. On the other hand, it turns out that there are
circuit families that are more powerful than any single TM. In particular, there are circuit families
that can solve the halting problem [8]. o

Finally, some terminological comments and definitions will be useful below. It is conventional
when dealing with Turing machines to implicitly assume some invertible map R(.) from Z into A*.
Given such a map R(.), we can exploit it to implicitly assume an,additional invertible map taking
Q into A, e.g., by uniquely expressing any rational number as one.product of primes, a, divided by
a product of different primes, b; invertibly mapping those two products of primes into the single
integer 223%; and then evaluating R(293°). y

If a function from A* into itself is defined for all inputs,4t is called a total function; otherwise
it is a partial function. If the input-output pairs defining a particular partial function are exactly
the pairs of inputs and associated outputssproduced by some TM, that function is called a partial
recursive function. (so the TM in question must never halt for all inputs on which the partial
function is undefined.) Similarly, aitotal function that is computed by some TM which always halts
is called a total recursive funétion, orjjust called a recursive function for short. In addition,
a real number z is computable{ff there is a recursive function f mapping rational numbers to

rational numbers such that for all rational-valued accuracies € > 0, |f(e) — z|< e.

V. ENTROPY DYNAMICS

This sectionreviews, those aspects of stochastic thermodynamics that are necessary to analyze the
dynamics of various types ofientropy during the evolution of computational machines. As illustrated
with examples, thesfamiliar quantities at the heart of thermodynamics (e.g., heat, thermodynamic
entropy, work) arise in special cases of this analysis.

In the first subsection, I review the conventional decomposition of the entropy flow (EF) out of

a physical system into the change in entropy of that system plus the (irreversible) entropy creation
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(EP) produced as that system evolves [85, 86]. To fix details, I will concentrate on the total amount
of EF, EP and entropy change that arise over a time-interval [0, 1].%

In the second subsection, I review recent results [69] that specify how the EP generated by the
evolution of some system depends on the initial distribution of states of the system. These recent
results allow us to evaluate how the EF of an arbitrary system, whose dynamics implements some
conditional distribution 7 of final states given initial states, depends on the initial distribution of
states of the system that evolves according to m. (As elaborated in subsequent(sectionsy this depen-
dence is one of the central features determining the entropic costs of running any computational
machine.)

I end this section with some general cautions about translating adomputer.séience definition of

a computational machine into a physics definition of a system that implements that machine.

A. Entropy flow, entropy production, and:Landauer cost

To make explicit connection with thermodynamics, “consider a physical system with countable
state space X that evolves over time interval ¢ € [0,1] while imycontact with one or more thermal
reservoirs, while possibly also undergoing driving by one or more work reservoirs.'? In this chapter I
focus on the scenario where the system dynamics over the time interval is governed by a continuous-
time Markov chain (CTMC). However_many of the results presented below are more general.

Let Wy (t) be the rate matrix of thexCTMC:So the probability that the system is in state x

at time ¢ evolves according to the linear, time-dependent equation
d
&pw (t) = Z Wx;x’ (t)px’ (t) (24)
'1./

which I can write in vector form as p(t)’= W (t)p(t). 1 just write “W” to refer to the entire time-
history of the rate matrix. W and p(0) jointly fix the conditional distribution of the system’s state
at t = 1 given its state at ¢ = 0, which I write as 7(x1|zo). Note that in general no finite rate
matrix can implement a map @ that is a single-valued function. However, we can always implement
such a function te any desired finite accuracy by appropriate construction of the rate matrix [87].

9In this paper I will not speeify. units of time, and often implicitly change them. For example, when analyzing the
entropy dynamicsiof a given circuit, sometimes the time interval [0, 1] will refer to the time to run the entire circuit,
and the attendant entropic costs. However at other times [0, 1] will refer to the time to run a single gate within that
circuit, and, the entropic costs of running just that gate. In addition, for computational machines that take more
than one iteration to run, I will usually just refer to a “time interval [0, 1]” without specifying which iteration of the

machine that interval corresponds to. Always the context will make the meaning clear.
107y statistical{physics, a “reservoir” R in contact with a system S is loosely taken to mean an infinitely large system

that interacts with S on time scales infinitely faster than the explicitly modeled dynamical evolution of the state of
S. For example, a “particle reservoir” exchanges particles with the system, a “thermal reservoir” exchanges heat, and

a “work reservoir” is an external system that changes the energy spectrum of the system S.
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Accordingly, throughout this paper I will refer to CTMCs implementing a single-valued function,
when what I really mean is that it implements that function up to any desired finite accuracy.

As shorthand, I sometimes abbreviate z(0) as x, and sometimes abbreviate the initial distribution
p(0) as p. (So for example, mp is the ending distribution over states.) I will alsorsometimes
abbreviate p(1) as p/, and x(1) as 2’; the context should always make the meaning glear.

Next, define the entropy flow (rate) at time t as

Wx/.x//
’ } (25)

3 Waor st L
Physically, this corresponds to an entropy flow rate out of the system, into reservoirs it is coupled
to. ~
In order to define an associated total amount of entropy flow during a non-infinitesimal time in-
terval (EF), define @ = (N, &, T) as a trajectory of N+1 successive states@ = (z(0), z(1),...,xz(N)),
along with times 7 = (19 = 0,71, 72,...,7n—1) of the associated state fransitions, where 7ny_; <1
(the time of the end of the process), x(0) is the beginning, ¢ = 0 state of the system, and z(N) is
the ending, ¢t = 1 state of the system. Then under the'dynamics of Eq. (24), the probability of any

- 4
particular trajectory is [86, 88, 89|

N-1
p(x]z(0)) = (H N G 1))Wx(i),:p(i—1)(7-i)> Sty_, (@n) (26)
i=1

where SZ/ (x) = el7 Waa(D)dt ig the “survival probability” of remaining in state x throughout the
interval ¢t € [7,7']. The total EF out of the system during the interval can be written as an integral

weighted by these probabilities:

N-1
Wai),w(i—1)(Ti)

Q(p :/P$P z(0 EWmm— 7i) In ——————— Dz 27

(po) o O)N| (0)) gt (@)a(i-1)(73) Wa(i—1),2()(Ti) 27)

(Note that I use the convention that EF reflects total entropy flow out of the system, whereas much
of the literature definessEF as, the entropy flow into the system.)

EF will be thexcentral concern in the analysis below. By plugging in the evolution equation for
a CTMC, we can decomipose EF as the sum of two terms. The first is just the change in entropy
of the system during the time interval. The second, is the (total) entropy production (EP) in
the systém during the process [86, 90, 91|. I write EP as o(p). It is the integral over the interval of

the instantaneous EP rate,

S Wariar (O)per(£)In (28)

z/;m/l

|: Wz’;z”pz” (t) :|
Wx”;x’px’ (t)
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I will use the expressions “EF incurred by running a process”, “EF to run a process”, or “EF
generated by a process” interchangeably, and similarly for EP.!! EF can be positive or negative.
However, for any CTMC, the EP rate given in Eq. (28) is non-negative [86, 90|, and therefore so is
the EP generated by the process. So

Q(po) = o (po) + S(po) — S(mpo) (29)

> S(po) — S(mpo) (30)

where throughout this paper, 7 refers to the conditional distribution of the‘state of the system at
t = 1 given its state at t = 0, which is implicitly fixed by W (t).

Total entropy flow across a time interval can be written as a lineardfunction of the initial distri-

) ~
bution:

Q(po) =Y Flwo)po(wo) (31)

for a function F(z) that depends on the entire function Wagn(t) for.all t € [0,1), and so is related
to the discrete time dynamics of the entire process, m(xyfZo). (See Bq. (27).) However, the minimal
entropy flow for a fixed transition matrix m occurring when EP. is zero, is the drop in entropy from
S(po) to S(mFy). This is not a linear function of the inifial distr’ibution po. In addition, the entropy
production — the difference between actual entropy flow-and minimal entropy flow — is not a linear
function of pg. (So the two nonlinearities “cancel out?, when they are added, to give a linearity.)
These nonlinearities are the basis of much of the,richness of statistical physics, and in particular of
its relation with information theory.

There are no temperatures in anyref this analysis. Indeed, in this very general setting, temper-
atures need not even be defined. Howevery suppose that exists there exists an “energy function”

E : X — R such that for all@, z & X,

In mﬂ — B(2') — B() (32)

Then we can interpretsthe dynamics of the system at ¢ as though the system were coupled to a heat
bath with a well-defined temperature 7', and the energy function obeyed “detailed balance” (DB)
with that heatdbath. (We-lso say that such a rate matrix is “reversible” [92].) In this case EF can

be written as [8§]

Q=FkpT™'Q (33)

" Confusingly, sometimes in the literature the term “dissipation” is used to refer to EP, and sometimes it is used to
refer to EF. Similarly, sometimes EP is instead referred to as “irreversible EP”, to contrast it with any change in the

entropyrof the system that arises due to entropy flow.
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where kp is Boltzmann constant, and @) is the expected amount of heat transfered from the system
into bath v during the course of the process. In addition, if DB holds for a system at time ¢ for a
heat bath with temperature T, then we say that the system is at (thermal) equilibrium at that

time if
() o e~ E@)/kpT (34)

This is just the familiar canonical ensemble from equilibrium statistical physics [93].0At thermal

equilibrium, the Shannon entropy analyzed in this paper is identical to thermodynamic entropy.

Example 1. Consider the special case of an isothermal process, meaning there is'a single heat bath
at temperature T (although possibly one or more work reservoirs and partick reservoirs). Suppose
that the process transforms an initial distribution p and Hamiltonian H into a final distribution p'
and Hamiltonian H'.

In this scenario, EF equals (kgT)~! times the total heat flow into the bath. EP, on the other
hand, equals (kpT)~! times the dissipated work of the process, which is the work done on the system
over and above the minimal work required by any isothermal Process that performs the transformation
(p,H) — (p/,H') [6]. So by Eq. (30) and energy conservation, the minimal work is the change in
the expected energy of the system plus (kT times)the drop in Shannon entropy of the system. This
is just the change in the nonequilibrium free energy of'the system from the beginning to the end of

the process [6, 94, 95].

There are many different physical phenomena that can result in nonzero EP. One broad class
of such phenomena arises if we take an “inclusive” approach, modeling the dynamics of the system

and bath together: ~

Example 2. Continuing with the special case of an isothermal process, suppose that the heat bath
never produces any erntropy, by itself, i.e., that the change in the entropy of the bath equals the EF
from the system into the bath. Then the change in the sum, {marginal entropy of the system} +
{marginal entropy ofithe heat bath} must equal the EF from the system to the bath plus the change
in the marginal entropy of the system by itself. By Eq. (29) though, this is just the EP of the system

On thesother hand, Liouville’s theorem tells us that the joint entropy of the system and the bath
is constant. Combining establishes that EP of the system equals the change in the difference between
thegoint entropy and the sum of the marginal entropies, i.e., EP equals the change in the mutual

information between the system and the bath.
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To illustrate this, suppose we start with system and bath statistically independent. So the mutual
information between them originally equals zero. Since mutual information cannot be negative, the
change of that mutual information during the process is non-negative. This confirms that EP is non-
negative, for this particular case where we start with no statistical dependence betweentthe. system

and the bath. See [96].

Variants of Eq. (30) are sometimes referred to in the literature as the generalized Landauer’s
bound. To motivate this name, suppose that there is a single heat bath, at temperature T; and that
the system has two possible states, X = {0,1}. Suppose further that the‘initial'distribution p(x)
is uniform over these two states, and that the conditional distribution 7w \implements the function
{0,1} — 0, i.e., it is a 2-to-1 ‘bit-erasure’ map. So by Eq. (33) and the mon=negativity of EP, the
minimal heat flow out of the system accompanying any processithat performs that bit erasure is
kT (In[2] —In1l) = kT In[2], in accord with the bound proposed by Landauer.

Note though that in contrast to the bound proposed by 'handauer; the generalized Landauer’s
bound holds for systems with an arbitrary number of states, an arbitrary initial distribution over
their states, and an arbitrary conditional distribution 7. Most,strikingly, the generalized Landauer
bound holds even if the system is coupled to multiple ghermal reservoirs, all at different tempera-
tures, e.g., in a steady state heat engine [97, 98} (see Exi'5 below). In such a case kpT In2 is not
defined. Indeed, the generalized Landauer bound holds even if the system does not obey detailed
balance with any of the one or more reservoirsnit’s coupled to.

Motivated by the generalized Landauer’s'bound, we define the (unconstrained) Landauer
cost as the minimal EF required to cempute 7 on initial distribution p using any process, with no

constraints:

N
L(p, ) := S(p) = S(7p). (35)

With this definition we 'can write

Q(p) = L(p,7) + o(p) (36)

Example 3. Landauer’s bound is often stated in terms of the minimal amount of work that must be
done in order to perform a given computation, rather than the heat that must be generated. This is
appropriate for physical processes that both begin and end with a constant, state-independent energy
function.\For such processes, there cannot be any change in expected energy between the beginning

and end of the process. Moreover, by the first Law of thermodynamics,

AE =W — Q(p)
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where AFE is the change in expected energy from the beginning and end of the process, W is work
incurred by the process, and as before, Q(p) is the expected amount of heat that leaves the system
and enters the bath. Since AE =0, W = Q. So the bounds in Example 1 on the minimalheat that

must flow out of the system also give the minimal work that must be done on the system

Any process which achieves 0 = 0 (i.e., the generalized Landauer’s bound) for some particular
initial distribution p is said to be thermodynamically reversible when run on that distribution.
(For simplicity, I use this terminology even if there are no heat baths conmiected to the system,
so that we cannot interpret entropic costs as thermodynamic quantities In the special case that
the system is coupled to a single heat bath and obeys DB, for its dynamics over the interval [01]
to be thermodynamically reversible the system must be at equilibrium with that heat bath at all
t €[0,1].12

A necessary condition for a CTMC to be thermodynamigally reversible when run on some ¢g
is that if we run it forward on an initial distribution gy t0 producerg, and then “run the process
backward”, by changing the signs of all momenta and#&eversing the time-sequence of any driving
by work reservoirs, we return to gg. (See [85, 99-101].) Moreov’er, it has recently been proven that
for any 7 and initial distribution ¢g, we can always design a CTMC that implements 7 on any
initial distribution, and in addition is thermodynamically reversible if the initial distribution is gp.
(See [87] for a proof based on stochastic thermodynamics, [62, 102-106] for earlier, less detailed
analyses based on general nonequilibriumpstatistical physics, and Section X A and Section XV below

for general discussion.)

Example 4. Suppose we desigi a CTMC to implement bit erasure and to be thermodynamically
reversible if run on some initial di{tm'bution qo [107]. So if we run the bit erasure process backwards
from the ending (delta funetion) distribution, we have to arrive back at the initial distribution qo.
This means that if we run that bit-erasure process on any initial distribution pg # qo and then run it
backwards, we wouldmot.arrive back at py (we arrive at qq instead). This proves that the bit-erasure
process cannot besthermodynamically reversible when run on any such pg # qo. This phenomenon

is analyzed indhe next subsection, and bit erasure is discussed more broadly in Section V1.

'2This way of/éharacterizing thermodynamic reversibility has been central to statistical physics since it was invented

in the 19th century; at least in the context of systems that are always at thermal equilibrium.
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B. Mismatch cost and residual EP

Computational machines are built of multiple interconnected computational devicess, Aycrucial
concern in calculating the entropic costs of running such a computational machine is how the costs
incurred by running any of its component devices, implementing some distribution 7w, depends on
the distribution over the inputs to that device, pg.

For a fixed m, we can write Landauer cost of any process that implementsr as a,single-valued
function of the initial distribution pg; no properties of the rate matrix W ‘matter for calculating
Landauer cost, beyond the fact that that matrix implements w. Howgver, even ifrwe fix m, we
cannot write EP as a single-valued function of pgy, because EP does dépend on the details of how
W implements 7. (Intuitively, it is the EP, not the Landauer cost, that r&ects the “nitty gritty
details” of the the dynamics of the rate matrix implementing the computation.) In this subsection
I review recent results establishing precisely how W determines,.the dependence of EP on py.

It has long been known how the entropy production rdte, atha single moment ¢, jointly depends
on the rate matrix W (¢) and on the distribution over‘states p;. (In fact, those dependencies are
given by the expression in Eq. (28).) On the other/hand, umtiljrecently nothing was known about
how the EP of a discrete time process, evolving over, an extended time interval, depends on the
initial distribution over states. Initial progress was made in [108], in which the dependence of EP
on the initial distribution was derived.for the special case where 7(x1|xg) is nonzero for all xg, x1.
However, this restriction on the form of‘mis violated in deterministic computations.

Motivated by this difficulty, {69] extended the earlier work in [108], to give the full dependence
of EP on the initial distribution for arbitrary m. That extended analysis shows that EP can always
be written as a sum of two terms. \Each of those terms depends on pg, as well as on the “nitty gritty
details” of the process, embodied; Wi(t).

The first of thosesEP, terms depends on pg linearly. By appropriately constructing the nitty
gritty details of the systemi(e.g., by having the system implementing 7 run a quasi-static process),
it is possible to have this first term equal zero identically, for all pg. The second of the EP terms
instead is givensby adrop/in the KL divergence between p and a distribution ¢ that is specified
by the nitty gritty details, during the time interval ¢ € [0,1]. For nontrivial distributions 7, this
term canmot be made to equal zero for any distribution pg that differs from gg. This is unavoidable
EP incurzed in running the system, which arises whenever one changes the input distribution to a
different device from the optimal one, without modifying the device itself.

To.review these recent results, recall the definition of islands ¢ and associated distributions A,
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from Section II. Next make the following definition:

Definition 6. For any conditional distribution m implemented by a CTMC, and any island ¢ € L(r),
the associated prior is
¢ € argmin o(r)
risupp(r)€Ac

We write the associated lower bound on EP as

min () = min  o(r
( ) r:supp(r)EA. ( )

g

It will simplify the exposition to introduce an arbitrary distribution over islands, g(c), and define

In [69] it is shown that
a(p) = D(pllq) — D(mpl7q) + Dop(c)a™™ (&) (37)
c€L(r)
(Due to the definition of islands, while the choice of distribution ¢(c) affects the precise distribution
q inside the two KL divergences, it has no effect ou their difference; see [69].)

The drop of KL divergences on the RHS of Eq. (37) is called the the mismatch cost of running
the CTMC on the initial distribution p, and iswritten as £(p).!3 Given the priors ¢, both of these
KL divergences depend only on p and en.a; no attributes of W beyond those that implicitly set the
priors ¢ matter for mismatch cost. By theidata-processing inequality for KL divergence, mismatch
cost is non-negative. It equals zero.if p = ¢ or if 7 is a measure-preserving map, i.e., a permutation
of the elements of X.

The remaining sum on the RQS of Eq. (37) is called the residual EP of the CTMC. It is
a linear function of p(c), witheut any information theoretic character. In addition, it has no
explicit dependence on. . Itis (the p(c)-weighted average of) the minimal EP within each island.
o™ (¢) > 0 for all c,.and tesidual EP equals zero if and only if the process is thermodynamically
reversible. I will refer to o™ (c) as the residual EP (parameter) vector of the process. The
“nitty-gritty” physics details of how the process operates is captured by the residual EP vector
together with the'priors.

Combining Eq.(87) with the definitions of EF and of cross entropy establishes the following set
of equivalent ways of expressing the EF:

131 [108], due 40 a Bayesian interpretation of ¢, the mismatch cost is instead called the “dissipation due to incorrect

priors”.
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2
2 Proposition 1. The total EF incurred in running a process that applies map m to an wnitial dis-
5 tribution p s
6 .
7 Qp) = L(p,m) +ED) + > p(e)o™"(c)
8 ceL(r)
9 .
10 = [S(plla) — S(rpllwg)] + Y _ p(c)o™™"(c)
11 c
12
13
14 Unlike the generalized Landauer’s bound, which is an inequality, Prop. 1 is exact. It holds for both
15
16 macroscopic and microscopic systems, whether they are computational dévices or net.
17 . . . .
18 I will use the term entropic cost to broadly refer to entropy flow, entropy production, mismatch
;g cost, residual entropy, or Landauer cost. Note that the entropic cost of.ahy computational device
21 is only properly defined if we have fixed the distribution over possible input$ of the device.
22
23 It is important to realize that we cannot ignore the residual EP when calculating EF of real-
;g world computational devices. In particular, in real-worldfecomputers— even real-world quantum
26 computers — a sizable portion of the heat generationdoccurs in the wires connecting the devices
27
28 inside the computer (often a majority of the heat generation, ill fact). However, wires are designed
gg to simply copy their inputs to their outputs, which isfa logically invertible map. As a result, the
31 Landauer cost of running a wire is zero (to within.the aceuracy of the wire’s implementing the copy
32
33 operation with zero error), no matter what the initial'distribution over states of the wire pg is. For
gg the same reason, the mismatch cost of ‘any wirelis zero. This means that the entire EF incurred by
36 running any wire is just the residual EP incurred by running that wire. So in real-world wires, in
37 ,
38 which ¢™"(c) invariably varies with e(i.e., in which the heat generated by using the wire depends
39 . . C s .
40 on whether it transmits a 0 or @ 1), the dependence of EF on the initial distribution py must be
2; linear. In contrast, for the Gther devices in a computer (e.g., the digital gates in the computer),
43 both Landauer cost and mismatch cost can be quite large, resulting in nonlinear dependencies on
44
45 the initial distributions.
46 ) ) ) o )
47 Example 5. It is common in the literature to decompose the rate matriz into a sum of rate matrices
22 of one or more.mechanisms v:
50 ;
B Waar () = > W2 (2) (38)
52 v
53 In such/ cases one replaces the definitions of the EF rate and EP rate in Eq. (25),(28), with the
54 o .,
55 similaridefinitions,
56 WY, .
=7 > W (t)per (t) In [Wj i ] (39)
58 z' sz v z'x
59
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and

[Wp@)} (40)

WV/ (T !’ t 1
> W (o (t)n | T2y

sz v
respectively.

