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Abstract
We investigate dark energy (DE) by associating it with vacuum energy or cos-
mological constant Λ which is taken to be dynamic in nature. Our approach is
phenomenological and falls within the domain of variable-Λ cosmology. How-
ever, motivated by quantum theory of metastable vacuum decay, we proposed
a new phenomenological decay law of Λ(t) where Λ(t) is a superposition of
constant and variable components viz Λ(t) = ΛC + Λv which is indicated by
the word ‘hybrid dynamic’ in the title. By taking a simplified two-fluid sce-
nario with the Universe consisting of DE and another major component, we
found the solutions for three particular phenomenological expressions and made
a parametrization of the model in terms of dilution parameter (the dilution
parameter has been defined in the text as the exponent of scale factor in the
expression of density of the other major component, representing the dilution
of the component with the expansion of Universe in the presence of dynamic
DE). For pressureless dust and dynamic DE Universe, we found the present
day matter density (Ωm0) and dilution parameter (u) to be Ωm0 = 0.29 ± 0.03,
u = 2.90 ± 0.54 at 1σ by analysing 580 supernova from Union 2.1 catalogue.
The physical features of the model in regard to scale factor evolution, decelera-
tion parameter, cosmic age has also been studied and parallels have been drawn
with ΛCDM model. The status of cosmological problems in the model has also
been checked which showed that the model solves the cosmological constant
problem but the coincidence problem still exists in the model.

Keywords: dark energy, vacuum decay, variable cosmological constant, accel-
erating Universe
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1. Introduction

After developing the general theory of relativity (GTR) [1], which is a geometric theory of grav-
itation, Einstein attempted to build a cosmological model based on GTR. In order to keep the
model Universe static, Einstein added an ad hoc constant [2] namely, the cosmological constant
Λ representing universal repulsion in GTR. However, Edwin Hubble’s milestone discovery in
1929 that the Universe is expanding [3] lead to discarding of a static Universe concept. Conse-
quently, Friedmann–Lemaitre–Robertson–Walker (FLRW) family of models, which was built
upon a cosmological principle-based solution of GTR (FLRW metric) [4] and represented an
expanding Universe, became established as the standard cosmological models of the era. The
status quo was disrupted towards the end of 20th century when supernova cosmology project
team and high-Z supernova search team jointly inferred from their observational studies [5, 6]
that the Universe is expanding at an accelerating rate and the accelerated expansion could not
be explained within the framework of standard FLRW cosmology. In order to have a physical
basis for the observed acceleration, a hypothetical unknown entity, namely, dark energy (DE)
has been assumed to exist in the Universe which is responsible for the observed acceleration.
Since then, one of the fundamental quests of modern cosmology has been to solve the mystery
of DE.

The exact nature of DE is still unknown. Present investigation into the DE problem revolves
around building and studying DE-based cosmological models by choosing various probable
candidates to represent it. Among them, the historical Λ term of Einstein has been resurrected
and is also studied as a possible candidate for DE [7]. The current standard model of cosmology
viz., base-lambda cold dark matter (ΛCDM) model takes up this approach where DE is repre-
sented byΛ. In this line of investigation,Λ is usually interpreted as vacuum energy arising from
quantum fluctuations. However, there are two fine-tuning issues associated with it [8]: (i) the
cosmological constant problem—the estimated theoretical value of quantum vacuum energy
(Ωvac) at Planck scale and present observed values of cosmological constant energy density
(ΩΛ) has a discrepancy of about 120 orders of magnitude which indicates there must be some
unknown mechanism that fine-tunes the value of Λ to its present observed value, (ii) the coin-
cidence problem—observational results show that matter and vacuum density are nearly equal
in present epoch despite scaling differently. Therefore, the initial conditions must be fine-tuned
to achieve this.

A solution to these issues is to assume that Λ is a time-varying (decaying) parameter instead
of a constant i.e. Λ has decreased from its initial large value to its present small value which
can address the issues. Following the argument of [9], variation of Λ is possible within general
relativity if we define an effective momentum tensor Teff = Tμν − (Λ/8πG)gμν and assume that
Teff satisfies energy conservation. However, most analysis done in this area do not attempt to
derive such a dynamic Λ term from any fundamental theory and simply assumes an expression
of Λ(t). They are classified as phenomenological models of dynamic Λ which are also impor-
tant contenders for DE. According to Sahni and Starobinsky [10] phenomenological dynamic
Λ models can be classified into three categories based on ‘fundamentality’: (i) kinematic, (ii)
hydrodynamic, (iii) field theoretic. In kinematic models, dynamic expression of Λ is justified
from dimensional arguments whereas in hydrodynamic models the dynamic Λ term is esti-
mated by associating it with a barotropic fluid. In field theoretic models, dynamic Λ term is
associated with a new physical classical field for which the authors coined the term ‘lambda
field’. A list of various such Λ decay models which are used in literature, irrespective of cate-
gories described above has been listed in [9]. In this regard, it should be mentioned here that
some of these works dates back before the discovery of acceleration of the Universe when DE
was not even in the picture. In fact, the first proposal of a time varyingΛ came as early as 1933
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through the works of Bronstein [11]. Several works with variable Λ were carried out in the
eighties [12]1 way before discovery of acceleration of Universe. In these older works there-
fore, time-varying Λ does not represent DE, rather most of the works were motivated with the
intentions of solving different issues of standard cosmological models. We will however stick
with the modern recipe of associating dynamic Λ term with DE.

On physical grounds, time-variation of Λ indicates the quantum mechanical process of
vacuum/DE decay which ideally must be justified from quantum mechanical principles. In
fact, a quantum approach [13] proposes that dark or vacuum energy is in a metastable state
(false vacuum) and is decaying towards a stable state (true vacuum) as cosmic time t →∞.
This provides a physical basis for time-variation of Λ but in most phenomenological Λ decay
laws available in literature, vacuum energy density approaches zero as t →∞ and not to a
stable value. In an attempt to connect the quantum approach to phenomenological approach,
we will introduce a new type of phenomenological decay law in this work. Instead of going
in the traditional route, we will assume a hybrid2 dynamic nature of Λ(t) and propose Λ(t)
is a superposition of a constant component and a time varying component. Mathematically,
Λ(t) = ΛC + Λv (where ΛC and Λv refers to the constant and variable component of Λ respec-