When there is more than one mechanism, since the log of a sum is not the same as the sum
of a log, these redefined EF and EP rates differ from the analogous quantitiesagiven by plugging
> Wow(t) into Eq. (25),(28). For ezample, if we were to evaluate Eq. (25) for this multiple-
mechanism W (t), we would get

S W (Opar () In

x/sx! v

[ZW} (41)

S Wi
which differs from the expression in Eq. (39).

Nonetheless, all the results presented above apply just as well with,these redefinitions of EF
and EP. In particular, under these redefinitions the time-derivative of the entropy still equals the
difference between the EP rate and the EF rate, total EP is still mon-negative, and total EF is still
a linear function of the initial distribution. Moreovér, thatilinearity of EF means that with this
redefinition we can still write (total) EP as a sum of thé mz’smazch cost, defined in terms of a prior,
and a residual EP that is a linear function ‘of the initial distribution.

By themselves, neither the pair of definitioms in Eq. (25),(28) nor the pair in Eq. (39),(40) is
“right” or “wrong”. Rather, the primary basisifor. choosing between them arises when we try to apply
the resulting mathematics to analyze specifiesthermodynamic scenarios. The development starting
from Eq. (25),(28), for a single meehanism, can be interpreted as giving heat flow rates and work
rates for the thermodynamic scenario of @single heat bath coupled to the system. (See Ex. 2 and 3
above.) However, in many thermedynamic scenarios there are multiple heat baths coupled to the
system. The standard approach for lanalyzing these scenarios is to identify each heat bath with a
separate mechanism, so that there i1s a separate temperature for each mechanism, T. Typically
one then assumes loeal detailed balance (LDB), meaning that separately for each mechanism v,
the associated matriz WV (t) obeys detailed balance for the (shared) Hamiltonian H(t) and resultant

(v-specific) Boltzmann distribution defined in terms of the temperature TV, i.e., for all v,x, 2’ t,

v
Waw®) _ w001 (42)
W;,’,;x(t)
This, allows us to identify the EF rate in Eq. (39) as the rate of heat flow to all of the baths. So
the EP raté in Eq. (40) is the rate of irreversible gain in entropy that remains after accounting for

that EFwate and for the change in entropy of the system. See [857 , 86].
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It is important to emphasize that all of the analysis above assumes that there are no constraints
on how the physical system can implement 7. For example, the Landauer cost given in Eq. (35) and
Proposition 1 is the unconstrained minimal amount of EF necessary to implement the conditional
distribution 7 on any physical system, when there are no restrictions on the rate matrixunderlying
the dynamics of that system. However, in practice there will always be some constraints on what
rate matrices the engineer of a system can use to implement a desired logical state dynamics. In
particular, the architectures of the computational machines defined in Section TV comstrain which
variables in a system implementing those machines are allowed to be directly coupled with one
another by the rate matrix. Such constraints can substantially increas¢ the minimal feasible EF,

as illustrated by the following example. -

Example 6. Suppose our computational machine’s state spacelis two bits; x' and x2, and that
the function f(x) erases both of those bits. Let po(x) be the nitial distribution over joint states of
the two bits. (As a practical matter, py would be determinedyby the preferences of the users of the
system, e.g., as given by the frequency counts over a long time interval in which they repeatedly use

the system.) In this scenario, the unconstrained Landeuer. cost, is
L 4

S(po(X)) — S(p1(X))= S(po(X))
= Slpo(X")) + S(po(X?| X)) (43)

Now modify this scenario by supposimgnthat we are constrained to implement the parallel bit
erasure with two subsystems acting independently of one another, one subsystem acting on the first
bit and one subsystem acting on theéssecond bit. This changes the Landauer cost to

S(po(X1)) = S(p1 (X)) + S(pe(X?)) — S(p1(X?) = S(po(X1)) + S(po(X?)) (44)

N
The gain in Landauer cost duedto the constraint is S(po(X?)) — S(po(X2|X1')). This is just the

mutual information bétween thetwodits under the initial distribution pg, which in general is nonzero.

To understand theamplications of this phenomenon, suppose that the parallel bit erasing subsys-
tems are thermodynamically reversible when considered by themselves. It is still the case that if they
are run in parallelias two.subsystems of an overall system, and if their initial states are statistically
correlated, then that overall system is not thermodynamically reversible. Indeed, if we start with pog,
implement the parallel bit erasure using two thermodynamically reversible bit-erasers, and then run

that process in reverse, we end up with the distribution po(z)po(xt) rather than po(x!, z?).

This phénomenon is a key aspect of the thermodynamics of computation, coupling the global

structuresof a computational machine that implements some function 7 to the minimal EF one
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could achieve with that machine by optimizing all of its components. It is the focus of Section IX
below.

As a final comment, it is important to emphasize that all of the results in this ‘section for
mismatch costs and residual EP hold for processes that implement general stochasticamatrices,as
well as those that implement single-valued functions, if one uses the appropriate generalization of
islands.

Despite the importance of EP to the entropic costs of real world systems, aftersSection X I
will assume that the residual EP of any island of any device I consider equals zero. The resultant
analysis gives the least possible EF, which would arise if (as is almost always the case in the real
world) we don’t design the prior of a device to match the actual distributionof its input states,
and so must account for its possible mismatch cost. In addition, this assumption simplifies the

calculations, since we no longer have to consider the islands of the processes.

VI. LOGICAL VERSUS THERMODYNAMIC REVERSIBILITY

As mentioned in Section V, it is now understood/that foranginitial distribution over states, and
any conditional distribution over those statess it is possibly to design a process that implements that
conditional distribution and in addition is thermodynamically reversible if run on that specified
initial distribution. In particular, this is trueif the conditional distribution is a single-valued,
logically irreversible map. As a concrete éxample, [109] shows how to build a dynamic process over
the state of a (binary) quantum<det that implements (an arbitrarily accurate approximation of) bit
erasure, while having arbitrarily small tetal EP, if the process is run on an (arbitrary) given initial
distribution over states.

Ultimately, logical and thermchynamic reversibility are independent for the simple reason that
they concern different properties of physically evolving systems. For a physical process to be
logically reversible means two things. First, if the process is run up to time t = 1 after starting
in some state xo at t = 0, it always executes some (continuous time) trajectory zo_ 1 that ends at
some specific state zpwith/probability 1, i.e., it is deterministic. Second, any ending state x1 that
arises from some initial state zo only arises for that initial state, i.e., the map is invertible over the
states of the system:

However, as discussed at the end of Section V A, thermodynamic reversibility involves changes
in marginal distributions, not changes in states. Moreover, for a process to be thermodynamically

reversible does not mean it implements an invertible map over the space of all distributions. Indeed,
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if a process implements a single-valued, non-invertible function over states (e.g., if it is a quasi-
static process [87, 107]), then in general the process will map multiple initial distributions to the
same final distribution. As an example, bit erasure is a non-invertible map over the associated unit
simplex, and so maps any initial distribution to the same ending, delta function distribution.

Time-reversing a process might recover the initial distribution even if the dymamical system
is very noisy. For example, evolving a bit in a process that (quasi-statically)stakes anvinitially
uniform distribution into a uniform distribution, but is so noisy that it loses all information about
the precise initial state by the time it ends, is thermodynamically reversible but logically irreversible.
Conversely, one can easily build a system that implements the identity map while producing an
arbitrarily large amount of EP, e.g., if one has sufficiently high energy barriersbetween the states
of the system.

In sum, the fact that a given process obeys one kind of reversibility (or not), by itself, has no
implications about whether it obeys the other kind of reversibility.!* See [6, 95, 100, 107] for more
on this topic.

As a historical comment, it is worth noting that modern nenequilibrium statistical physics wasn’t
developed when Landauer, Bennett, and co-workers did their*pioneering work on the thermody-
namics of computation. As a result, they had,to couchitheir insights concerning a fundamentally
non-equilibrium process — computation — i terms of equilibrium statistical physics. Unfortu-
nately, this led to confusion in the early work on the thermodynamics of computation, even in some
of the most important and path-breaking of that work (e.g., in [84, 110]). This confusion resulted in
significant controversy, which lasted,for over three decades in the philosophy of science community
and even longer in the physics anid computer science communities [101, 103, 111, 112].

Only with the recent breakthq)ughs in nonequilibrium statistical physics do we have a fully
formal framework for understanding the issues that Landauer and Bennett focused on. In particular,
only now do we have the toolstoranalyze the relationship between the thermodynamics of a logically
irreversible computerrand the thermodynamics of a logically reversible computer that computes the
same input-output function in a fully rigorous manner. (See Sections XI, XIV C and XIV D below

for some preliminary work related to this topic.)

140f course, shis does notaxean that there are no thermodynamic distinctions between logically irreversible and logically
irreversible processes: To give a trivial example, the Landauer cost of a logical reversible process is zero, no matter

what.therinitial distribution is, which is not true of logically irreversible processes in general.
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VII. CONVENTIONS FOR CALCULATING ENTROPIC COSTS IN
COMPUTATIONAL MACHINES

The definitions of computational machines given in Section IV are standard ones found imcom-
puter science textbooks. However, these definitions do not specify enough detail of how to physically
implement those machines to uniquely fix the associated entropy dynamics. 4(A related,point was
made in [113].) In fact, in general there are an infinite number of different (continuous time) Markov
chains that implement the same (discrete time) dynamics of a given computational device. Those
different CTMCs will result in different entropic dynamics, in general.

One example of these phenomena arise with circuits. Suppose thatsweirequire that the depen-
dency structure of the rate matrices in a CTMC we use to implement some\speciﬁc circuit reflects
the dependency structure of the wiring diagram of that circuit. “Cencretely, this means that the
dynamics of every physical variables in a given gate in theleircuit is not allowed to depend on
any information in the circuit that resides outside of the inputs, to that gate, even if its inputs are
statistically correlated with such information in the state of other variables. When there is such
a constraint it is possible that long-range mutual informatiog between the physical variables in
different gates gets lost as the circuit performs its computation. That results in nonzero irreversible
entropy production in running the circuit. (This, phenomenon is analyzed in depth in [69], and
summarized in Section X below; see also [114]'), In eontrast, if there are no such constraints on
how the CTMC implements the circuit, allowingreach gate to exploit the state of any variable in
the circuit, then we can achievenoptimal thermedynamic efficiency, with zero irreversible entropy
production. However, the computer science definition of a circuit does not specify whether there
are such constraints on the CTMC that ¢an be used to to implement the circuit.

Much of the material in Secti(h X through 7?7 below consists of filling in these physical details
that are absent from the computer science definitions of computational machines, and then analyzing
the consequences for the entropic costs of physical implementations of those machines. In addition,
Section XV describes some,of the surprising aspects of the relationship between a given discrete
time dynamical system and the set of CTMCs that can implement that system.

First though, in thewrestiof the current section I present some limitations I will impose on how we
are allowedito “filbin.the details” in going from a computer science definition of a computational ma-
chine to a CTMC that implements it. Then in Section VI and Section VIII I illustrate CTMCs that
adhere to these limitations and that implement some very simple information processing systems

(subscomputers, in essence), before moving on to consider full-blown computational machines.
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A. Conventions that are often explicit

The goal in this paper is to focus as much as possible on the entropic costs in a physicalsprocess
that implements a computation that are due to the computation being implemented, rathersthan
due to details of the underlying physical system. Accordingly, as is standard in the literature, I
assume that the Hamiltonian at both the beginning and the end of each iteration of a computational
device is uniform across all states.

In addition, the processes discussed in this paper are all time-inhomogeneous, i.e., the rate
matrices can vary with time. In practice this is typically accompanied by a time-dependency
of the Hamiltonian function of the system, H(z), providing it arbitrary freedom at all times
t € (0,1). (The dependence of the Hamiltonian on time is sometimes referra to as a “protocol” in
the literature.) Physically, that time-dependence will arise if the Hamiltonian actually has the form
H(x,\(t)), where A(t) is a physical variable outside of the System of interest, whose state varies
in time. However, the thermodynamics of the evolution/of A(#) is'not considered in most of the
literature on stochastic thermodynamics. (See [94, 1157116] for some exceptions.)

In the interests of circumscribing the scope of this paper;l adopt this same convention here, and
simply allow the Hamiltonian to depend explicitly on time, without considering the thermodynamics
of external systems that cause the Hamiltonian tondo that. As is also conventional in much of the

literature, from now on I choose units.so that kgd’ =1, except where explicitly stated otherwise.

B. 4 Conventions that are usually implicit

In addition to the explicit conventions described in Section VII A, there are many other conven-
tions that are implicit, and Whic}Nary from paper to paper. In particular, much of the confusion
in the literature concerning thé entropic costs of computers can be traced to researchers using dif-
ferent implicit “accounting, conventions”, for how to measure the entropic costs of an iteration of a
computational device. In general, there is no right or wrong choice for such a convention. However,
it is imperative thatithe convention one adopts be made explicit. Moreover, some conventions are
easier to motivate ghan. others.

First, Lfix some terminology. Computational machines involve connected sub-computers, e.g.,
circuits [involve ¢onnected gates. Define an iteration of such a machine to be the process of it
simultaneouslysuipdating the state of all its sub-computers. So each sub-computer runs the same

logical map in each iteration. Define a run of a machine as the entire sequence of iterations it must



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-110712.R1 Page 44 of 110

44

run in order to complete a computation. The number of iterations in each run is not pre-fixed for
some computational machines (and in fact might not be well-defined for certain inputs), e.g., for
typical FAs or TMs. We cannot choose units of time so that such a machine always finishes its
computation in the same interval, [0,1). So I implicitly choose units so that each iteration of the
machine occurs in a time interval of the form [t,¢+ 1) for t € Zt.

No computer operates in isolation. At a minimum, it must be coupled to an externalssystem
to generate its inputs, and to a (possibly different) external system to rec¢ord or act upon’its

outputs. For simplicity assume that this coupling occurs through an explicitlyndesignated set of

IN our

input variables and output variables of the device, x'*¥ and x , respectivelyn In many real-

world systems there is some overlap between /Y and zOUT (

indeed; they may@ven be identical).
However, for simplicity, in this paper I restrict attention to devices im‘which =/ and z€UT have
zero overlap.

In thermodynamics, it is conventional to focus on complete eycles of physical systems, in which
the system ends in the same state that it started (i.e., to focus omprocesses that ultimately map an
initial distribution over states of the system to an identicalhending distribution). This convention
can greatly clarify the analysis. For example, arguably ther¢tucial breakthrough in the current
understanding of why Maxwell’s demon does not violate,the second law occurred when a full cycle
of the joint gas-demon system was considered, in which the demon’s memory gets reinitialized after
each iteration, before that memory is usedsto record the next observation of the state of the gas [61].

To formalize this convention in the current context, I define a cyclic device as one that has two
properties. First, all of the deviee’s variables — input, output, or internal (in its sub-computers,
if it has any) — are reinitialized by the end of each run of the device, before a next input is read
in and the next run of the devic&begins. Second, the rate matrix for the device is periodic with
period 1, the time it takes for it/to run each iteration. This ensures that if there are sub-computers
in the device, that eacheruns itsdogical update function in every iteration, with the same entropic
cost functions of itsdmitial distribution in each iteration.

In the real world, many computational devices are not cyclic. For example, often variables are
not reinitialized after the'device is used; instead, they get overwritten with new values the next
time the device i§ used. However, not requiring that the devices run a complete cycle complicates
the analysis, which'is (partly) why it is conventional in thermodynamics to analyze the behavior
of systems,that go through a complete cycle, returning to the state that they started from. For
the same reason, from now on I assume that any device being discussed is a cyclic device, unless

explicitly stated otherwise.
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However, simply requiring that the device goes through a complete cycle doesn’t specify what
portion of the entropic costs generated as it completes that cycle are ascribed to the device, and
what portion are instead ascribed to the external systems the device interacts with during that
cycle.

To motivate a convention for how to ascribe those costs, first note that in practiceswe will almost
always want to have an external copy of the ending value of U7, the variable in the déviee that
contains its output, that persists after that variable gets reinitialized. Such & copy of.the ending

our

value of x will then be used by other devices, e.g., as input to a subsegquent,computation, or

as a signal to a controller, or as data to be stored for later use. Importantly, wé can exploit that
external copy of the value of the output variable to reinitialize that output,variable, before the
beginning of the next run of the device.

I use the term answer-reinitialization to refer to such a process that makes a copy of the

ouT ouT

ending state of x in an offboard system and reinitializes @ as it does so. I will ascribe

the entropic costs of answer-reinitialization, if any, to the external system rather than the device

itself.1?

In contrast to the case with outputs, in many real worldiedmputational devices some offboard
system, perhaps even the brain of a human aiser of the computational device, generates new inputs
for the device. Those then need to be “read mto the. input of the device”. This can be done with
zero EF — if /N has been initialized 46"some standard value, with probability 1, every time it gets
a new value.'6 I refer to this as the inputsreinitialization of the device. I ascribe the costs of
input-reinitialization to the deviceitself.

These two conventions, concerning how. we ascribe the costs of reinitializing the inputs and the
outputs, fit together to ensure tha{we do'not get the “wrong” answer for the entropic costs of many

simple computations. For example, sippose we want to run some device multiple times that receives

inputs IID distributeédyaccording 46 some distribution po(2’?) and uses those inputs to produce

xOUT)

outputs that are distributed accérding to some distribution p; ( . To accord with common use

of the term “Landauer’s bound” (e.g., to describe the Landauer cost of bit erasure), it would be
good if the Laddauer costthat we ascribe to running the device is S(po(X™)) — S(p1(X°“)). Now
under our convention concerning the entropic costs of the input-reinitialization, that reinitialization

15Such costé may be zero. For example, under the presumption that such a copy is stored in a variable that was itself
in a well-specified initialized state (e.g., if that copy of the device’s output is stored in the initialized input variable
of a/downstream device), there is zero net Landauer cost in the joint system during answer-reinitialization. See [6]

and the discussion in Section XI below.

161f ¢! Nighin-ifs initialized state with probability 1 whenever a next input is copied into it, the Landauer cost of that

copy. operation is zero. Similarly, since the copy operation is logically invertible, the mismatch cost is zero. Given
the default assumption in this paper that residual entropy costs are zero, this means that EF equals zero, as claimed.

See also [6].
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adds a term S(po(X™)) —0 to the Landauer cost ascribed to the device. In addition to reinitializing
its input though, the device generates the output (after which an external system copies the output
offboard and then performs the answer-reinitialization, at no cost to the device). That computation
results in a contribution 0—S(p; (X°%)) to the Landauer cost (since by hypothesis, withiprobability
1, 29UT was in its initialized state before receiving the results of the computation). Summing these
two contributions gives a total Landauer cost of S(po(X™)) — S(p1(X°%)) to ascribe to the-device,
exactly as desired.

In addition to these two conventions, I ascribe the costs of generating,a mew input for each
successive computation to the external system that does so.!” I refer to this full sét of requirements
for how to ascribe the entropic costs of running a cyclic device a$ the standard accounting

convention.!®

Example 7. Consider iterating a cyclic device K times, but_only answer-reinitializing and input-
reinitializing when all K iterations are complete. As an example, this is what happens in a modern
synchronous computer if you run a “computation” that requires K elock cycles, where you only copy
the state of the RAM to a disk drive at the end of thosen)K eycles, after which you reinitialize the
RAM, ready to receive the input for a next computation.

Summing the Landauer costs of the K iterations, almost all terms cancel, leaving the entropy of
the initial distribution over states minus the entropynof the ending distribution over states. That
difference is exactly what one would expect thesminimal EF to be, if we considered the entire sequence
of K iterations as a single process. So as far.as Landauer cost is concerned, the number of iterations
used to transform the initial distribution into the final distribution is irrelevant; only the overall
transformation between those distributionsunatters.

On the other hand, each iteratien,will contribute a strictly positive residual EP in general, with
no such cancellations. Moreovér, in current real-world systems, the prior distribution over states
of the system will be the .same atthe beginning of each iteration. (For example, that is the case in
modern synchronous computers:) On the other hand, the actual distribution over states will change
from one iteration’to the next. As a result, each iteration will contribute a strictly positive mismatch
cost in general, without cancellation of terms. So in contrast to the case with the Landauer cost, the
number of iterations used to transform the initial distribution into the final distribution will have a
big effect on total EP, if we don’t up date the prior distribution from one iteration to the next.

17Such.chivices mot_to6 include certain costs in the analysis are similar to the common choice in the stochastic ther-
modynamics diterature not to include the thermodynamics of the (usually un-modeled) process that drives the

time-variation of a CTMC, as discussed at the end of Section V A.
'80f course, in some circumstances one might want to use some non-standard accounting. However, for simplicity no

such alternative accounting conventions are considered in this paper.
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However, suppose we do update the prior in each iteration, by propagating it forward one itera-
tion, i.e., by applying the conditional distribution of that iteration to the prior. (See Section IV A.)
In this case, there will be cancellations just like those with Landauer costs. Specifically, the sum of
the mismatch costs over K iterations will just equal the KL divergence between the actualand prior
distributions before the first iteration begins, minus that divergence after the K ’thaiteration ends.
Since cross entropy is the sum of entropy and KL divergence, the same property also holds for cross
entropy, i.e., we get the same cancelling of terms for the total EF, if the residual EP is zero.

As a final comment, typically in current real-world computers there ismmo copy. of the original
input into a device that is maintained until the input-reinitialization| process‘of that device.
Suppose though that a copy of the initial state of z/Y were to persistamntil thednput-reinitialization,
e.g., in some external, “offboard” system. Then the Landauer gost of that input-reinitialization
could be reduced to zero, simply by using that offboard copy of z™¥to change the state of the
input variable of the device (which contains the same value.s!™)back fo its initialized state. (This
point is also emphasized in [101].) As a result, under standard aecounting, the Landauer cost of
the full cycle would be 0 — S(py (XOUT)), i.e., it wouldbe negative. Moreover, if a copy of the input
were to persist, mismatch cost would be zero, whether or not t%e computation were noisy.2’

To properly analyze whether these entropie benefits ofstoring a copy of the input in an offboard
system outweigh the costs of doing so requires us torexpand the scope of our analysis of entropic
costs to include the offboard system.<Thistissdone below in Section XI. For the rest of this paper,
to keep the analysis focused on the costs of running the device without consideration of the costs
of any associated offboard systems;»l do not allow any coupling of the device with the external
universe in a run except during/the initialyprocess reading in the inputs for the run or the ending
process copying offboard theswvaluesiof the output variables of the device (with the entropic costs
of those two processes not ‘ascribed to the device). In addition, I require that the ending value of

19A simple practical reason for this is that many real-world computational machines comprise a huge number of
computational devices (eig:yreal-world circuits comprise millions of gates), and the memory requirements for storing
copies of all the inputs to all those devices would be exorbitant. Moreover, if we were to rerun the computational
machine, then eitherswe would have to erase all those copies of the original inputs to make room for the new inputs

— at high entropic cost, in_general — or use yet more storage for the new inputs. However, see Section XI below.

20To see this, use the chain/rule for KL divergence twice to expand the mismatch cost for the case where the input

persists ag
B (O X [ o (X7, X7 = D (XX (X7 [ 70 (77|
= [0 1 X | (X x)] + D [polx ) | antx)
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zOUT of any device implementing some computational machine only contains the output specified

in the computer science definition of the machine, as in Section IV.

C. Accumulating entropic costs until an event occurs

How should we measure the entropic costs incurred by a computational mmachine during & run
that takes more than a single iteration? If the number of iterations that the maghine runsiis a
constant, never varying from run to run, there is no difficulty due to having multiple iterations per
run. An example of such a fixed-duration (or “fixed length”) machine i§ a circuit of depth K. In
each iteration 1 < m < K the states of the gates in level m of the circuit are used to set the states
of the gates in level m + 1, and so the total number of iterations the circ;it runs is K — 1. To
calculate the entropic costs of a run of the circuit for some initial distribution over input nodes py,
we just add up the entropic costs accrued by running all K4=.1 iterations of the circuit, starting
from that distribution pg. (See Section X.)

However, the situation is more complicated if the number of iterations is a random variable, e.g.,
as occurs with most FAs or TMs whose input is gefierated by @ random process. This complexity
can be illustrated with some recent papers in the stochastic'dynamics literature which analyze the
entropic costs incurred by running a system untiba first passage time occurs. (N.b., the systems
analyzed in these papers need not be computational machines.) As an example, [117] analyzes the
probability density function as a function of time ¢ for the event, {the total EP generated by a given
CTMC first reaches some pre-specified value €t t}. As another, related example, [118] derives
formulas concerning the probability density function of the event, {the first time ¢ after a process

starts that a net current reaches a given threshold value}. These formulasinvolve the total amount

N
of EP incurred up to t.2!

A scientist experimentally testing the predictions made in these papers would need to observe
the system continually, torsce exactly when the event of interest occurs.?? Such observation by
an external system (namely the scientist) incurs entropic costs in general. Arguably, to do the
thermodynamic-analysis properly, one should incorporate those costs incurred by observing the
system. (Cf.; thefimpértanee in analyzing Maxwell’s demon of including the thermodynamics of
its obserying the systém it wants to extract work from.) Indeed, because the total time the system

2n [118], this is referred to as “time fluctuations in a fixed-current ensemble”.

22In facty ih many sCenarios the scientist is continually observing many other attributes of the system, in addition
to the bit of whether the event of interest has occurred. For example, in [118], the total level of net current due
to tramsitions that has occurred up to ¢t must be observed, and continually updated, just to determine that bit of

whether the event of interest has occurred.
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runs is variable, arguably one should also incorporate the entropic costs that are incurred after the
event occurs, unless built in a process that will “turn off” the system and observation apparatus
when the event occurs, so that they no longer generate entropic costs.

If we do not model the entropic costs of the external system observing when the eventiof interest
occurs, and / or do not incorporate entropic costs incurred by the system after that event oceurs,
we can come to misleading conclusions. This is illustrated in the following example, invelving a
machine that implements bit erasure, but takes either one or two iterations to do so, with the

number of iterations determined randomly.

Example 8. Suppose our system has three states, {a,b,c}. It starts at.t = 0 with P(a) = P(b) =
1/2. The “end of the computation” is signaled by having the state lequal either c. Without loss of
generality we assume that c is a fived point of the dynamics at oll times.

Suppose that during the first iteration, between t = 0 andit. = 1, the state a — a and the state
b — c¢. During the second iteration, ending at t = 2, both arand exget mapped to c. So the full,
two-iteration process implements a two-to-one map, sending both a and b to c. This is the sense in
which the map implements bit erasure. N

The probability that the computation ends after the first iteration is 1/2. The total drop in
entropy that a scientist observing the system would record by then is In[2] —In[2] = 0, since the state
of the system is equally uncertain att = 0 and t = 1."Under standard accounting, this would be the
Landauer cost if the computation ended at t ="1.

The probability that the computation insteadrends after the second iteration is also 1/2. However,
the total entropy drop if the computation ends then is just the normal bit-erasure Landauer cost,
In[2]. So if we were to stop accumulating drops in entropy when the computation ends, then the
expected Landauer cost would be ?T/Q) 20 + (1/2)In[2] = (In[2])/2. This is half the Landauer cost
for bit erasure in a single iteration, /the value given by “Landauer’s bound”. On the other hand, if
we calculated the totalddrop.in entropy during the full interval fromt = 0 to t = 2, ignoring whether
the computation hds endedrearly, under we would again get a value that equals the Landauer bound
for bit erasure, 1n[2].

So it might seem that we can avoid Landauer’s bound, cutting the drop in entropy by half, on

average, sorlong as we introduced stochasticity in when exactly the bit operation completes.

These issues arise when interpreting some of the early work on the thermodynamics of Turing
machines, iy which entropic costs are only accumulated up to the time that the TM halts, and no

consideration is given to the entropic costs of an external observation apparatus watching to see
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exactly when the TM halts. (See the discussion in Section XIV.)

In the next section I review earlier work that (implicitly) used standard accounting to analyze
the entropic costs of any device that in one iteration implements an arbitrary transformation of the
entire input variable, without any constraints on how it implements that transformatiensThen,in
the rest of this paper I consider full computational machines, all of which run for multiple iterations,
and have constraints of one type or another on how they process their inputs, and thereforethave a
more complicated relationship between the computation they perform and the entropic costs they
incur as they do so. Except in Section XI and (to a degree) in Section XIV.Bin those sections I
restrict attention to the entropic costs of cyclic devices, under standard accounting.

~
VIII. ENTROPY DYNAMICS OF UNCONSTRAINED DEVICES

Extending the definition of an AO circuit, define an all attence (AO) device that implements
7 in some fixed time interval such that for some initial distribution pg, the EF generated by
running the device on pg is S(pg) — S(7mpp). As illustrated below, much of the richness in the
thermodynamics of computation arises when we consider nonsAO devices. However, to illustrate
the concepts introduced above, in this section I begin by reviewing the thermodynamics of AO
cyclic devices under standard accounting.

Eq. (30) gives the theoretical minimal EF that could be produced by any process that applies
a conditional distribution m(x1|zp), relating the state of the system at time 1 to its earlier state
at time 0, to an initial distribution pg. However, that equation doesn’t say whether the bound it
provides can be achieved, and if s6"how:

For a process to achieve that beund means that it is thermodynamically reversible for the initial
distribution pg. A large body of literature has developed showing that for certain maps 7, if we are
given any pg, it is possible to‘construct an associated “quasi-static” process that both implements
7 and is arbitrarily close to, thermodynamic reversibility if run on pg |6, 95, 119]. Many of these
papers were motivated by considering bit erasure, the venerated model of information processing
reviewed in Section VI. Hewever, bit erasure has the quixotic property that the distribution over
outputs x; is independent of the precise input xg € X. Reflecting this, even when they considered
other 7m’s¢besides bitferasure, these papers were implicitly restricted to maps 7(z|xg) where the
distribution overjoutputs is independent of the precise input xg.

This means the analyses in these papers do not directly apply to the most common maps

performed by gates in real computers, in which the output distribution is dependent on the initial
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state, e.g., the logical AND map, the bit flip, etc. (See [103| for an early discussion touching on
this limitation.) Indeed, in quasi-static processes in which the system is in equilibrium with the
heat bath at all times, all information about the initial state is lost by the end of the process, being
transferred to the heat bath. (This can be shown explicitly using stochastic thermodymnamics; seé
Section XV.) Hence, no such process over X can implement a map 7 in which the output distribution
depends on the input state.

However, given any 7 and pg, it is now known how to construct a cyclic device thatyimplements
7, and whose EF equals the Landauer cost in the special case where the prior ofithe device equals
po — if one uses a process defined over a space that is strictly larger than X [62,87, 102-106, 120].
The key idea is to expand the space of the system beyond the original space. X, used to define
and pg, into a “partially hidden” space X x X', where a specific staté in X’ (here written as L)
is identified as the “initialized state” of X’. The analyses in those papers show how to design an
associated “partially hidden” cyclic device, with a rate matrix ¥ operating over X x X', such that
any initial value (zg, L) € X x X’ gets mapped to an ending distzibution (7d(z,.), L). So one can
read off the dynamics of the “visible” device 7 evolving over X from the dynamics of the “visible
states”, X of the device # evolving over X x X'. 4

The prior of this device operating over X%x X is‘assumed to be of the form (qo(z),d(z’, L1)).
It is shown in [62, 105, 106] that if gy = po, then this hidden device implements the map over =
over X and incurs zero EP, achieving thesLandauer bound for applying 7 to pg. In addition, it is
explicitly shown there that if gy # pg, themithe resultant mismatch cost of the hidden device over
X x X' is exactly the drop in KL divergence for the original device implementing the distribution
m, given by evaluating Eq. (37) for theinitial distribution pg(z) over the visible space X, the prior
qo(z) over X, and the conditional distribution .

In more detail, as it is formulateddn [105, 106, 121], this partially hidden device works as follows.
First, the device storesia copy of@p in X'. So |X'|=|X]|. (As described in [6], since a X' starts in
its initialized state with,probability 1, this copy operation is logically reversible, and so has both
zero Landauer cost and zero mismatch cost.) Then, without changing the value of this copy, that
copy is used to guide a quasi-static process that evolves the distribution pg over the visible states,
to implement 7./ After this'is done the value 2’ € X is reinitialized to 0. This reinitialization is
guided by the ending value z1, and is based on the prior go(z), which must govern the value of the
copy of rgstored at this point in X’; it is this reinitialization step that results in the mismatch cost.

After all this is done, as required by standard accounting, a copy of x1 is copied to an offboard
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system, and X is reinitialized, in preparation for the next input. 23

In addition, in many real-world physical systems, we do not know the actual distribution pg of
the initial states of a system, i.e., we do not know the distribution of the “inputs” to ‘the device.
At best, we might have a distribution over such distributions, P(pp). For example, in areal-world
digital computer, a given user implicitly specifies some distribution pg of inputs tosthe computer.
However a different user would have some different distribution pf, over inputssto the computer.
In this case P is the probability distribution over which user is using the computer.nAs another
example, a cell operating in some particular environment will be subject to,a distribution py over
physical characteristics of that environment, e.g., over macromolecules it may be detecting in that
environment. In this case a given environment specifies a distribution po, andyPs the distribution
over environments. [62] analyzes the implications of such distributions over imitial distributions py
for the entropic costs of the device, showing that the Landauer cost inereases by a Jensen-Shannon
divergence between P(pg) and the associated distributions pg. (This Jensen-Shannon divergence is
called “entropic variance” in [62].) Finally, [62, 105, 106] also shews how to extend them to the case
where the set of visible states X is a coarse-graining over some some underlying space.

This early analysis showing how to use an extra, hiddenispace X’ to implement an arbitrary
conditional distribution 7 raises many interesting research questions. Since hidden state spaces
can be expensive to build into physical devices,in the real world, this raises the question of what
the fundamental limits on the minimalwX’ is, insorder to implement a desired 7. Some results
concerning this question and related ones are,summarized in Section XV. In particular, it turns out
that augmenting the space X withradditional hidden states is necessary to implement nontrivial 7,
even without introducing considerations of.thermodynamical reversibility. Surprisingly, as discussed

in Section XV, it is impossible for\any CTMC to implement any non-trivial map 7.

IX. EFFECTS ON ENTROPIC COST OF CONSTRAINING THE RATE MATRIX

All modern physical systems that implement computational machines use sub-computers that
can only access-apsubset of the variables in the overall machine. This means that there are con-
straints on how the overall machine can operate. These constraints are a major distinction between
computational machines and the systems analyzed in Section VI and Section VIII. In this section
I review some recent results relating the precise constraint on what variables a given sub-computer

inside a computational machine is allowed to access, and the consequences of that constraint for

ZThis type of construction using a hidden space X’ was rediscovered in [122] and App. A of [114].
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the entropic costs of running the machine.

As notational shorthand, I assume that any conditional distribution governing the dynamics
of a device operating within an overall computational machine that is written in the form 7(y|x)
is implemented with a CTMC and Hamiltonian that do not involve any of the variables in the
overall computational machine other than x and y. As an example, suppose we have an overall
system (computational machine) with three subsystems (devices), A, B, Z, having states @yy‘and z,
respectively. Suppose that the device B gets its input = from the output of device A and uses that
to compute its output y during some specific iteration n of the overall system., Suppose further that
to reflect engineering constraints in how we can build the device, we want to make sure that we do
not model the system with a CTMC and Hamiltonian that ever couple thestate of B’s variables
to any external variables besides the state of A. Then I write the update distribution for device B
as m(y|x). On the other hand, suppose that B implements the samelogical function taking = — y,
but that the Hamiltonian governing the system during iteration m,is allowed to couple the variables
in B to the values of some external variable z in the overall system that does not lie in A.2* In this
case I write the conditional distribution governing B’s.computation as 7(y|z, z), even though the
distribution over values y is independent of the pre¢ise yalue ofz. The advantage of this shorthand
it that is allows us to use the form of the apdate distribution 7 to specify constraints on which
physical variables are allowed to be directly physically coupled to which other ones, e.g., through
an interaction Hamiltonian.

Under this notation, any physical systempimplementing 7(y|x) is subject to extra constraints on
what rate matrix CTMC it can be implemented with, compared to a physical system implementing
m(y|z, z). However, typically a physical process obeying such constraints on the rate matrix CTMC
and Hamiltonian cannot achievesthe ER of Eq. (30) (which presumes a constraint-free system).

This will result in unavoidable EP.

A. Subsystem processes

To make thesesgeneral considerations more precise, I now introduce a type of process which will

play a central rolg in the rest of this paper:

Definition 7. Suppose that the rate matriz of a CTMC defined over X = X o4 x Xp can be expressed

24 As discussed below, such coupling would often allow the entropic costs of running B to be reduced, even if the
evolution of y is'independent of z. Loosely speaking, this is the case if the initial value y is statistically coupled with
the'value z. In such a case, the physical process that updates the state y can be more thermodynamically efficient

if it can exploit the information about y that is contained in z.
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as a sum over mechanisms v of associated rate matrices, each of which is of the form

W (1) = W2, (DS 0) + WY, 6(d’ )

ppees / .
TAZBT AT TAT 5

for appropriate rate matrices W;A;x,A (1), W;’B;xb (t). Then the CTMC is a subsystem process over:

XAXXB.

(See [69] for a more general definition, applicable even if we do not assume that ¢he system evolves
according to a CTMC.) As an example, a physical system can evolve as a subsystem process if the
reservoirs it is attached to are infinitely large (so that A and B cannot gouple indirectly through
the reservoirs), and if at all times ¢ € [0, 1] the energy function decouples subsystems A and B; i.e.,

the Hamiltonian obeys ~
_ A B
Hi(za,2p) = Hi (z4) + H; ()

for all t € [0, 1].

All the computational machines considered in this paper operate with synchronous rather than
asynchronous updating, in which each device inside<am,overall computational machine runs in a
“modular” fashion, not reacting to interrupts from outside of ftself while it runs. Physically, this
means that once the variables in any such device are setito‘their initial values, the device is run by
a process in which those variables evolve independently of the rest of the variables in the overall
computational machine. So it is run by a'subsystem process. As an example, any process that runs
a gate in a circuit is a subsystem process.

The following result in proven imApp. B:

Proposition 2. For any subsystem process over a state space X 4 X Xp,
N

1. Subsystems A and Blevolve independently over that interval, i.e., the conditional distribution

of the state evolution is of thé form

W(ah bl\am bo) = WA(GHGO)WB((H’I’O)

2. The EE of the joint system during the process can be written as

Q(py") = Qalpy) + Qr(pf)

wheréQ a(pa) is the EF that would be incurred for a CTMC over state space X o with rate

matrices W7 ., (t) (i.e., if subsystem B did not exist at all), and similarly for Qp(pp).

7IA
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In light of Proposition 2(2), I sometimes refer to Q4(p§') as the subsystem EF of subsystem A,
and similarly for Qp(pF). I also sometimes refer to Q(pOA’B) as the system-wide EF.

Note that by the Second Law of Thermodynamics [86], Q4 (pd') > S(pd') —S(pf!), whetelequality
arises for appropriate (typically quasi-static) rate matrices W;’A;I;\ (t). (Similar considerations held
for Qp(pf).) Accordingly, I refer to S(pg)—S(pf) as the subsystem Landauer cost of subsystem
A, and and write it as £(p{', 7), or just £(pg') for short. (Again, similar considerationgshéld for
S(pg) — S(t).)

Along the same lines, I write the minimal EF of any process that implementsir (a1, b1|ag, by) as
A A A
L(py " m ) = S(py") — S(mpy™) (45)

I refer to this as the system-wide Landauer cost, or sometimes as the AB Landauer cost, since
it’s the Landauer cost of an AO device that implements .

While the EF of a full system undergoing a subsystem process is additive over the EFs of its
subsystems, in general the Landauer cost of the full system undergoing a subsystem process is
not additive over the Landauer costs of its subsystems.  More precisely, in general the sum of the
subsystem Landauer costs, S(pg') — S(pf') + S(pg') £ S(pi')s differs from the system-wide Landauer
cost, S (1064 By s (pf’B). This reflects the fact that the system-wide Landauer cost is the minimal

B using any process, without imposing the constraint that the process must

EF of implementing 74
be a subsystem process.

I will refer to the difference E(pg"B,WAB) —L(pg, ™) — L(pF,7P) as the Landauer loss of
the subsystem process. It equalsithe change Imimutual information between subsystems A and B

during the process:
Lpg, n YRl 77) — Lpg" 7P
= S) £50F) - Swy")
— |S(x*p) + S(xPpf) — S EpP)
= I,a5(A; B) — Iya5(A; B) (46)

A simple example of Landauer loss was presented in Example 6. Loosely speaking, the concept
of Landauer loss'is extended to involve more than two random variables in Section X, in order to
analyze the entropic costs of circuits. In particular, when there are more than two random variables,
the mutuabinformation terms in Eq. (46) get replaced multi-information terms.

Now that\we have the appropriate definitions for distinguishing the EFs and Landauer costs of

the subsystems and the entire system, we can do the same for their EPs. Define the system-wide
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EP of a subsystem process, a(pgl’B), as the difference between the system-wide EF of that process
and the system-wide Landauer cost of the process. Then by combining the additivity of EF, the
nonadditivity of Landauer cost, and Eq. (36), we see that the system-wide EP of a subsystem
process is not additive over the EPs of its subsystems. To make this more precisejidefine the

subsystem EP of subsystem A as
aa(p?) = Q") — L, 7 (47)

where for simplicity I have dropped the subscript on p* that indicates it issan initial distribution.

(I make analogous definitions for subsystem B. ) Since Q(pA) is linear in p?, &e can apply the

decomposition of EP in Section V B to subsystem processes and write =
aalp®) =Y _p(e)
ceL(m4)
x (D@ la™(€) = D () |p (Mt (0)) (48)

where in analogy to the development in Section V, the subsystem prior ¢4 is any distribution
L
¢?(c) € argmin g 4(r)
reAc

Again following the development in Section V)it can be useful to re-express o4 (pA) as the sum of

two terms. The first is the subsystemmmismatch cost,
Ealp™) = D(plga) — D(xp? |7 q.)

(where ga(za) = >, qa(c)¢®(x4) and agybefore the choice of the probabilities ga(c) is arbitrary).
The second is the subsystem regidual EP,
> o™ (o) (49)
ceL(mA)
(I make an analogous décomposition for subsystem B.) Note that by Eq. (47), c4(p?) > 0 for all
p?. In particular{this must be true if p?(c) = ¢*(c) for all ¢ € L(n*). Plugging that into Eq. (48),
we see that subsystem residual EP is non-negative.

Finally, expand
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+oalp™) + L, 7 + o5(07) + L(pP, 77) (50)

where I have used Eq. (47). Eq. (50) formalizes the statement above, that system-wide,EP is not

additive over its subsystems. Eq. (50) also can be used to establish the following:
Corollary 3. Given any subsystem process that implements © on initial distribution p™®,
1. The minimal system-wide EP equals the Landauer loss.
2. The minimal system-wide EP equals the system-wide mismatch cost:

3. If the process achieves the minimal EP and the priors of the tworsubsystems are unique, then

~
B

A=pt, ¢% =pB

those priors are the marginals of p™B, i.e., q

Proof. Fix the initial distribution p and the conditional distribution ars, Eq. (50) tells us that the
minimal EP generated by any system that applies 7 to p_while uising/a subsystem process occurs
when the two subsystem EPs achieve their minimal values, i.e., When o4(p?) = o5(p?) = 0. (For
example, this could arise if the subsystems evolve quasisstatically [123].) So the minimal system-
wide EP is L(p?, 74) + L(p®,78) — L(p, 7). This establishes ﬁle first claim.

Next, the system achieves the minimal' EP,iff the two subsystem EPs equal zero. In turn,
they equal zero iff the subsystem residual EPs of both subsystems equals 0. This means that the
residual EP of the entire system is zero. Thatyin turn implies that the system-wide EP must equal
system-wide mismatch cost, establishing the second claim.

Finally, again note that in order to achieve the minimal system-wide EP for initial distribution
p™B . the subsystem EPs must both be zéro. This means that their mismatch costs must both be
zero when the full system isaan enndisttibution pA5. Therefore a prior for subsystem A is given

by p?, and similarly for subsystem B. O

B. Solitary processes

An important special-type of subsystem process is one in which nys;xﬁg (t) =0for all v, zp, 2y #
zp and t € [0,1].4Any such subsystem process is called a solitary process over A. I will sometimes
refer to ghe value @4(0) in a solitary process as the input to that process, with z4(1) being its
output. By Proposition 2, in a solitary process Qp(pF) equals the EF that arise by evolving a
system overanX p with rate matrices W;B;mb (t). So in a solitary process over subsystem A, Qp(pF)

equalsizerofidentically, and therefore the EF of a solitary process equals the EF of subsystem A.
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Similarly, since the state of subsystem B cannot change in the subsystem process, its subsystem
Landauer cost is zero, and therefore its subsystem EP is zero.

It is often easier to analyze sequences of solitary processes than sequences of subsystem processes.
Moreover, computational machines that are conventionally defined with some of their devices run4
ning in parallel can almost always be redefined to have those devices run serially; according to
some convenient topological order that respects the original definition of the machine. We ean then
model the running of that machine as a sequence of solitary processes.? This allows uis. to analyze
the entropic costs of running the full system by decomposing it into a sum.ef

Note though there are devices in real-world computational machines that aré not governed by
solitary processes. For example, suppose that the gates in a circuit other_than some gate g use
dynamic (“active”) memory to maintain their values while g runs. Then the states of those gates
are in a nonequilibrium steady state (NESS) while g runs, i.e., the terms in the rate matrix that
govern their dynamics are not all zero. (Intuitively, the entropy flow in such an NESS — the work
done on the system — is needed to maintain the NESS (against the equilibrating thermodynamic
force arising from coupling with the heat bath(s).) In-this ease g is run with a subsystem process
that is not a solitary process. In the interests of spacef suchirsituations are not considered in this
paper, or equivalently, it is assumed that therentropic costs generated by maintaining NESSs are
arbitrarily small on the scale of the entropic cests of running the sub-computers that change the
distributions over the states of some yariables. (See Section XVI).

Suppose we have a solitary process over asubsystem A in which A is initially statistically coupled
with some other subsystem B, andisthat the subsystem EP of A is zero. Suppose that that initial
coupling between A and B is reduced the,process unfolds. Then by Eq. (50), the system-wide EP,
and therefore the Landauer loss; are nonzero, even though the two subsystem EPs equal zero.

It might seem paradoxical that the Landauer loss in a solitary process can be nonzero. After all,
both the system-wide Bandauerreost and the subsystem Landauer cost involve processes over the
same state space (namely, X3 x/Xp), and implement the same conditional distribution 7 over that
space. How can two processes, over the same space, implementing the same conditional distribution,
have different /minimal EFES; especially if one of the subsystems doesn’t even change its state under
that conditional distribution?

The reason for the difference in minimal EFs is that system-wide Landauer cost is the minimal

25As an_example, suppose the computational machine is a circuit, with the gates being the subsystems in question.
The associated topological order is specified by the circuit’s DAG, and running the gates serially according to that
order ensures/that the circuit implements the same input-output map as does sequentially running various subsets

of the gates in parallel, as specified in the original DAG.
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EF of any rate matrix that implements , but the subsystem Landauer cost is the minimal EF
of any rate matrix that implements 7w while also satisfying the extra constraints defining a solitary
process. Due to those constraints, while the first kind of rate matrix is allowed to exploit the values
of xp as well as 4 to drive the dynamics of x 4, the second kind is not allowed to dosthat. Mere
precisely, in the process whose EF equals the system-wide Landauer cost, for all meghanisms v, and

all t € [0, 1],

W2 i, (0= K2 o (D(@, ) (51)

for some functions K? _, (t) that vary with changes to z5. This is nota solitary process (indeed,
AT p T
it violates the definition of subsystem processes). Yet it clearly leavés g unchanged. Moreover,
~
for any given initial distribution po(xa,xp), we can design the functions K;’Am% () so that the
) ' B
CTMC not only implements 7, but also varies how the distributiom,atseach x4 value evolves in
intermediate times ¢ € (0, 1), based on the associated xp value, in such a way that zero system-wide
EP is generated for the given initial distribution pg(z4,&p). It.is this second capability that we
exploit to reduce the EF below the value that can be achieved with a solitary process.

This is illustrated in the following example. &

Example 9. Consider a solitary process where. X = XuaeX Xp and both X4 and Xp are binary.

Suppose that under that solitary process x 4o undergoes,bit erasure. So

r(@h, o ey 2 V=l [2%)0 (2, %)
= 52y, 0)3(h, 2) (52)

no matter what p(l’%,l‘%) is. [Suppose as. well that initially, x4 = xp with probability 1, i.e.,

the two variables are initially perfectly correlated. So the Landauer loss, i.e., the drop in mutual
information, i.e., the minimal system-wide EP, is In[2].

We can derive this walue forthe Landauer loss in more detail as follows. First recall that EF
is additive under a Solitary process. Since xp does not change, this means that the minimal EF of
any solitary procéss.that implements 7 is the same as the minimal EF of a process that implements
the conditiongl distribution p(z'y|z%) on the initial distribution p(z{'). This is In[2]. On the other
hand, the entropy over the joint space is In[2] both under the initial distribution and under the final
distribution. So the minimal EF of a dynamics over the joint space is 0. Subtracting gives the value
of thesbandauerdoss: n[2].

To illustrate how m can be implemented with zero EF, suppose that the system were connected to

a singlexheat bath at a constant temperature, and obeyed LDB. Suppose as well that the Hamiltonian
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over X 4 X Xp evolved according to the kind of “quench then quasi-statically evolve” process described
in [6, 95, 119]. That means that when the process begins, the Hamiltonian is instantaneously changed

to

Ho(za,25) = —In[p(x4(0), 25(0))]

x —In[§(z4(0),25(0)]

w2l i 2a(0) = 25(0) (53)

00 otherwise.
This quench happens so fast that the distribution over the states doesn’t have time to change. So
the system automatically starts at thermal equilibrium. o

After this starting quench, the Hamiltonian quasi-statically evolvesito (be arbitrarily close to)
Hy(za,2p) = —In[p(za(1), zp(1))]
x —In[d(za(1)50)]

_JmPR Faa(1) =0 -

o0 otherwiSe.

while keeping an infinite energy barrier between (x4 =0,2p = 0) and (x4 = 0,25 = 1), and an
infinite energy barrier between (x4 = l,xp =0) and (x4 = 1,25 = 1). (In other words, keeping
the rate matriz entries zero for all tramsitions that would change xp.) This evolution implements
the desired map w. Moreover, because the ewvolution is quasti-static, the system s always at thermal
equilibrium, i.e., there is zero EP.26,27

While Hy(x A, xp) is uniformin this process, Hi(xa,xp) is not. Moreover, since the transfor-
mation from Hy into Hy is done@asi—statically, the evolution of the Hamiltonian is a continuous
map (i.e., a homotopy). This mmeans that for any rate matriz that obeys LDB for this changing
Hamiltonian, there must be somet/€ (0,1) at which the value of K, .. o (t) for a'y = x'p differs
from its value for x'gsha'sin(Recall Eq. (42).) In contrast, the rate matriz of a solitary process
cannot ever depend. on whether 'y = 5. So a solitary process cannot be implemented with this
kind of zero EP quench=then-quasi-statically-evolve process.

26Note that if the initial distribution were not uniform, then this particular quench step would not result in the system
starting at thermal equilibrium, which would cause EP to be generated as the system quasi-statically evolves. This
illustrates the fact that any process can be thermodynamically reversible for at most one specific initial distribution,

in general, due to'mismatch cost. See Section V B.
2"Note that thé same results would hold if the dynamics uniformly randomized Xp rather than preserved its value

exactly.
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[69] also considers the case where we have an overall system M together with an associated set
{A, A’,...} of (potentially overlapping) subsystems of M. It is formally proven there that if we
run a sequence of consecutive solitary processes for those subsystems, one after the otherythen the
system-wide Landauer cost and system-wide EP of the entire sequence are both additive over their
values for running the separate solitary processes over the subsystems A, A’, ..., inorder.

In light of this, define the machine (subsystem) EF (resp., machine Landauer cost, machine
EP, machine mismatch cost, machine residual EP) as the sum of the subsystem EFs (resp., subsys-
tem Landauer costs, subsystem EPs, subsystem mismatch costs, subsystemesidual EPs) incurred
by successively running each of the subsystems, A, A’,.... Define the (mnachine) Landauer loss
as the difference between the system-wide Landauer cost and the machine Landauer cost. Since
system-wide Landauer cost is additive, machine Landauer loss equals the sum of the Landauer
losses of each of the subsystems. It is shown in [69] that machine Landauer loss is the minimal EP

of running the machine M, as one would expect.

C. Related literature
. 4

[114] contains some results that are closely related to the analysis of solitary processes in this
paper and in [69]. In particular, [114| argues that the drop in mutual information between two
independent subsystems of a composite system isithe minimal EP of that composite system during
any interval in which one of those subsystems does not change state. That argument assumes that
the subsystem is coupled to a sifigle heat bath and obeys LDB. It then uses general considerations
of nonequilibrium statistical physie tonmake the case that “... {such a} subsystem matches the
framework for an open driven system described in [15], and so the entropy production {is lower-
bounded by the Landauer loss}”.z}

The analysis provided here (and in more detail in [69]) go beyond the scenarios considered
in [114], in that it appies when there are multiple baths, and even when LDB does not hold. So
it applies if in addition te a thermal reservoir, there are one or more chemical species reservoirs,
as for example issoften the'case inside biological cells. Furthermore, the analysis here and in [69]
considers mismateh cost and residual EP, in addition to Landauer cost. These considerations are
crucial, for'exampleyin analyzing the entropic costs of digital circuits (see Section X.)

On the other hand, [114] extends the analysis to information ratchets, viewing them as a se-

quence of solitary processes, one for each new symbol on an input tape that the information ratchet

28 [114] uises_the term “modularity dissipation” to mean what is called “Landauer loss” here and in [69].
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processes. (See Section XIITA.) Moreover, the related discussion in [12] emphasizes that subsys-
tem processes are ubiquitous in nature. In particular, they occur throughout biological systems.
Accordingly, biological systems have nonzero Landauer losses in general, which fact alone/prevents
them from achieving the generalized Landauer bound.

[63] also contains work related to subsystem processes. Like [114], the analysis an [63] assumes
a single heat bath, and LDB. However, the analysis in [63] is simpler than both,the analysis here
and the corresponding analysis in [114]. That is because rather than consider the implications on
a composite system’s minimal EP of a constraint on how that system is allowedsto operate (as in
Def. 7), the analysis in [63] makes an assumption about the relationship between the prior of the
physical process underlying the composite system and the actual initdal distribution of the states of
the composite system. This allows [63] to directly exploit the decomp@sition of EP into mismatch
cost and residual entropy in order to express the minimal EP as thexdrop in mutual information

between the two subsystems.

X. ENTROPY DYNAMICS OF STRAIGHT-LINE CIRCUITS
L

Suppose we fix some map 7 from a finitesspace of inputs to a finite space of outputs along with
an associated distribution over inputs. In generaljthe exact same gate ¢g run at different parts of
any circuit implementing 7 will have different distributions over its inputs, X ;]’N . As a result, the
same gate implemented with a solitary process that is run at different parts of the circuit will incur
different Landauer cost. This suggests that some of the circuits that implement 7 have greater
(circuit) Landauer cost than theséthers, i.e., that some have greater Landauer loss than others.
This in turn implies that some of.those ¢ircuits have more EF than others. How precisely do the
entropic costs of a circuit depend\on the distribution over its inputs and on its wiring diagram,
(V,E,F,X)?

To investigate this question, ,Section X A begins by introducing a broadly applicable model of
the variables in straight-line circuits and how they evolve as the circuit is run. Special care is taken
so that all of thesdetails necessary to calculating entropic costs are made explicit. Section X B then
introduces some extra§ less'broadly applicable modeling choices that simplify the analysis. Next,
Section X{C presents'some of the simpler results that have been derived concerning the entropic
costs of 'gystems that are governed by this model. These results involve multi-divergence and cross

multi-information, which as mentioned in Section III appear to be novel to the literature. This

section ends with a high-level review of an analysis of a particular, fully specified real-world circuit.
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It is worth noting that a high level discussion of some of the issues discussed in this section can be
found in a prescient and insightful paper, written before the modern machinery of nonequilibrium

statistical physics was developed [124].

A. How to model straight-line circuits

Each gate g in a circuit is modeled as a pair of random variables, with ghe associated state
space written as X, = X gIN x X gOUT. The conditional distribution relating the ending state of
X ;3 UT to the initial state of X ;N is the distribution given by the circuit/Specification (in the sense
of Section IV B), which I write as wg(ngT\:néN ). For simplicity, I restriet attention to Boolean
formula circuits, so that all gates have outdegree 1 (see Section IV B). Accadingly, wolog we can
assume that the gates run sequentially, in some convenient topological order respecting the circuit’s
wiring diagram. This in turn means that we can model running each gate g as a solitary process
that updates the joint variable X, while leaving all other gariables in‘the circuit unchanged. (X, is
“X 4”7 in the notation of Section IX.) For analyzing the‘entropic costs of running such sequences of
solitary processes in straight-line circuits, I will use the terms eipcuit EF, circuit Landauer cost,
circuit Landauer loss, etc., to mean “machine EF”, “machine Landauer cost”, “machine Landauer
loss”, etc. (See Section IX B.)

I assume that we can model the solitary process updating any X, as running a cyclic AO device
over the state space X,, where we identifysthe initial state of X ;N when g starts to run as the input
of that AO device, and the endinig state of XgOUT when ¢ finishes its run as the output of that AO
device (see Section VIII). Moreover, for. simplicity I assume that standard accounting applies not
just to the entire circuit, but alse to any single gate (Section VII). So the initial value of X;)UT
when g starts to run is some spec?ﬂ initialized state (which I write as 0), and similarly the ending
state of X gIN when g finishesis also/some special initialized state (which I also write as 0).2

As briefly mentioned imSection V A, in real-world computers, a large fraction of the total EF
occurs in the interconnectsi(“wires”) between the gates. To allow the analysis to include such EF
in the wires, it will be useful to model wires themselves as gates, i.e., nodes in a Bayes net. This
means that the DAG (I, E).I will use to represent any particular physical circuit when calculating
entropic ¢osts is defied in terms of the DAG (V’, E’) of the associated wiring diagram, but differs
from that DAG.

29Thi$ modeling assumption is violated by many real-world circuits, in which there is no reinitialization of the variables
in a gate after it runs. In such circuits the entropic costs in a run arise when the “relic” states of variables, set during
the preceding run of the circuit, get over-written. In general, to analyze the entropic costs of such circuits requires

analyzing sequences of multiple runs rather than just a single run, which is why it is not pursued here.
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To make this formal, define a wire gate as any gate in a circuit that has a single parent
and implements the identity map. (So any wire gate w has 7y (Tw|Tpa(w)) = 6(Tw, Tpa(w)); see
Section IV B.) Suppose we are given a computational circuit whose DAG is (V/, E’). “Fhe DAG
that represents the associated physical circuit is constructed from (V', E’), in an iterativesprocess:
To begin, set (V, E) to be a copy of (V’, E"). So there is a map 7(.) between all nodes and edges in
the computational circuit’s DAG and their corresponding members of the physical circuit’s“initial
DAG, which is initially a bijection. We grow this initial DAG (V, E) by iterating the following

procedure over all edges in E':

1. For each edge e € E’ not yet considered, insert a new node v in theaniddle of the corresponding

~

edge in E, e = n(e).

2. Replace that single edge e with a pair of edges, one leading intoww from the head node of the

edge e, and one leading from v to the tail node of e.

Physically, each such new node introduced into (V, E') inthis procedure represents a wire gate, one
such wire gate for each edge in E’. 3
By the end of this iterative procedure, when we have fully constructed (V, E), the edges in F

don’t correspond to physical wires (unlike the edges in E’). Rather they indicate physical identity:

ouT

an edge e € E going out from a non-wire gate g nto a wire gate w is simply an indication that z,

is the same physical variable as the corresponding,component of 2!V, Similarly, an edge e € E
going into a non-wire gate g from a wire gatéw is simply an indication that the (corresponding
component of) xéN is the same physical variable as ZL‘gUT. Recall though that the solitary process
that runs a non-wire gate g modifies l’éN .80 that solitary process modifies zOUT for each wire w
leading into g. Similarly, it fModifies x{uj,v for each wire w’ leading out of g.

This means that when a gate v/€ V completes its run, having reinitialized its input, it has
also reinitialized the eorresponding output of its parent, regardless of whether v is a wire gate or
a non-wire gate. S0 v plays the role of an “offboard” system for the computational devices at its
parent gates, reinitializing the outputs of those parents. (See Section VII.) As a result, when all
gates v in the (physical) cixcuit have finished, all gates v that are not outputs of the overall circuit
are back imstheir initialized state, with probability 1, as are all input nodes to the circuit. So the
circuit as a whole\is cyclic.

In principle; this model also allows us to simultaneously run multiple computations through a

single circuit, in staggered “waves”. So long as there is a gap of at least two gates separating each
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wave, both from that wave’s predecessor and from its successor, we are guaranteed that there is no
interference between the processes at the gates that are run for different waves.

I will sometimes use the terms “gate”, “circuit”, etc., to refer to physical systems with/physical
states, with the associated DAG (V, E). Other times I will use those terms to refer to the'associated
abstract mathematical conditional distributions in the DAG (V', E’). Such switchingiback and forth
between (V', E’) and the associated (V, E) will usually be implicit. The intended meaning“of the
terms “gate”, “circuit”, etc., will always be clear from context.

Note that since any wire gate implements the identity function, no matter.what the distribution
over the states of its parent it has both zero Landauer cost and zero mismatch ¢ost. So all of the
dependence of the EF of any real-world wire w on the distributionfof inputs g, to that wire
arises in the (linear) dependence of the residual EP on Ppa(w)- J1 addition, since a wire gate w
implements the identity function, its islands are just the separate values of z,,. So the total EF
generated by using a wire w is a linear function of the distributien over its inputs, i.e., it is a dot

product of that distribution with an associated vector UZ‘M(.) giving the residual EP of that wire

for each of its possible inputs.

ouT

From now on I adopt the shorthand that for any gate g, pg refers to the distribution of pg

before it has been re-initialized, but after it has been run./Similarly, I write pp,(,) to refer to the
distribution over the states xp,(4) of (the output components of) the parents of g at the beginning

of a run of g. So the actual distributiontever theinitial state of g, just before it runs, is p,a(g)-

B. Simplifying assumptions for calculating minimal EF of a straight-line circuit

To simplify the analysis even further,in the rest of this section I make two more assumptions.
First, I assume that the regidual EP-terms U;”m(c) equals 0 for all gates g and associated islands
c. This means in particular that from now on I ignore contributions to the EF from wire gates.

Second, I assume that we can choose the prior of any (non-wire) gate g to be anything we want.
To motivate one way of choosing the prior at each gate, suppose we assume the input distribution for
the entire circuitsC' isisome specific distribution g(zyN) (which I sometimes write as “q”, for short).
Then if that assumption were, correct, we should set the prior distribution for each gate g simply by
running the entirereircuit C' on inputs generated according to ¢ to determine the distribution over
the parents of g, i.e., by propagating ¢ from ViN to pa(g). In this way any assumption of ¢ specifies
what prior we should build into each gate g in the circuit. I call a set of priors at the gates that

are set this/way from a shared input distribution ¢ a set of propagated priors, and write them
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a5 {apute)

In the analysis below, I allow for the possibility that the circuit will be used in more than
one environment, e.g., with different users. Therefore I allow the priors to differ from the actual
distributions. So the (propagated) priors at the gates can differ from the actual distributions,at
those gates.

It is important to note that both of the assumptions I am making are often violated inithe real
world. As mentioned above, in current computers the EF in the wires is comparable to,that in the
(non-wire) gates. However, that EF is all residual EP. So by ignoring residual EP; we ignore one of
the major determiners of EF in current computer. Moreover, in many situations it will be easiest
to mass-manufacture the gates, so that while we can vary the characteristicsyof any physical gate
g that specifies the conditional distributions 7y, all gates g that, implement/ the same conditional
distribution 7, have the same prior, regardless of where they appear in a circuit. In this case
the priors at the gates are not propagated priors, for any assumed distribution over inputs to the
circuit. (See [69] for an analysis of the more general cas¢, wheremeither of these two assumptions
are made.)

L

C. Entropy dynamics of straight-line circuits

Suppose we are given a given conditional distribution of outputs given inputs, 7, that is im-
plemented by some circuit, and an input distribution, p, and some prior distribution over inputs,
q. Then paralleling the definitiomyof circuit Landauer loss, I define the circuit mismatch loss of
running that circuit on that input’distribution with that prior input distribution, as the difference
between the mismatch cost of an AO device that implements 7 on p with a prior ¢ over its inputs,
and the circuit mismatch cost of a cireuit that also implements 7 on p, and has the prior at each
gate g set to the assogiated propagated prior g (g)-

The following notation is motivated by the fact that residual EP is taken to equal zero for all

devices:

Definition 8¢ Let. C' = (V, E, F, X) be a circuit, p a distribution over its inputs and q a prior over

1ts inputs.

1. Qao(c)(p, @) is the total EF used to run AO(C') on actual distribution p with prior distribution

q.
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2. Qc(p,q) is the total EF used to run C on actual distribution p with propagated prior distri-
bution qua(g) at each gate g € G.

oNOYTULT D WN =

3. Eao0)(P,7) = Qaoc) (P, 2) — Qao(c)(p,p) is the total mismatch cost when running AO(C)

9 on actual distribution p with prior distribution q.

12 4. Ec(p,q) = Qc(p,q) — Qc(p, p) is the total mismatch cost when running G on actual distri-

bution p with propagated prior distribution qp,g) at each gate g € C'.

16 5. The circuit EF loss s

9 AQc(p,q) == Qc(p,q) — Quow)(P5d) (55)
6. The circuit Landauer loss is

24 ALc(p) == Qc(p, p) — Luao)(P:p)
26 = AQC (p7 p)

29 7. The circuit mismatch loss is

32 Aéc(p, q) = Ealp, 9) — Eao(c)(P; q)
34 = AQc(p,q) — ALc(p)

37 In [69] the following is proven:

39 Proposition 4. For any Boolean formulaxC, the Landauer circuit loss for input distribution p is

41 N
42 ALc(p) =Z(p) = > I(Ppay))

47 Recall that Eq. (46) gives the Landauer loss of a subsystem process, as a drop in mutual infor-
49 mation of the twosubsystems as the process runs. The expression for ALc(p) in Proposition 4 can
be seen as an extension of that result, to concern full circuits, comprising a sequence of multiple
52 subsystem processes:

54 In words, Proposition 4 tells us that the difference between the Landauer cost of a formula and
that of an equivalent AO device is a sum of multi-informations. One of those multi-informations

57 is given directly by the input distribution. However, the other ones depend on the wiring diagram
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of the circuit in addition to the input distribution. Intuitively, those other multi-informations
reflect the fact that the greater the correlation among the inputs to any given gate g, the less
information is contained in the joint distribution of those inputs, and therefore the less information
is lost by running that gate. In turn, if every gate in a circuit actually does run without losing
much information, then the amount of extra (minimal) EF due to using that circuitaather than an
equivalent AO device is small.

The term Z(p) in Prop. 4 can be seen as a “normalization constant”, in the sense that for any
pair of Boolean formulas C' and C’, both of which compute the same conditional.distribution, the

difference in their Landauer losses is just the difference in their Landauer costs,

AEC(p) - AEC’ (p) = deC/ I(ppa(g)) - ZQECI(ppa(g)T (56)

This expression is independent of Z(p), depending only on the multi-informations at the gates of the
two circuits. In light of this, suppose we wish to design a circuitsthat implements a given Boolean
formula f and that has minimal possible EF for some distribution p’™ over the domain of f, say
subject to the constraint that we can only use gates in.some,specified universal set. Then Eq. (56)
means that we must find the circuit C' made out (of such gatés that implements f and that also
minimizes the sum of the multi-informations at.its gates, >.2 gec L (Ppa(g))> for the given distribution
p!N. This appears to be a nontrivial optimization, since making changes in one part of the circuit
can affect the distributions that are inputite.the gates in a different part of the circuit, and therefore
affect the total Landauer cost of the gatesiin that different part of the circuit.

It is proven in [69] that circuitsLandauer loss cannot be negative. This provides a major ad-
vantage to using an AO device gather than a circuit. Unfortunately, there are major engineering
difficulties which prevent us fron\building AO devices to implement the kinds of functions imple-
mented in real-world circuits, due to‘the huge state spaces of such real-world circuits.

The following is alse/provenin|69|:

Proposition 5. For any formula C, the circuit mismatch loss for actual input distribution p and

prior input distribution q is

Aéc(p.q) = -Dplla) + Y D(Pparg) | tpais))
g

(Compare 0 Proposition 4.) Interestingly, mismatch loss can be negative. In fact, the sum of

Landauerdoss and mismatch loss can be less than zero. This suggests that in some situations we
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would actually use less EF if we run a circuit rather than an equivalent AO device to implement a
given Boolean formula, if our assumption for the input distribution ¢ differs from the actual input
distribution, p. To see how this phenomenon might be exploited, suppose that just like'in robust
optimization, we do not presume that we know the actual distribution p, and so cannet set ¢ = p!
However, we feel confident in saying that p lies within a ball of radius K of our guess for the actual
input distribution, p, i.e., that ||p, p||< K for some appropriate distance measure ||, -[|..Then we
might want to set ¢ = p, and choose between a circuit and an equivalent AO (device that both use
that prior based on which one would result in less total EF for any p such that |jg, p||< K.3

[69] contains other results not reproduced here, for the case where gates €an have nonzero
residual EP. The analysis in [69] also covers circuits with noisy gates. In addition, the analysis in
that paper cover circuits with gates that have outdegree greater thamsl. Finally, [69] also derives
some sufficient conditions for circuit Landauer loss to be positive, sonie sufficient conditions for
Landauer loss to be negative, and similar sufficient conditions for.circuit mismatch loss.

The thermodynamics of circuits is also considered in [63]. Superficially, the analysis in that paper
is similar to the analysis summarized here. In particular, Prop. 4 above has a similar functional
form to Eq. 26 in [63], which also involves a multifinforimation” (though without using that term).
However, the analysis in [63] concerns a different kind'of system from the circuits considered here.
Viewed as a circuit, the system considered in [63}.is‘aset of N disconnected gates, working in parallel,
never combining, but with statistical/€érrelations among their inputs. Eq. 26 in [63] concerns the

mismatch cost that would arise for such a'system if we used propagated priors and took ¢ = p.

D. Entropy dynamics in a transition detector circuit

The analysis in [125] concerns the entropic costs of a “transition detector”. This is a device that
receives a string of bitssone after the other, and iteratively determines for each new bit whether
it is the same or different from, the previous bit that the device received. Although the authors
describe the device they analyze as a finite state automaton, they only consider a single pass of its
operation, in whieh ityonly/decides whether one second bit differs from the first bit. This reduces
their machine to a straight-line circuit with a two-bit input space.

One noteworthy-contribution of [125] is the level of detail in the circuit they analyze. They

describe the variables in this circuit as follows:

39There are sorie subtleties in applying this reasoning to real-world circuits, which arise if we wish to “compare apples

with apples”.<See [69].
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“The processor utilizes two general purpose registers A and B, a four-function arith-
metic logic unit (ALU), a two-word internal “scratchpad” memory M = MyMj, that
also functions as an output buffer, four multiplexers for signal routing, and input and
output buffers. ... {In addition there are} a 16-word instruction memory, a-4=bit
program clock (PC)-with a hardware provision for halting the clock if and when the
instruction at address PC(1111) is reached— and control logic that decodes each in=
struction and generates all control signals required to appropriately configure the data
path, perform register operations, adjust the program clock on jump.instructions, and

enable memory access and 1/0.”

The authors then specify the control logic and associated data path of their eircuit in the same
level of detail.

The authors compare an “instruction-level analysis” (ILA) of the entropic cost of running the
circuit to an “architecture-level analysis” (ALA) of those costs, under the assumption that the input
bits are generated IID. It appears that their analysis concerns Landauer cost.3! It also appears that
their ILA is a way to calculate the Landauer cost ofdanAO device that implements the transition
detector. On the other hand, the ALA appears to be.a way of cglculating the circuit Landauer cost.

Under this interpretation of the analysis iny[125|, thexdifference of the two entropic costs that
they calculate is the Landauer loss of a single pass‘through the particular circuit they define. In
agreement with the results in Section‘X C. they find that depending on the probability distribution
of the input bits, the Landauer loss can be positive, but is never negative.

The interested reader may also want to consult [126], which is another article, involving the
same authors, that considers the thermodynamics of specific straight-line circuits that are modeled

in great detail. N

XI. ENTROPY DYNAMICS OF LOGICALLY REVERSIBLE CIRCUITS

An interesting,body of research concerning “reversible circuits” has grown out of the early work
by Landauer and Bennettsin isolation from the redent breakthroughs in nonequilibrium statistical
physics. This reséarch assumes that one is presented with a conventional circuit C' made of logically
irreversible gates which implements some logically irreversible function f, and wants to construct

311t is hard to.be completely sure of the physical meaning of the quantities the authors analyzed, since they perform
their analysis using a semi-formal “referential approach” they developed in earlier work that is not used by others
in the literature, and that is not formulated in terms of modern nonequilibrium statistical physics. At a minimum

though, no mismatch cost or residual entropy creation terms appear in their analysis.
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a logically reversible circuit, C’, that emulates C. The starting point for this research is the
observation that we can always create such an emulating circuit, by appropriately wiring together
a set of logically reversible gates (e.g., Fredkin gates) to create a circuit C’ that maps any input
bits 2V € XN to a set of output bits that contain both f(x/") and a copy of x!¥u[127 130}/
Tautologically, the entropy of the distribution over the states of C’ after this map has completed is
identical to the entropy of the initial distribution over states. So the Landauer cost is zero,iit*would
appear. This has led to claims in the literature suggesting that by replacing a ¢onventional logically
irreversible circuit with an equivalent logically reversible circuit, we can reduce the, ‘thermodynamic
cost” of computing f(2'V) to zero.

This line of reasoning should be worrisome. As mentioned, we now knowythat we can directly
implement any logically irreversible map 2/ — f(z/"V) in a thermodysamically reversible manner.
So by running such a direct implementation of f in reverse (which cambé done thermodynamically
reversibly), we would extract heat from a heat bath. If we do that, and then implement f forward
using a logically reversible circuit, we would return the system to its starting distribution, seemingly
having extracting heat from the heat bath, thereby vielating the second law.

As it turns out, there are some thermodynamic advafitages fo using a logically reversible circuit
rather than an equivalent logically irreversibleicircuit. However, there are also some disadvantages
to using logically reversible circuits. Moreover, the advantages of logically reversible circuits cannot
be calculated simply by counting “themumber of bit erasures” performed by the equivalent logically
irreversible circuit. In the following two subsections I elaborate these relative advantages and
disadvantages of using reversible eircuits, in order to illustrate the results presented in the sections
above.

Before doing that though; in{he remainder of this subsection I present some needed details
concerning logically reversible circuits that are constructed out of logically reversible gates. One of
the properties of logically reversible gates that initially caused problems in designing circuits out of
them is that runningthese gatesitypically produces “garbage” bits, to go with the bits that provide
the output of the conventional gate that they emulate. The problem is that these garbage bits
need to be reinitialized after the gate is used, so that the gate can be used again. Recognizing this
problem, [127].shows how te avoid the costs of reinitializing any garbage bits produced by using
a reversible gate.in a reversible circuit C’, by extending C’ with yet more reversible gates (e.g.,
Fredkin gates). The result is an extended circuit that takes as input a binary sting of input data
x, [along with a binary string of “control signals” m € M, whose role is to control the operation

of the reversible gates in the circuit. The output of the extended circuit is a binary string of the
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IN gOUT _ f(yIN)

desired output for input x , together with a copy of m, and a copy of 2"V, which

IN

I will write as z¢,,, .-

So in particular, none of the output garbage bits produced by the individual
gates in the original, unextended circuit of reversible gates still exists by the time we gét to the
output bits of the extended circuit.3?

While it removes the problem of erasing the garbage bits, this extension of thegeriginal circuit
with more gates does not come for free. In general it requires doubling the total numberof gates
(i.e., the circuit’s size), doubling the running time of the circuit (i.e., the @ircuit’sidepth), and
increasing the number of edges coming out of each gate, by up to a factor,of 3 (In special cases
though, these extra cost can be reduced, sometimes substantially.)

~

A. Reversible circuits compared to computationally equivalent all-at-once devices

In general, there are many different “basis sets” of allowed gates |we can use to construct a
conventional (logically irreversible) circuit that computes any givenlogically irreversible function
f. Moreover, even once we fix a set of allowed gates,“in\general there are an infinite number of
logically irreversible circuits that implement f using that set of gates. Due to all this flexibility,
we need to clarify precisely what “logically irreversible circuit” we wish to compare to any given
extended circuit that implements the same function f as that circuit.

One extreme possibility is to compare the extended circuit to a single, monolithic gate that
computes the same function, and which distinguishes input variables from output variables. In
other words, we could comparéythe extendedhcircuit to a physical system that directly maps
(™, 00UTy — (!N f(x'N)). Hewever, this map is logically reversible, just like the extended
circuit, and so not of interest for the comparison.

A second possibility is to compare the extended circuit to an AO device with a state space
X that directly maps x € X — f(r) € X, without distinguishing input variables and output
variables. Such a mapis net logically reversible, but (as mentioned above) can be implemented with
a thermodynamically reversible system, whatever the initial distribution over X. If we implement
f with an AO device, then the minimal EF we must expend to calculate f is the drop in entropy of
the distribution over X as that distribution evolves according to f. This drop is nonzero (assuming

32More precigely, in one-popular form of reversible circuits, a map f : X'V — XO°YT is implemented in several

(xIN7m70GARBAGE7OOUT) N

steps. First, in a *“forward pass”, the circuit made out of reversible gates sends

7 0°UT is defined as the initialized state of the output bits,

(™ gm,m”, f@'™)), where m’ is the set of “garbage bits
and similarlyfor 0°A*BAGE - After completing this forward pass, an offboard copy is made of z°V7 | i.e., of Flz™™).

IN,m,OGARBAGE7OOUT). The end

Then the original circuit is run “in reverse”, sending ('™, m,m’, f(z™)) = (x
result is a process that transforms the input bit string z'Y into the offboard copy of f(z!™), together with a copy
of ™ (conventionally stored in the same physical variables that contained the original version of =tV ), all while

leaving the control bit string m unchanged.
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f is not logically invertible). This would seem to mean that there is an advantage to using the
equivalent extended circuit rather than the AO device, since the minimal EF with the extended
circuit is zero.

However, we must be careful to compare apples to apples. The number of information=carrying
bits in the extended circuit after it completes computing f is log| XN |+ log| X OUT |- log| M|, The
number of information-carrying bits in the AO device when it completes is just log| XCU%|. So
strictly speaking, the two systems implement different functions, that have the same domains but
different codomains.

This means that the entropic costs of answer-reinitializing the two [eircuits (i.e., reinitializing
the codomain variables) will differ. In general, the Landauer cost and mismatch cost of answer-
reinitialization of an extended circuit will be greater than the corresponding answer-reinitialization
costs of an equivalent AO device. This is for the simple reason that the answer-reinitialization of
the extended circuit must reinitialize the bits containing copies ofix and m, which do not even exist
in the AO device.

Phrased differently, if we allow the extended circuitsto keep a copy of 2%V, rather than erase it,
then to compare apples to apples, we should also not impose all the strictures of standard accounting
to the AO device, and allow the AO device toralso forego. erasing 2/V. However, that would change
the Landauer cost we ascribe to running the AO device from S(XV) — §(XOUT) to the negative
value —S(XOUT). (Recall from the diScussion at the end of Section VII B that if any copies of the
input are allowed to persist after the computation ends, then we can even get negative Landauer
cost.) It is worth emphasizing thatithis importance of reinitializing the copy of /¥ was recognized
even in the early analyses based/on the original formulation of Landauer’s bound; it is the primary
motivation for one of the most soghisticated of those early analyses, which is discussed in detail in
Section XIV D.

To be more quantitative, firstszfor simplicity, assume that the initial distribution over the bits
in the extended circuitsthat encode m is a delta function. (This would be the case if we do not
want the physicabcircuit to implement a different computation from one run to the next, so only
one vector of gontrol signals m is allowed.) This means that the ending distribution over those bits
is also a delta function, The Landauer cost of reinitializing those bits is zero, and assuming that
we perform the reinitialization using a prior that equals the delta function over m, the mismatch
cost is also,zero./So assuming the residual EP of reinitialization those bits containing a copy of m
is zero, we ¢an we can ignore those bits from now on.

To proceed further in our comparison of the entropic costs of the answer reinitialization of an
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AOQO device with those of an equivalent extended circuit, we need to specify the detailed dynamics
of the answer-reinitialization process that is applied to the two devices. Both the AO device and
the equivalent extended circuit have a set of output bits that contain f(x/") that neéd to be
reinitialized, with some associated entropic costs. In addition though, the extended circuit needs
to reinitialize its ending copy of &'V, whereas there is no such requirement of thesequivalent AO
device. To explore the consequences of this, I now consider several natural models of theranswer-

reinitialization:

1) In one model, we require that the answer-reinitialization of the circuit is perfermed within each
output bit g itself, separately from all other variables. Define Fr(C) to mean-an extended circuit
that computes the same input-output function f€ as a conventionalircuit €', and define AO(C)
similarly. Assuming for simplicity that the residual entropy of reinitializing all output bits is zero,

the EF for the answer-reinitialization of F'r(C') using such a bit=by-bit/process is

Qcr(pg) = > Slpgllay) (57)
gGVOUT
- 4
where VOUT indicates the set of all bits containing thé final values of zU7 and zN

copy*

Using gate-by-gate answer-reinitialization, the EF needed to erase the output bits containing
fE (2N is the same for both AO(C) and Fr(C). Therefore the additional Landauer cost incurred
in answer-reinitialization due to using E7(C) rather than AO(C) is the Landauer cost of erasing

the output bits in Fr(C) that store x.V

copy?
ASmie).c(p) = > S(py) (58)
vEVIN
N
where I write “v € V;n” to mean the output bits that contain argé\;y, and p, to mean the ending

marginal distributions,over those bits. Similarly, the difference in mismatch cost is

ADproyoP )= Y Du(p’lla") (59)

veVIN
where ¢, refers to a priorused to reinitialize the output bits in .v € Vy.
However, indépendent of‘issues of answer-reinitialization, the Landauer cost of implementing a
function/using an AO device that is optimized for an initial distribution pixy can be bounded as

follows:

S(piv) = S(fpiv) < S(piv)
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< Z Sv(pv)

veVIN

= ASprc),c(p) (60)

oNOYTULT D WN =

9 Combining this with Eq. (58) shows that under gate-by-gate answer-reinitialization, the total Lan-
11 dauer cost of implementing a function using an AO device — including the costs of reinitializing the
gates containing the value f¢ (/") — is upper-bounded by the eztra Landauer €ost of implement-
14 ing that same function with an equivalent extended circuit, i.e., just that pertion of the cost that
16 occurs in answer-reinitializing the extra output bits of the extended circuit.” This disadvantage of
using the extended circuit holds even if the equivalent AO device is logically irreversible. So as far
19 as Landauer cost is concerned there is no reason to consider using an extended circuit to implement
21 a logically irreversible computation with this first type of answer-reinitialization.

On the other hand, in some situations, the mismatch cost of running the AO device will be

IN

24 greater than the mismatch cost of the answer-reinitializagion, of @y

in the equivalent extended

26 circuit. This illustrated in the following example:

Example 10. Suppose that the input to the circuit consistsnofstwo bits, a and b, where the actual

30 distribution over those bits, p, and prior distribution over those bits, q, are:

43 Suppose as well that € is d many-to-one map. Then plugging in gives

45 D(pix|lgiv) — D(fpin|| f€an) = D(pinlgin)

47 > 3 D(polas)

veVIN

50 This sum equals ghe mismaich cost of the answer-reinitialization of xgé\{,y, which establishes the

52 claim.

Howewver, care should be taken in interpreting this result, since there are subtleties in comparing
56 mismatch costs between circuits and AO devices, due to the need to compare apples to apples (see

58 discussionsof this point in [69]).
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2) A second way we could answer-reinitialize an extended circuit involves using a system that
simultaneously accesses all of the output bits to reinitialize xﬁj,j,y, including the bits storing’ f(z!V).

To analyze this approach, for simplicity assume there are no restrictions on how thismreinitial4
izing system operates, i.e., that it is an AO device. The Landauer cost of this type of answer-

reinitialization of xg\;y is just S(p(XTN|XOUT)) —In[1], since this answer-reinitialization process is

a many-to-one map over the state of xg,\;y. Assuming f¢ is a deterministic map though, by Bayes’
theorem
S(p(XN X)) = S(p(X™N)) = S(p(XUE)) (61)
~

So in this type of answer-reinitialization, the extra Landauer cost of the angwer-reinitialization in
the extended circuit that computes f¢ is identical to the total Landauex cost of the AO device that
computes the same function f€¢. On the other hand, in this typéwof answer-reinitialization process
the mismatch cost of the extended circuit may be either greatersor smaller than that of the AO

device, depending on the associated priors.
L

IN

copy 111 a1l extended circuit arises if, after running the

3) A third way we could answer-reinitialize@:
circuit, we happened upon a set of initialized ‘external bits, just lying around, as it were, ready to

be exploited. In this case, after running the.circuit, we could simply swap those external bits with

IN

copy» thereby answer-reinitializing the output bits at zero cost.

x
Arguably, this is more sleight-of-hand than a real proposal for how to re-initialize the output

bits. Even so, it’s worth pointing out that.rather than use those initialized external bits to contain

IN

a copy of o,

we could hayerused them as an information battery, extracting up to a maximum
of kpT'In2 from each onel by ghermalizing it. So the opportunity cost in using those external
bits to reinitialize the output bitstof the extended circuit rather than use them as a conventional
battery is |Vin|kpTdn2y Thisis an upper bound on the Landauer cost of implementing the desired
computation using an AQO‘device. So again, as far as Landauer cost is concerned, there is no

advantage to using an extended circuit to implement a logically irreversible computation with this

third type of ‘answer-reinitialization.

IN

copy Of course. In particular, see the discussion in

There are other schemes for reinitializing x
Section XIV'D for a review of a particularly sophisticated such scheme.

Summarizing, it is not clear that there is a way to implement a logically irreversible function
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with an extended circuit built out of logically reversible gates that reduces the Landauer cost below
the Landauer cost of an equivalent AO device. The effect on the mismatch cost of using such a
circuit rather than an AO device is more nuanced, varying with the priors, the actual distribution,

etc.

B. Reversible circuits compared to computationally equivalent irreversible circuits

I now extend the analysis, from comparing the entropic costs of an extended circuit to those
of a computationally equivalent AO device, to also compare to the costs of a,computationally
equivalent conventional circuit, built with multiple logically irreversible'gates. As/illustrated below,
the entropic costs of the answer-reinitialization of a conventional ¢ircuit (gpropriately modeled)
are the same as the entropic costs of the answer-reinitialization ofsa computationally equivalent
AQO device. So the analysis of the preceding subsection gives us the relationship between the
answer-reinitialization entropic costs of conventional circuits and these of computationally equiva-
lent extended circuits. In particular, the minimal EF required to answer-reinitialize a conventional
circuit is in general lower than the minimal EF required to, amswer-reinitialize a computationally
equivalent extended circuit.

Accordingly, in this subsection I focus instead on comparing the entropic costs of running con-
ventional circuits, before they undergo any answer-reinitialization, with the entropic costs of run-
ning computationally equivalent extendedicircuits, before they undergo any answer-reinitialization.
While the full analysis of the entropic costs of running conventional circuits is rather elaborate [69],
some of the essential points can bé illustrated with the following simple example.

Suppose we have a system that comprises two input bits and two output bits, with state space
written as X = X{N X XQIN X Xlo\UT X XQOUT. Consider mapping the input bits to the output bits
by running the “parallelsbit erasure” function. Suppose that while doing that we simultaneously
reinitialize the input bits @{" and 22" in preparation for the next run of the system on a new
set of inputs. So assuming both of the output bits are initialized before the process begins to the
erased value 0,.the state space evolves according to the function f : (xIV IV 0,0) — (0,0,0,0).
(See Example 6 for an alternative way of doing parallel bit erasure, with a system that does not
differentiate inputrand output variables.)

Consider the following three systems that implement this f:

1. An AQ device operating over X{V x XIN x X 10 UT XQO UT that directly implements f;
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2. A system that implements f using two bit-erasure gates that are physically isolated from

one another, as briefly described in Example 6. Under this model the system first uses one

bit-erasure gate to send (X{V, XOUT) = (zIV 0) — (0,0), and then uses a second bif-erasure

gate to apply the same map to the second pair of bits, (XQIN, XZOUT).

The requirement that the gates be physically isolated means that the raté matrix of the

first gate is only allowed to involve the pair of bits (X{V, XPUT) ie.dit is of the form

Ww{N7$10UT;(${N)/’($1OUT)/(t). So the dynamics of (z{V,29UT) is independent of the values of

the other variables, (x3V, xQOUT). Similar restrictions apply to the rate matrix of the second
gate. (So in the language of Section IX, since the two gates run sequentially, the each run a

“solitary process”.) ~

. A system that uses two bit-erasure gates to implement f, justias in(2), but does not require

that those gates run in sequence and that they be physically isolated. In other words, the

rate matrix that drives the first bit-erasure gate ag it updates'the variables (z{V, 29UT) is

allowed to do so based on the values (azéN , :L‘QOUT), and vice-versa. Formally, this means that

the joint rate matrix of the entire system is of the form &

WI{N7I?UT;(I{N)/7(I?UT)/;(xéN)/7(x§)UT)/(t) 5($£N, (wéN)/) 5(x20UT, (:UgUT),)
+ WxéN,xg)UT;(x{N)/7(33(1)UT)/;($£N)/7($§)UT)/(t) 5(x{N, (CB{N),) 5($?UT, (.CU?UT)/)

(62)

Models (2) and (3) both representa-conventional circuit made out of two gates that each implement
logically-irreversible functions. However, they differ in whether they only allow physical coupling
among the variables in the circui)chat are logically needed for the circuit to compute the desired
function (model (2)), or insteéad allow arbitrary coupling, e.g., to reduce entropic costs (model
(3)). Moreover, the sét ofirate matrices allowed under model (3) is a strict superset of the set of
rate matrices of all subsystem processes that implementsf, i.e., we have more freedom to reduce
EF using model (3) than we would with any subsystem process (see Definition 7). On the other
hand, the set/of allowed rate matrices under model (1) is a strict superset of the set of allowed rate
matrices under model (3).

To analyze the consequences of these differences, first consider the Landauer cost of model (1),

which we can'expand as

S(pO(XllNa X2IN7 XIOUTa XgUT)) - S(fl,Q PO(XllN) X21N7 XIOUT’ X2OUT))
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= S(po(XTN, XIN, X PUT xQUTY)

— S(po(x{N, xV)) (63)

where fl,g is the conditional distribution implementing the parallel bit erasure, so that f172 pola) is
the ending distribution, which is a delta function centered at (0,0, 0,0).

Next, assume that both of the gates in model (2) are thermodynamically reversible when' con-
sidered by themselves, isolated from the rest of the universe, i.e., that their subsystemnEPs are both

zero. Then the minimal EF needed to run the first of those gates is

S(po(X{Y) = S(fi po(X{, XPT)) = S(po(X{H) (64)

Similarly, the minimal EF needed to run the second gate is S(po(X4'¥ ). 4"

Combining, we see that the difference between {the minimal EF needed torun a conventional cir-

cuit constructed as in model (2)} and {the minimal EF needed,to run a computationally equivalent

AO device (model (1))} is
S(po(XT™) + S (po(X3™) — Slao(Xi™, X3™)) (65)

This is just the initial mutual information between X7 and XzN 33 So the minimal EF needed to
run model (2) will exceed the minimal EF ‘needed to munsimodel (1) whenever X{¥ and XIV are
statistically coupled under the initial distribution, pg:

On the other hand, because of the increased flexibility in their rate matrices, it is possible that
the bit-erasure gates in model (3) each achieve zero EP even when considered as systems operating
over the full set of four bits. So eaeh of those bit-erasure gates is thermodynamically reversible
even when considered in the context of the full system. As a result, running the circuit defined in
model (3) requires the samedminimal EF as running an AO device. (See also Example 9.) So in
general, the minimal EF needed to run to the conventional circuit defined in model (3) is less than
the minimal EF needed to runte'the conventional circuit defined in model (2).

Summarizing, thé minimaltotal EF (including both the EF needed to run the system and to
reinitialize it at ¢he end of the run) that is needed by the circuit defined by model (2) exceeds
the minimal total EF needed by either the equivalent AO device (model (1)) or the equivalent

conventional ‘circuit defined by model (3). Those two differences in those minimal EF’s both

330ne could reach thé same conclusion by using the fact that machine Landauer loss of a sequence of solitary processes
is additive over,those process (see end of Section IX B), the fact that the Landauer loss of each solitary process is
the drop in mutual information between the two subsystems during that process (see Eq. (46)), and the fact that

the ending entropy of a system that erases a bit is 0.
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equal the mutual information of the inputs bits under py. In turn, the minimal EFs to run ei-
ther model (1) or model (3) exceeds the minimal EF needed to run an equivalent extended circuit,
by S(po(X{Y, XIN)). However, the minimal total EF of the models (1) and (3) will in"géneral be
no greater than the minimal total EF of the extended circuit, and may be smaller (depending oun
the details of the answer-reinitialization process in the extended circuit).

On the other hand, as a purely practical matter, constructing a conventional gircuit as in“(3) for
circuits substantially larger than parallel bit-erasures may be quite challenging; to do,so requires
that identify all sets of variables that are statistically coupled, at any stage,of running the circuit,
and make sure that our gates are designed to physically couple those variables. There are no such
difficulties with constructed an extended circuit. Another advantagefof an extended circuit is that
no matter what the true distribution pg is, an extended circuit has.zerormismatch cost, since there is
no drop of KL divergence between pg and any go under a logically reversible dynamics. In contrast,
all three models (1) - (3) can have nonzero mismatch cost, in general.

As yet another point of comparison, an extended circuit will often have far more wires than an
equivalent conventional circuit. And as mentioned above, the residual EP generated in wires is one
of the major sources of EF in modern digital gates. S evem M a situation where a conventional
circuit has nonzero mismatch cost, when the EF generateddn the wires is taken into account, there
may be no disadvantage to using that conventional circuit rather a computationally equivalent
extended circuit.

Clearly there is a rich relationship between the detailed wiring diagram of a conventional log-
ically irreversible circuit, the procedure for answer-reinitializing the outputs of a computationally
equivalent extended circuit, thedistribution over the input bits of those circuits, and how the ag-
gregate entropic costs of those two, circuits compare. Precisely delineating this relationship is a

topic for future research.

XII:» ENTROPY DYNAMICS OF FINITE AUTOMATA

A./ Entropy dynamics of FAs in a steady state

There is_some work in the literature that presents calculations related to the thermodynamics
of FAs. (For exaniple, [131] considers the thermodynamics of systems that can be defined as word-
basedideterministic FAs with no accepting states whose input symbols are generated in an 11D

manner, and which have no word-delimiting input symbol. (Arguably this last property in particular
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distinguishes the systems they consider from what computer scientists typically call “finite state
automata”.) So the “input word” in the systems they consider is actually a single, infinite string
of symbols, and their systems undergo a single, infinitely long, run. This allows themto avoid
including a counter variable in the model, despite their use of a word-based FA. Insteadpthe time
index on the rate matrix can directly encode which input symbol is being processed at any given
time.

Rather than consider finite time behavior, they consider the asymptotic limit, presuming the
system reaches a (unique) steady state. In keeping with this, they do not_require that the system
be cyclic in any sense. Indeed, the successive input symbols in the input word are not reinitialized
as the computation proceeds, so if one were to stop their system affa finite tinie, and try to give
it a new input string, entropic costs would be incurred which are mot considered in their model.
Similarly, their model does not designate some variable as being the eutput of the computer. So
they do not consider the issue of how such an output might be copied out of the system at some
finite time. Given this lack of an output and their not reinitializing the input, they do not use any
convention akin to standard accounting to determinehow to ascribe entropic costs incurred when
one run ends and another begins. 4

Their model does not involve solitary processes, but,instead considers AO devices. (Note that
since they consider the asymptotic limit, this, means that they implicitly allow the interaction
Hamiltonian between the computationalistate of the FA and the input state to involve the arbitrarily
large set of variables giving all earlier input, symbols.) Moreover, since they focus on the steady
state, the entropy of the computational state of the system doesn’t change in an update step. Since
they don’t require the input symbols to be reinitialized once the are processed, the joint entropy of
the (infinite) string of input symeLs does'not change in an update step either. So the Landauer cost
in any single update step is due to the loss of information between earlier inputs and the current
computational state. ‘Given theieonstancy of the marginal entropies of those earlier symbols and of
the current computational statejthis loss of information in an update step is exactly the change in
the mutual information between the joint state of the earlier input symbols and the computational
state in that dpdate step. Finally, since they consider an AO device, minimal EP is zero. So
the minimal '‘EF /per update step is just the Landauer cost, i.e., it equals this change in mutual
information.

This isstheir primary result. They derive it in a quantum mechanical context, but the same
analysis holds for classical systems undergoing Markovian dynamics. As a final comment, instead

of viewingthe systems considered in [131] as a version of FAs, those systems can be viewed as a
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variant of information ratchets, with the added restriction that the ratchet is not allowed to change
the state of an input symbol after reading it. Accordingly, the reader may want to compare the

analysis in [131] with the analyses in Section XIII.

B. Entropy dynamics of FAs with thermal noise

Another paper related to the thermodynamics of FAs is [132]. In that papershe authors consider
deterministic finite automata that are subject to thermal noise during their operation. The paper
is careful to introduce the complete computer science definition of an KA including the fact that
input words having finite lengths. However, they only consider a singletiteration of an FA. So they
don’t need to explicitly ensure that the model of an FA that they analyze% a cyclic device. Nor
do they need to consider the problems that arise from the fact thatithe duration of a run with an
FA is a random variable. (Recall Section VIIC.) They also‘de not cousider the issues related to
the entropic costs of copying the output of the FA offboard andjor the entropic costs of copying in
a new input.

Like the current paper, [132] uses stochastic thermodynamicsito perform their analysis. However,
in contrast to most of the stochastic thermodynamics literature, they stipulate that the underlying
rate matrix is time-homogeneous during each iteration of the system. As a result, to get any
dynamics, they assign different energy levels to each of the states of the FA, relying on thermal
relaxation to drive the dynamics. (In cemtrast, as mentioned in Section VII A, the convention in
the literature is to stipulate thatienergy levels‘are identical at the beginning of each new iteration
of an information-processing systém, in,order to focus on the information processing behavior of
the system.)

Although the relationship is n(; exact, it seems that in order to implement arbitrary (determin-
istic) update functions imtheir' model of FAs, [132] exploits the same kind of “partially hidden” state
space construction discussed.in Sections VIII and XV. As a cautionary comment, the reader should

be aware that [132] uses some idiosyncratic terminology. For example, they refer to the thermal

relaxation of a_two-energy System down to the lower energy state as a “bit flip”.

XTIl v ENTROPY DYNAMICS OF INFORMATION RATCHETS

Suppose that we know that inputs to an information ratchet are generated according to a

particular N'th order Markov chain, and we know the prior distribution over the first N inputs to
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the ratchet. Even with this information, we do know the joint distribution over strings of N + 1
successive inputs to the ratchet — that distribution will depend on how long that Markov chain
has been running. This means that to analyze the entropy dynamics of an information ratc¢het with
inputs generated according N’th order Markov chain, we have to also specify how longritrhas been
running. This substantially complicates the analysis. The problem is only compounded if we don’t
know N — or if in fact the stochastic process generating the inputs is not a Markov proeess‘of any
finite order.3

The natural way to analyze such scenarios is to take the infinite time limit, assuming that the
inputs are generated according to a stationary process. In a series of papers [13415-18, 114, 133],
Boyd, Mandal, Riechers, Crutchfield and others have begun pursuing this line of research. The
focus in these papers has not been the behavior of an information rat¢het with an arbitrary given
update rule of its computational states, running on an arbitrary givemiinput data stream. Instead,
these papers primarily concern the case where the update rule is eptimized for the given input data
stream.

Given the challenging nature of analyzing the thermodynamics of information ratchets with
HMM input data streams, to date these papers have mostlyifdcused on information ratchets that
create output patterns ab initio, with no patterns in the input stream, or that completely destroy
patterns in the input stream (producing an outputstream with no patterns). A natural topic for
future research would be the challenging,regime of intermediate cases, in which there are some
patterns in the input stream, and different patterns in the output stream.

The analysis in these papers-has focused on discrete-time rather than continuous-time mod-
els, e.g., discrete-time rather than continuous-time Markov chains. This means that much of the
machinery of stochastic thermods@amics cannot be applied. Moreover, there are many subtle is-
sues concerning what discrete-time systems can be be represented by any CTMC. It is (relatively)
straight-forward to address thesesissues when the system has a finite state space, e.g., if it is a
circuit. (See SectionsyVIIT'and"XV.) However, the global state space of an information ratchet
is infinite, including all input sequences of arbitrary length. In light of this, [134] considers some
of the implications for the earlier analysis on discrete-time information ratchets that arise if one

requires the information ratchet to be physically instantiated with a CTMC.

34For example, this could be the case if the states of the information ratchet are actually coarse-grained bins of some
undetlying physical fine-grained space. In this situation, the dynamics over the coarse-grained bins — over the states

of the ratchet — are given by a hidden Markov model (HMM).
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A. Infinite-time limit of entropy dynamics of finite-state information ratchets with

arbitrary non-1ID inputs

In the literature on the thermodynamics of information ratchets, the term global system is
sometimes used to refer to the combination of the information ratchet, input data streamy and
output data stream. In addition, throughout throughout those papers it is assumed that there is
a single thermal reservoir coupled to the global system, and that the global system’s rate matrix
always obeys LDB for that reservoir, for some associated Hamiltonian.

One of the most important results to emerge to date concerning thefhermodynamics of infor-
mation ratchets arose from considering the infinite time limit of infermation ratchets that have
finite R. Suppose that in that limit the distribution of computational stdies of the ratchet reaches
a stationary state. Then in that limit, the EF in the global systemnproduced per unit iteration is
bounded below by the difference between the Kolmogorov-Sinai entropy of the output data stream
and the Kolmogorov-Sinai entropy of the input data stream [15].%> The authors refer to this as the
Information processing second law (IPSL).

The two entropy rates in the IPSL each refer to changes in enfgopy of only a subset of the variables
in the global system, namely the input data stream/and the output data stream, respectively.
Moreover, the distribution over the joint space of those two data streams cannot reach a fixed
point, because the size of that space grows with each iteration. However, the rate of change in (the
entropy of) that distribution per iteratiomcan reachya fixed point. That is what the IPSL captures.

In general, for a given desiréd map from the input stream to the output stream, the greater
the number of states of the ratchet-one can use to implement that map, i.e., the larger R is, then
the closer the minimal EF (per iteration; in the infinite-time limit) of those ratchets will come to
matching the IPSL. Intuitiyely, t& reason for this is that the dynamics of the state of the ratchet
is less constrained when, R isiargers and therefore the ratchet can implement the desired map to
the input stream with"greater thermodynamic efficiency. Viewed differently, the greater R is, the
better able the ratichet is to “store in its current state a sufficient statistic” concerning the most
recent sequence.of inputs, and therefore the better able it is to anticipate what the next input will

be, and therefore act in a manner that is thermodynamically optimal for that input.

35Typically; the Kolmogorov-Sinai entropy reduces to the more familiar entropy rate [70].
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B. Infinite time limit of Entropy dynamics of infinite-state information ratchets with

arbitrary non-1ID inputs

The computational power of information ratchets with a finite set of computationdl states R
is weaker than that of TMs (contrary to some informal claims in the literature). More pregisely,
it is not the case that for any given TM there is some information ratchet such that the (partial)
function computed by the TM equals the (partial) function computed by the infermation ratchet
(e.g., if we specify some special finite string of output bits of the information ratchet to signal that
the ratchet has completed the computation). Only if one can map each ID of a TM to a unique
element of R can we map the dynamics of that TM into the dynamics.ef an equivalent information
ratchet. However, that would require that R be infinite, in general 2° e

This limited power of information ratchets with finite R naturally ledds to consideration of
information ratchets that have infinite R. Analyzing the emtropy dymamics of such information
ratchets presents some significant technical challenges however:

In addition, many of the nice properties of finite R ratchets no longer hold for infinite R ratchets.
One example of this is that the IPSL no longer appliés withinfinite R (indeed, with an infinite state
space, the information ratchet may never reach a stationary state). Another example arises from
the fact that the thermodynamic benefit of ‘expanding R mentioned above relies on our ignoring
the thermodynamic cost of initializing the state,of the ratchet before it starts to run. When we
are considering the limit of iterating the,ratchet an infinite number of times starting from that
single initialized state, and there.are only a finite number of computational states of the ratchet,
the ratio of this one-time initialization cost of the ratchet to the number of iterations becomes
infinitesimal, and so can be ignored. However, if R is infinite, this ratio need not go to zero. So the
thermodynamic benefit of expand?lg R may disappear once R becomes infinite. This general point
is emphasized in [12]|, wheresit is pointed out that Landauer’s bound can appear to be violated
in the asymptotic limit when the information ratchet has an infinite state space. This apparent
violation arises because if the state space is infinite, then the initialized state essentially serves as

an infinite information battery.

36Indeed, we can view information ratchets as a variant of conventional prefix-free TMs, in which there is a one-way
tape that/contains the input string as usual, a one-way tape that contains the output string as usual — but rather

than an infinite work tape as in prefix-free TMs, in information ratchets the work tape is finite.
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C. Finite time “synchronization costs” of finite information ratchets with arbitrary non-IID

inputs

At the opposite extreme from the asymptotic limit of running a ratchet for an infinite mumber
of iterations (where the IPSL applies) is the regime of running the ratchet only a $mall number
of times, before the global system asymptotes. In this regime, even if the input data stream has
reached its stationary distribution, in general the EF of the ratchet exceeds,the walue given by
the IPSL. This is for the simple reason that the global system may not have reached a‘stationary
distribution by the time that the input data stream does. Loosely speaking, it takes time for the
dynamics of the state of the ratchet to “synchronize” with the dynamicssof the incoming data stream
(and/or outgoing data stream, as the case may be). =

A wuseful tool for analyzing this regime is the implementation cost, which is the mutual
information at any given iteration between the state of thelxatchet and the combination of the
input data stream and the output data stream [17|. An important résult here is that for ratchets
that are predictive of their previous outputs, the greater the number of states of the ratchet (i.e.,
the larger its “memory”), the greater the transient dissipation [L22]. However, there are other kinds
of ratchets besides predictive ones. In particular, “retrodictive ratchets”, in which the state of the
ratchet has minimal information about the previous outputs, but all the information that is shared
between the past and future outputs, can synchronize without paying a penalty for a large state

space.

D. Necessarysconditions to reach the bound of the IPSL

The results reviewed so faf in thisisection involve bounds on (the rate of) Landauer cost required
by an information ratchet that{is optimized for the input stream and the desired map of it into an
output stream, e.g., as in_the TPSL. In addition though, in [114], results closely related to those
reviewed in Section/IX are exploited, to derive properties that the information ratchet must have
in order to achieve those bounds. These confirm and refine earlier results [18], establishing that
the size of the ratchet’s state space must match the size of the “memory” of the input data stream
in order to_achieve the IPSL bound. (In [18, 114], a formalization of this is referred to as the
“thermodynamicéprinciple of requisite variety”.)

These analyses underscore an interesting fact. Information ratchets are not AO devices, and

so lcannot agccess the entire global system. (In particular, they cannot access all elements of the
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input data stream). However, it is still the case that if they have been running long enough (to
have passed the stage of transient synchronization costs), and have an update rule matched to the
dynamics of the data streams, then they face none of the usual thermodynamic inefficiencies one
would expect of non-AO devices. Intuitively, an information ratchet can do this because. it does
ultimately access all physical variables z in the (infinitely long) input that are relevant for the
computation — just not all at once. To circumvent this problem of a delay injaccess torrelevant
variables, the ratchet stores in its state the information concerning each such successive variable
z that is relevant for minimizing EP in subsequent iterations, after the ratehet has completed its

interaction with z.

~
XIV. KOLMOGOROV COMPLEXITY AND THE ENTROPY DYNAMICS OF TURING

MACHINES

A. The Landauer cost of implementingraTM

Suppose we are given a physical system that implementsia prefix-free, single-tape UTM, whose
state space X is the set of IDs of that TM. Suppose we are also given a desired output string &.
That output string in turn specifies a set I(0) of all input,strings i that result in the TM producing
& and then halting.3” What distribution over the eléments of I(c) results in the smallest total EF
by the time it halts? Equivalently, givenithat we\can assume without loss of generality that the
distribution over inputs is a delta function; what is the least amount of EF that could be incurred
by running a UTM to compute o with an appropriately chosen element of (o)?

In this subsection I summarize the answer to this question originally given in [62].38. First, in
order to have the physical systemdmplementing the UTM not simply “cease to exist” whenever it
reaches a halt state, modify the definition of TMs so that any halt state is a fixed point of the
update function of the TM. Nextyin order to avoid the problems that arise if we only sum entropic
costs incurred by runming a System until a random event occurs (see Section VIIC), suppose we
run the physical §ystem that implements the UTM for an infinite number of iterations, summing
entropic costsfall along, even if they arise after the UTM halts. More precisely, I will calculate the
total entropic eests incurred by running the UTM for 7 iterations where standard accounting is

37In general, that setdis infinite, since for any input string i that causes the UTM to compute 0, we can construct
another_input string that just loops an arbitrary number of times, doing nothing, before it runs the computation

starting from i
38 [62] considered conventional three-tape implementations of prefix TMs rather than single tape implementations.

However, that required introducing some extra assumptions, e.g., concerning reinitialization of the work tape by the

timethe UTM halts, and so is not pursued here.
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applied only at the end of the 7 iterations (see Example 7.) I will then take the limit as those costs
as T — o0.

I will also assume that the physical implementation of the UTM has no residual EP. Imaddition,
I will assume the starting value of the prior over IDs is the appropriate delta function overthe initial
state of the head and its initial position on the tape, times the usual (normalized) coin-flipping prior
over the set of all input tape strings for which the UTM halts. (Abusing notation, I will'write that
prior over input tape strings as ¢(.), with no special notation for the prior over IDs.) Iwill suppose
further that the system is not exactly cyclic; in each successive iteration, the (time-indexed) rate
matrix changes so that it still implements the update function specified by the definition of the
UTM, but has a new prior, given by propagating the prior of the previous iteration forward to the
current iteration.

To begin, note that Landauer cost arises during many-to-one maps.»A“T'M undergoes many such
maps as it evolves. The Landauer cost of each of those maps is'given by the drop in entropy of the
actual joint probability of all of the IDs during such a map. Since there is zero residual EP, the total
EP is mismatch cost, and the total EF that arises in running the UTM for 7 iterations is the sum
over all such iterations of the associated drop in tlie crass-entrépy between the actual distribution
over IDs and the prior distribution over IDs; Given our assumptions about the dynamics of the
prior, this means that the total EF incurred by implementing the first 7 iterations equals the initial
value of that cross-entropy before thefitstriteration begins minus its value after the 7’th iteration
ends.

Since we requires that the actuwal distribution over initial strings has its support restricted to
I(0), we know that under the limit 7 — o0, the state of the tape converges under probability to a
delta function centered on o. For J;Qe same reason, the state of the head converges under probability
to a delta function centered ondthe thalt state, r4. So the actual distribution over IDs converges
under probability to a'delta function.

Combining, we seerthat thetotal EF in the infinite-7 limit is just the initial cross-entropy between
the actual distribution over IDs and the prior distribution over IDs, plus In[g(I(0))], the ending
value of the cross entropy Since the initial actual distribution is an delta function d(., s*) centered
about the (unknewn) EF-minimizing input string s*, and the initial prior is the coin-flipping prior,
the initial cross-entropy between the actual distribution over IDs and the prior distribution over
IDs is justuln[¢(s*)] 4+ In 2, where Q is Chaitin’s constant, i.e., the normalization constant for the

coin-flipping prior. (Note that due to Kraft’s inequality, 2 < 1, and so In{2 < 0.) Combining, the
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minimal EF required to compute o using the UTM is [62]

<K(J) +log[q(I(0))] + log Q) (66)

where K (o) is the Kolmogorov complexity of using the UTM to compute o.

Note that Eq. (66) depends crucially on the fact that we take 7 — oo. If we rundhe TM on the
(implicit) input s* that results in the EF of Eq. (66), the TM will halt, with output equal t6 o, at
some finite time. But our calculation resulting in Eq. (66) requires us to keep running the TM past
then. Extra entropic costs are incurred as we do that, since even though the state remains fixed
at o if we start at s*, the probability of the TM reaching ¢ under the coin-flipping prior will keep
changing. Concretely, that reflects the fact that other inputs to the TM besidess* eventually reach
o, i.e., there are other trajectories through the space of IDs that converge /with the one starting
from s*, and that do so after the TM run on s* halts. Those convergences of trajectories are
many-to-one maps, and therefore incur entropic costs, which areweflected in Eq. (66).

Intuitively, the calculation of Eq. (66) says that the minimal EE:to compute a string o is given by
adding a “correction” term to the Kolmogorov complexity, which consists of Chaitin’s constant for
the UTM, plus the log of the total prior probabilityi under the c?)in—ﬂipping prior of all input strings
that produce o. That correction arises fromithe fact that Kolmogorov complexity is concerned
with the smallest length input string, out of these input strings which result in o, whereas Eq. (66)
is concerned with the smallest amount oftEE generated by running the UTM, out of those input
strings which result in o.

The normalization constant 'in, Eq. (66) is uncomputable, and the two functions in Eq. (66)
are nonrecursive [84]. So sum of/those three terms cannot be computed. However, that sum is only
a lower bound in any case. Serif ene can/compute lower bounds on each of those three terms for a
given o, then the sum of those threelower bounds provides us with a (computable) lower bound to
the EF needed by a system thatiimplements the UTM to compute o.

It is important terealize that the expression in Eq. (66) reflects nonzero mismatch cost. In fact,
such mismatch cest is unavoidable, since we have a fixed TM, and are varying the distribution over
its input strings (looking for the delta function distribution that results in minimal EF). Indeed,
if we had zeroymismateh cost, then the actual distribution over inputs would have to equal the
coin-flipping prior. This would mean that the distribution over output strings produced by running
the ULM would mot be restricted to o — in fact, that distribution would have full support over the

space of output strings (since U is a UTM, by hypothesis).
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B. Recent investigation of entropy dynamics of a logically reversible TM

The recent paper [135] contains an analysis of the thermodynamics of a CTMC that ebeys LDB
and implements an arbitrary, fully-specified TM. The authors use a variant of the three-tape prefix
TMs described above, which instead involves an input tape, a history tape, a working tape, and an
output tape. They require that their TM’s head cannot back up when reading the inputitape, just
like the conventional three-tape, prefix TMs [84]. However, in contrast to such, TMs; they require
that the input string on the input tape of their TM be finite and clearly delimited, by blanks.

Unusually, they also require that the TM be “logically reversible” even though it'ig implemented
using a CTMC that obeys LDB, and so backward versions of everyrallowed forward transition
between IDs are allowed. (They relate this to earlier work on “Brownian Com;uters” in general, and
DNA TMs in particular [61, 136].) To do this they require that thesonly-paths through the space
of IDs that are allowed by the CTMC are those that obey the update rule of the TM. However,
any given transition along such a path can go backward, to an earlier ID, rather than forward,
to the next ID. “Logical reversibility” for them means that the update rule of the TM is logically
reversible. This implies that there is no intersection/betweemangtwo paths; even though the system
evolves stochastically forward and backwardson a path, each allowed path is uniquely specified by
its starting state.

Note though that this is not the aneaning of “logical reversibility” conventionally considered
in the literature (see Section VI). In their model'of a TM, any of the states along a particular
path (after the first state) has 4wo possible predecessor states. So the system dynamics involves
two-to-one maps (albeit stochasti¢"ones). This means that the system is no more or less logically
reversible than simple bit erasure is, and no more or less thermodynamically reversible than simple
bit erasure is. In addition, feach dteration of the system can result in non-zero Landauer cost, just
like bit erasure does.

They have two major ¢enclusions. First, they establish that in the infinite time limit, when
the probability distribution over IDs reaches a steady state, the Landauer cost per iteration can be
made arbitrarilyssmall, by making the bias of the CTMC in favor of forward rather than backward
transitions small @nough. However, they also show that in the finite-iteration regime, where the
TM has only beensrunning for a finite number of steps, the Landauer cost per iteration will be
negative.) This reflects the fact that the distribution over IDs starts as a delta function when the
TM begins, but (due to the stochastic nature of the CTMC) diffuses as the iteration number grows.

(See the discussion at the end of Section VIIB.)
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Importantly, the authors consider a scenario where both input strings and output strings persist
after completion of a computation, for an infinite number of following computations. So their
analysis does not obey standard accounting. Concretely, their system requires that the usér has an
infinite set of initialized bits to use to store both the inputs and the outputs of every computation
that the user runs. As discussed in Sections VII and XI, such a set of bits is an information
battery. If we wanted to, we could ust use such a battery directly to drive the EE,of a conventional,
irreversible TM, rather than use it to store copies of the inputs and outputs of all runs of the TM

in the past.

C. Early investigations of the Landauer cost of logically reversible Turing machines

The earliest work on the thermodynamics of Turing machines was'by Bennett [60, 61]. This work
was done before modern nonequilibrium statistical physics, andso had to rely entirely on the original
bound developed by Landauer involving bit erasure, withoutrexploiting modern nonequilibrium
statistical physics. (See the discussion motivating the term “Landauer cost”, just afer Example 2.)
Working under the supposition that the only way/to reduce ghermodynamic cost was to reduce
the total number of bit erasures, these early papers [concentrated on how to convert a logically
irreversible TM into an equivalent logically reversible one. After the initial work showing how to
perform such a conversion, the focus shifted to how to minimize the resources needed to run that
converted system, i.e., on how to minimize the growth as that system progresses in the size of its
buffer “history tape”, which it u§es to ensure the computation stays logically reversible [2].

However, the procedure for converting a logically irreversible TM into an equivalent logically
reversible TM is similar to the procedure for converting a logically irreversible circuit into an
equivalent logically reversible cir¢uit,.as described in Section XI. This means that there are caveats
concerning the entropic gosts of running a logically reversible TM which is constructed to emulate a
given irreversible TM that are similar to caveats concerning the entropic costs of running a logically
reversible circuit constructed to emulate a given logically irreversible circuit.

Specifically, xecall that #he answer-reinitialization of a logically reversible circuit will incur at
least as much Landauer costyas is incurred in the answer-reinitialization of the equivalent (logically
irreversible) AO device. In fact, in one model of how to perform answer-reinitialization, the extra
Landauer costs of answer-reinitialization of a logically reversible circuit will be at least as large as
thefentire Landauer cost of running the equivalent AO device.

Similar issues hold for relating the entropic costs of given logically irreversible TMs and equiva-
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lent logically reversible TMs. In particular, in the case of circuits, the extra answer-reinitialization
costs arise due to the need to reinitialize an extra set of output bits that contain a copy of z/¥.
Analogously, in the case of TMs, the extra answer-reinitialization costs arise due to the need to
reinitialize an extra set of bits on the output tape of the TM that contain a copy of thednitial input

string on the TM’s input tape, 2!V,

D. Early investigations of the Landauer cost of logically irreversible Turing machines

I now consider one of the most sophisticated of the early papers on the thermodynamics of
computation, which considered the thermodynamics of irreversible Turing machines [110]. This

~
paper focused specifically on the connection between the minimal “thermmodynamic price” it takes

to run a given TM to compute a desired output string o starting frém a given input string '~ on
the one hand, and on the other hand, the conditional Kolmogorov complexity of the inputs to the
TM, conditioned on the desired output string.

The analysis in [110] considers a scenario in which one first runs a Bennett-style reversible TM,
but when that TM finishes, “one insists on replacemeént of the.input with the output in the computer
memory” [110]. So implicitly at least, there is appreciation for the problems with not reinitializing
that input which were discussed in Section XI:

However, because of when [110] was,written, iticould not exploit the modern, exact equalities for
the entropic costs of arbitrary processes, but had to'rely entirely on indirect arguments concerning
the “thermodynamic cost” of bit erasure given by Landauer’s original bound. As a result, it is not
clear precisely how to interpret that analysis in modern terms. For example, the analysis in [110]
does not distinguish among EF, EP and Landauer cost (concepts that had not been defined in
their modern form when the pap; was written). Instead it informally refers to “thermodynamic
price”. Confusing the issue of how to interpret [110] even more is that the discussion in [110]
repeatedly confounds logical irreversibility and thermodynamic irreversibility. (See the discussion
in Section VI.)

At a high level; the idea in [110] seems to be as follows. Suppose you run a Bennett-style TM
based on an firrevérsible TM, U, ending with the desired output ¢ and a copy of the input, s. As
discusseddin SectionXI, you now need to reinitialize that copy of the input, i.e., erase it, to allow
you to use your TM again. Assume that the “thermodynamic price” of each bit in that copy of the
input that you erase is just the original Landauer bound, In[2]. Accordingly, before erasing the copy

of the input, you (reversibly) encode it in the shortest string you can with o as side-information.
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So long as that encoding is lossless, carrying it out has zero entropic cost. At this point, we erase
that encoded version of 2!V, y, to complete a cycle.

Since by construction % is not longer than 2’"V, the thermodynamic price of erasing(y is not
higher — and potentially far smaller — than would have been the thermodynamic price of erasing
thermodynamic price. To make this precise, suppose we explicitly specify our encoding / decoding
algorithm by specifying a Turing machine E — possibly different from U — that decodes™ into
!N, Then the minimal length of y would be Kg(s|o), the conditional Kolmogorov ¢éemplexity of
s given o, using Turing machine F [84]. So, the minimal thermodynamic price of erasing the extra
copy of the input is kT In[2]Kg(s|o), where T is the temperature of the (single)heat bath.

To make this interpretation of the analysis in [110] somewhat more precise; suppose we have
a system with countable state space X, and that the system startssin a particular input state
!N € X. (Such an initial state is sometimes called a program in [110]s) ‘We then repeatedly apply
a deterministic map g : X — X to the state of the system. In general, XX may be finite or not, and
the map ¢ may be logically reversible or not.

We interpret that sequence of iterations of g as the.computation. Note that this computation
overwrites the input to produce the output. So the requiremeéht of standard accounting that the
input be reinitialized by the end of the computation does not apply. (See Section VIII.)

We allow the total number of iterations of g imra computation to be either a pre-fixed, finite
value, or instead to be determined dyhamically, in a way that depends on the input 2%V (e.g., as
in a finite automaton, or a TM). In the seéeond of those two cases, it may be that the sequence
of maps never halts at all. In light,of this, I will write X* C X to mean the set of initial states
such that the resultant sequencefof statesidoes indeed ultimately halt. (If the number of maps is a
pre-fixed, value then X* = X4 Lite fAz) to mean the single-valued function taking any x € X*
to the resultant state of X [that(the System is in when the sequence of maps halts.

Next, suppose we have a space¥” with each y € Y interpreted as an encoding of x, conditioned
on the information f(@). More precisely, define a space Y and a map F : Y x f(X*) - X* such
that for all = € X*, there exists a y € Y such that F(y, f(z)) = z. F is the decoding map. Define
an associated set-valnedreficoding map to be any function G : X* — 2" such that for all x € X*,
and all y € G(z); F(G(z), f(z)) = z. (Note that if we change F(.,.), we must also change G(.).)
To comport with the high-level description above, suppose as well that F'(.,.) is run by a TM E.
For later mse, let D : Y — R be a size function. For example, if Y is a set of bit strings, D(y)
could be 4(g).

As an example of these definitions, in [110] the space Y consists of all possible encodings of the
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trajectories of the successive irreversible changes to the ID of a prefix-free UTM, U, that arise during
the iterations of the update function of that UTM. (These trajectories are called histories in [110],
paralleling the terminology in [60].) G maps any initial 2/ to the set of all encoded versions of that
particular history which is constructed by running the TM starting from 2"V until the?@M halts
:EI N )

F is the function that takes the output generated by running the TM on !V, f( , together

with any associated encoded version of a history from the set G(z/"), and reconstructs @V, e.g.,

IN “using the entries in G(2V) to resolve anyrambiguities

by running the TM “in reverse” from x
in this reverse-evolution as they are encountered.

The analysis in [110] assumes that rather than implement the UTM U directly in a physical
system, one implements the map I' : 2 € X* — (argmin, ¢ () D(y)§ f (7)), which takes the initial
state x to the final state f(z) combined with the encoding G(z) that has smallest size. By con-
struction, I' is logically reversible. Therefore both its Landauer cost and its mismatch cost are zero,
no matter what the initial distribution over X* is, and no matter what the prior over X* is. (See
Section XI.) Assuming that the residual EP of the system implementing I" is also zero, this means
that the EF to run I' is zero. This establishes Lemmasl. in [110].

After having run T, in order to meet the requirements/of stanflard accounting we must reinitialize
y. The question addressed in [110] is, what{igsthe minimal/thermodynamic price to reinitialize y?
For simplicity of the exposition, consider the situation that [110]| focuses on, where Y is a space of
bit strings, and D(y) is the length of therbit string y. Although there is no mention of EP in [110],
and the formula for mismatch cost had not,been derived when it was written, it seems that the
easiest way to interpret the answerito the question given in [110] is to view “thermodynamic price”
as meaning total EF — including mismateh cost — for the case where the residual EP is zero. This
interpretation makes several assmqptions:

First, note that there ig implicitly a prior ¢(y) in the system that erases y. Suppose that ¢(y)
is uniform over all strings of length less than or equal to some L, and that it is zero for all longer
encoded strings.?? Torensure that there is no possibility of infinite mismatch cost with this prior, we
have to also assume that the\actual distribution over inputs to the TM U has its support restricted
to a set I, confaining only /Y that result in ’s that are not longer than L bits. In turn, since we
need reversibility of the mapT', we assume that I;, does not contain more than 2 elements.

Next4 suppose you are given a desired output of the TM, o. Suppose that I(o) N I # & and

that the TM starts its computation of o starting from some particular /¥ € I(o) N Ir. Making

39Tf we did not{build such an upper limit on the length of the strings into the prior, then that prior would be un-

normalizables



Page 95 of 110

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-110712.R1

95
these assumptions, and adopting standard accounting, we ask:
What is the minimum value, over all L, of the total EF that would be generated by
running T followed y-erasure on some specified z'™N € I(o) N Ip?
(In [110], the answer to this question is called the thermodynamic price for computing ¢ from zfV.)

Since we’re taking residual EP to equal zero, and since the EF incurred in running I is zero, the
total EF is the drop in the cross-entropy between the actual distribution p(y) ‘and ¢(y)that oceurs
from the beginning of the process of erasing the first L bits of y to its endsSinee.g(y) is uniform,
the associated drop in cross entropy is just LIn[2]. Moreover, by definition of G} the minimal L is
just Kg(x™|o). So the answer to the question is Kg(x!V|o)In[2]. This is Theérem 1 in [110].

There are subtle aspects of the analysis in [110] worth bearing,in‘mind that have nothing to do
with modern nonequilibrium statistical physics. For example, as mentioned above, the TM defining
the Kolmogorov complexity function Kg(.) that appears in.the results'in [110| need not be for the
same TM U whose cost is being analyzed; there are two TMs invelved, and a priori, they need not
have any relation. At best, one could say that the differencerbetween the Kolmogorov complexities
of the two TMs is bounded by an arbitrarily large constant, gvhich is independent of the output
string being computed. In other words, the analysis gives “the minimal thermodynamic price” it
takes to run a given TM to compute a desired output. string up to an unspecified additive term, a
term that is bounded by a constant that ¢an.be made arbitrarily large.

On the other hand, suppose we require that the two TMs, E and U, are identical. That would
obviate this last concern. In addition, it seems that it would allow us to take L to infinity, and also
to optimize the EF over the set of all z"¥ '€ I(c), rather than only consider the entropic cost for an
arbitrary, given 'V € I(o). Ahissgonjecture is motivated by the following semi-formal reasoning.

First, let Y be B*, the set ofall finite bit strings, and assume that the y-erasing process uses the
coin-flipping prior over ¥. In addifion, have the y-erasing process only erase the In[¢(y)] bits that
comprise y. For anarbitrary y-erasing TM FE, doing this would require that the process count up
to £(y) as y is creéated and that it stores that value, in order to determine how many bits to erase.
Under standard acecounting, we would then have to erase that stored value of ¢(y) after using it to
erase y, to allow/he overall system to be run on a new input 2/V. However, if E is prefiz-free, then
y is a prefix-freesstring, i.e., it is an “instantaneous description”. This means that the process of
erasingyy/ deoes not need to know how many bits to erase ahead of time — it can just keep erasing
until it reaches the end of y, at which point it will halt. So we do not face the problem of accounting

for theentropic cost of erasing the value £(y). (However, depending on the details of this y-erasing
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system, we may have to erase a bit that it stores, telling it whether it has reaching the end of y or
not.)

For simplicity, adopt the coin-flipping prior over this infinite Y. So the prior probability as-
signed by the y-erasing system to any particular string y is 274 /2, where Q is the nermalization
constant. Take the limit of running the string-erasing TM for an infinite number of iterations (as
in Section XIV A). That means that the ending cross-entropy between the actual distribution and
the prior goes to 1In[1] = 0. Accordingly, the drop in cross-entropy between those two distribu-
tions during the y-erasing process is just the starting cross-entropy between them. If the actual
starting distribution is a delta function centered on y, then the value of this starting cross-entropy
is £(y) + log[€2]. As discussed above, the minimal value of £(y) is K(z'"|o)aPligging this in and

IN "we see that the minimal EF is

min | <K(xIN|o)) + log[Q)] (67)

zINel(o

then minimizing over x

To understand this result intuitively, note that K(z'"V|¢) can berinterpreted as the amount of
information that is contained in /¥ but not in o. Acdoérdingly, thé minimal EF given in Eq. (67)
is just the least possible amount of information that is; lost W’hen the TM transforms one of the
elements of I(o) into o (up to the additive constant of log[Q]).

There are several points about this analysis worth emphasizing. First, note that the system
considered in Section XIV A is just (an implementation of) the single TM U. In contrast, the
system considered here first runs a funetion I"swhich is constructed from U, and then runs a y-
initializing process. Moreover, in, the system ¢onsidered in Section XIV A, the coin-flipping prior
arises as a distribution over X!Nywhereas in the system considered here, the prior over X'V is
arbitrary; instead, the coin-flipping prior arises in the system considered here as a distribution over
Y.

The price paid for, changing the system so that we can move the coin-flipping prior from X'V
to Y is that that new system needs to be able to calculate the non-recursive function sending z
to the shortest string y sueh that Fg(y, f(x)) = . In other words, the new system has to have
super-Turing capabilities, unlike the original system, which consisted only of the TM U .40

Finally, just like other results in Turing machine theory, all the results recounted here hold only
up to additive Q(l) térms. For infinite spaces X and Y, that is fine, but for finite X and Y, such
additive constants can swamp the other terms in these results. Combined with the fact that these

49Zurék was well aware of this problematic aspect of analysis summarized in this subsection, saying that the bound of
Theorem 1 in [110] “cannot {actually be met} by recursive computation {i.e., by running a TM guaranteed to halt}”,

that at best it is met “perhaps by sheer luck”.
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results are only bounds, this means they have little to say about computation with finite X. To give
a simple example, all of the results recounted here apply to straight-line circuits. Yet as recounted
in Section X, the formulas for the entropic costs of circuits do not involve Kolmogorov complexity
(in contrast to the results recounted here).

As a closing, historical comment, an explicit goal of much of the early work onsthe thermody-
namics of TMs was to rederive statistical physics with little if any use of probabilities [81+84] 137].
Ultimately, perhaps the most fruitful way to consider the analysis in [110] is not to tramslate 1t‘into
modern nonequilibrium statistical physics, so deeply grounded in the use.of probability distribu-
tions, but rather to view it as part of this research program which strived to expunge the use of
probabilities from statistical physics.

~

XV. THE MIMIMAL HIDDEN COMPUTATION OCCURING WITHIN A VISIBLE
COMPUTATION

Recall the construction summarized in Section VIIIjof an AO"device that can implement any
conditional distribution 7 over a set of “visible” statés X ina tk@rmodynamieally reversible manner
— even if the output distribution under 7 depends on the wvalue of the input. This construction
works by expanding the original state space X, ofisize | X, into a state space of size | X|x|X’|, and
defining a dynamics over X x X’ that_implements 7 over the subspace {(z,0) : z € X}.

In that construction, X’ is the same size as X7 8o the joint space X x X’ has | X|(|X|—1) more
“hidden” states than the originalspace of “visible” states, X. That can be a huge number of extra
states. For example, in a digital.ecomputer with a 64-bit address space, |X|= 254 — and so the
number of extra states needed to. implement a nontrivial map over X using that construction is
~ 9128 >

This raises the question ‘of/what fhe minimal number of extra, hidden states must be, in order
to implement a given‘distribution 7 in a thermodynamically reversible way. Some recent results
concerning this and relatediissues are summarized in this section.

First, one doesn’thneed/to restrict attention to CTMCs that operate over Cartesian product
spaces X x X'. Infull generality, we are interested in CTMCs that operate over a space of the form
X UZ, forssome appropriate Z. The construction summarized in Section VIII is just a special case,
since we can rewrite a space X x X' as X U Z if we identify Z as X x X'\ {(z,0) : 2 € X }.

Bounds on'the minimal value of |Z| needed for a CTMC over X U Z to both implement a given

conditional distribution 7 over {(x,0) : # € X} and to be thermodynamically reversible are derived
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in [138], for the case of a finite X. These bounds apply to any m, even “maximally noisy” ones
where for every o/, z, w(z|2z’) # 0. That paper also contains some results for deterministic 7, for
the special case of a countably infinite X.

However, in computer engineering we are typically interested in conditional distributions, 7
that implement a deterministic, single-valued function over a finite space X. There are several
special properties of such scenarios. First, perhaps surprisingly, it turns out that any montrivial
deterministic map = — f(z) cannot be implemented by any CTMC operating over only. the visible
states X, even approzimately [120]. This is true independent of concernsabout, thermodynamic
reversibility or the like; it simply arises due to the mathematics of CTMCs [139, 140|. As a striking
example, a simple bit flip over a space X = {0,1} cannot be implemented,by any CTMC over
X, even approximately, no matter how much dissipation accompaniesithe CTMC, or how the rate
matrix varies in time, or how long we run the CTMC.

This means that in order to implement any nontrivial deterministic map, thermodynamically
reversibly or not, one must use hidden states. So for example, under the approximation that some
real-world digital device implements a deterministic Beeleannmap over a set of visible bits, and that
the dynamics of the device can be modeled using Stochiastietliermodynamics, we know that that
the CMTC going into the stochastic thermodynamic analysis must use hidden states.

Perhaps even more surprisingly, it turns out, that.any CTMC that implements a deterministic
map can be decomposed into a sequencerof.more than one “hidden” timesteps. These timesteps are
demarcated from one another by changes in‘what transitions are allowed under the rate matrix [120].
In general, for a given set of visiblesstates X, hidden states Z, and deterministic map f: X — X,
the minimal number of hidden gimesteps,for any CTMC over X U Z to implement f over X is
greater than 1. So any real—world\digital device that implements some Boolean operation over its
state space in each of its iterations must have a set of multiple hidden timesteps that occur within
each of those iterations (assuming the device can be modeled as evolving under a CTMC that
implements a deterministic function).

Often there issa real-world cost for each additional hidden state, and also a cost for each ad-
ditional hidden timestep: (For example, in systems that evolve while connected to a heat bath
and obeying LDB for some Hamiltonian, at the end of a timestep either an infinite energy barrier
between/elements of 7 is raised, or an infinite energy barrier is lowered.) So there is a “space/time”
tradeoff between/ the costs associated with the number of hidden states used by any CTMC that
implementsfa given f(z) and the costs associated with the number of hidden timesteps used by the

CTMCtodmplement f(x).
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This tradeoff involving hidden states and hidden timesteps occurs within any digital device,
and in a certain sense “lies underneath” the more conventional space / time tradeoffs studied in
computer science theory. Indeed, consider the special case that there are no constraints on the
CTMC operating over X U Z, e.g., due to restrictions on the Hamiltonian driving thatsCTMCu In
this case, that CTMC operates as an AO device over X U Z. For this special case, the precise form
of the hidden space/time tradeoff can be given in closed form [120]. As an example, it turns out
that (if there are no constraints on the CTMC) a bit flip can be implemented using only, one hidden

state, but only if one uses three hidden timesteps.

XVI. FUTURE DIRECTIONS

There has been a resurgence of interest recently in the entropic cests of ¢computation, extending
far beyond the work in stochastic thermodynamics summarized above. 'This has work has taken
place in fields ranging from chemical reaction networks [44, 46,47, 141, 142] to cellular biology [40,
42] to neurobiology [143, 144|, in addition to computer seience [1]." There is now a wiki serving as
a community resource for workers from all these different disciplines with a common interest in the
entropic costs of computation (http://centre.santafe.edu/thermocomp).*! In addition, there is
a book coming out in early 2019, that summarizesisome of the insights of researchers from all those
fields [145].

Almost all of the work to date on the'entropic costs of computation is concerned with expected
entropic costs, averaging over allhitrajectories the microstates of a system might follow. However,
a very fruitful body of research insstochastic thermodynamics considers the full distribution of the
entropic costs of individual trajectories [85, 86]. The associated results allow us to consider questions
like what the probability is‘in a/given process of EP having a particular value, e.g., as formalized
in the famous “fluctuation theéorems” [99, 146, 147]. Some more recent research along these lines
has resulted in “uncertainty, relations” [118, 148-150|, which relate how precise the dynamics of a
system (e.g., of a computational machine) can be to the EP it generates. Other recent research
has resulted in _classical “speed limits” to go along with the quantum ones [24]. As an example, one
such speed limit lowersbounds how confident we can be that a desired state transition has occurred
in a givenranmountyoftime, as a function of EP [151]. (See also [152].)

Clearly these recent results are related to issues that play a fundamental role in the entropic
costs of computers, and in particular to the tradeoffs between those costs and how confident we can

4IResearchers are highly encouraged to visit it, not just to find useful information, but also to improve it, e.g., by

putting in announcements, adding references, adding researcher web page information, etc.
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be that a given physical system implements a desired computation exactly, how fast it can do so,
etc. All of these issues remain to be explored.

Restricted attention just to the issues touched on in this paper, there are many avenuesiof future
research that bear investigating. One set of issues worth investigating is how the entrepie,costs,of
probabilistic Turing machines [8| are related to those of deterministic Turing machines (the kind
considered in Section XIV). Similarly, the analysis in Section XIV considered I'Ms thatroperate
over the space of IDs of the TM. So in each iteration, they act as an AO dévice. Annatural line
of research is to explore how the entropic costs change if we instead model.theyI'M as a solitary
process, given by the conventional definition of TMs in terms of heads that cam only access one
position on the tape at a time. (See Section IV E.) o

There are also many issues to investigate that are more closely tiéd to the kinds of problems
conventionally considered in computer science theory. To give a simple example, for determinis-

tic finite automata, we could investigate the following issues, which are closely related to topics

introduced (and solved) in introductory courses in computer science theory:

1. Given a language L, does the (unique) minimal determini’stic FA that accepts L also result in
the smallest total Landauer cost (conditioned on‘having the distribution over inputs produce

some string in L) of any deterministic FAxthat aceepts L?

2. Is the deterministic FA with mjnimal total Landauer cost (conditioned on having the distri-

bution over inputs produce some string in L) unique (up to relabeling of states)?

3. What is the largest possible total Landauer cost of any deterministic FA that accepts L

(conditioned on having the distribution over inputs produce some string in L)?

N

4. Suppose we are given two deterministic FA, M; and Ms and a shared distribution over input
strings, where gome of the strings accepted by M; are also accepted by M,. What is the
probability of a string,that is accepted by both where the Landauer cost for M; exceeds that
for Ms? What is the\probability of such a string for which the two deterministic FAs have

identical luandauer cost?

5. Suppose.we haye a deterministic FA that can get stuck in infinite loops, and / or accept
arbitrarilysong strings. Then we can ask many “entropy rate” variants of these questions.
For example, does the Landauer cost per iteration of a given deterministoic FA approach an
asymptotic value? How many such asymptotic values could the same FA approach (depending

onrthe precise infinite input string)?
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6. We can also consider variants of all these issues where consider mismatch costs instead of (or

in addition to) Landauer costs.

A core concern of computer science theory is how the tradeoffs among the amounts of warious
resources needed to perform a computation scale with the size of the computation. (For example,
a common question is how the memory requirements of a computation tradéyoff with the number
of iterations the computation requires, and how both of those scale with the size of,the computa-
tion. In fact, many textbooks are devoted to tradeoff issues, instantiated ‘owver different kinds of
computational machine.

To date, none of those chapters has included the thermodynamic resources need to perform the
computation, and how they scale with the size of the computation. Infessence, every chapter in
those textbooks can be revisited using the tools of stochastic thermodynamics, to see how they are

extended when one includes these other kinds of resources.
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Appendix A: Properties of multi-divergence

Note that in Eq. (21) I adopt the convention that we subtract the sum involving marginal
probabilities. In contrast, in conventional multi-information I subtract the term involving theyjoint
probability.

To understand why I adopt this convention, consider the case where X ¢has two components,

labelled a and b, and use the chain rule for KL divergence to write
D(p||r) = D(""[Ir*"") = D(p*|Ir*) (A1)

with obvious notation, where p and r are both distributions over the4éint space/(X?, X°).

D(p®||r*) quantifies how easy it is to tell that a sample z, came from p(\xa) rather than r(z,).
Similarly, D(p®?||r®®) tells us how easy it is, on average (according to.p(ag)), to tell that a sample
xq came from p(zq|xp) rather than r(zg|xp).

So Eq. (A1) says that the multi-divergence between p and . isthe gain in how easy it is for
us to tell that a sample x, came from p rather than 7 ifiinstead of only knowing the value x, I
also know the value zj. In other words, it quantifie§ how muchsinformation X provides about X
(on average), concerning the task of guessing whether a given sample x, was formed by sampling
p or r. (Note that since multi-divergence is ‘symmetric among the components of x, D(p||r) also
quantifies how much information X provides about X?.) However, this interpretation requires our
convention, of subtracting the sum of marginal divergences from the joint divergence rather than
the other way around.

In light of these properties of multi-divergence for variables with two components, we can inter-
pret the multi-divergence between\ two probability distributions both defined over a space X that
has an arbitrary number of components as quantifying how much knowing one component of X
tells us about the other./This is similar to what multi-information measures. Indeed, as mentioned
in the text, D(p[|r) reducesito gonventional multi-information Z(p) in the special case that r is a
product distribution.

So under ourréonvention, multi-divergence quantifies us how much knowing one component of X
tells us abouti the 6ther — somewhat analogous to what multi-information measures. Indeed, D(p||r)
reduces 0 conventional multi-information Z(p) in the special case that the reference distribution r
is a product distribution.

In addition to motivating our convention, this also means that the multi-divergence cannot be

negative if 7 is a product distribution. More generally, however, if r is not a product distribution
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but the components of X are correlated under r in a manner “opposite” to how they are correlated
under p, then D(p||r) can be negative. In such a case, being given a value x; in addition to z,
makes it harder to tell whether x, was formed by sampling from p or from 7.

To illustrate this, consider a very simple scenario where X = B?, and choose

Plugging into Eq. (20) gives

Dlpllr) = = 3 plaafar)p(os) 1o | 4 PR

= CARDPHED)
r(zalza = 0) (1)
=W/ { %) r(xw]
B 1/2) A1/2)
=-/23 In {1/2 oJ

So on average, if you are told a value of.r thatsunbeknownst to you came from p, in addition to
being told a value of x, that unbeknownst towyou came from p, then you are less able to tell that
that z, value came from p rather than r.

This phenomenon is loosely similar to what’s sometimes known as Simpson’s paradox. This can
be seen by considering the ifistance of that “paradox” where I have a distribution p(z, zp, z,) over

three binary variables, and'simultaneously
p(z= 1lzp, 24 = 1) > p(z = 1|z, 24 = 0)
for any value of #p), yet
p(z=1lzg=1) < p(z = 1|z, =0)

For such distributions, if we are told the value of x; in addition to the value of z,, we conclude
that_zqif more likely to equal 1 when x, = 1 than when x, = 0. This is true no matter what I am
told the value of xj is. Yet I come to the opposite conclusion if we are only told the value of x,,

and arémot told the value of z; (see [153]).
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Appendix B: Proof of Proposition 2

Proof. The form of the rate matrix of a subsystem process means that it is impossiblesto have

oNOYTULT D WN =

a state transition in which both x4 and xp change simultaneously. Accordingly, we can write
x = (x4,xp), where x4 = (N4, 74,74, 74), and similarly for £p. (Note that as shorthand, we
1 do not explicitly indicate in this decomposition that the value of xp doesn’t4hange when x 4 does
13 and vice-versa.) In addition, for pedagogical clarity, in this appendix I expresssrate matrices im the
15 form Wy (2" — z) rather than W ,(¢). I modify the notation for survival prebabilities similarly.

A

If subsystem A undergoes a state transition 4 — 2 at time ¢t whilesystem B §tays constant,

18 the associated value of the rate matrix is Wi(z? — z4), and similarly it is subsystem B that
19 ~

20 undergoes a transition. In addition, for any three times 7 < 7/ < 77, the survival probability of a
subsystem not changing state between 7 and 7" equals the produetiof thesurvival probability for

23 going from 7 to 7/ and the survival probability for going from. 7’ to 7. These facts allow us to

25 expand Eq. (26) to evaluate the probability of a given trajectory r as

p(za,zB %Aax(])g) = ST?A (xﬁl)W:ix (952471 —”1724)

33 XS71_A (l‘ﬁA) 7—33 (l‘B )W:é (I.]Bil—hIB) SiBB(x]]‘?,B)
J N

36 = p(a’ag)p(a”|af) (B1)

If we marginalize both sides®f Eq.(B1) over all components of x4 except the starting and
40 ending values of z#, do the same\for xp, and then translate to the notation of Proposition 2, we

42 derive
m(ay, bi|ao, bo) = 7 (a1]ao)m” (b1|bo) (B2)

47 This formally establishes the intuitively obvious fact, that the CTMC obeys Proposition 2(1).
49 Next, usingdBq. (27)ywe write the EF for the CTMC as

53 Qp) = / p(af B8 p(x 1 p (P |2F)

56 » Vi A A WTZ' ( vB B B W’r.‘
X ZWT} (zisi— o)) In—1; A + Z WTZB (zil1— z;)In



Page 105 0of 110

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-110712.R1

105
VA
W2 (zf ) = i)
— [ platpead) ZW Ao af)n—1 Da"
W:},(:Uf‘ xi )
B
W:}é (@~ )
+ [ b piaaf) ZW 28~ aF)in— Da®
W g (zf~xf )
= Q4(pf) + Qu(rf) (B3)

This establishes the first part of Proposition 2(2). Finally, note that Q4(p4)iis the EF that would

be incurred for a CTMC over state space X 4 with rate matrices W} (a’ 4 a), (i.e.,if subsystem B

did not exist at all).< So by the Second Law of Thermodynamics [86}Qu(pa) = S(pi') — S(p%),

and similarly for Qp(p?
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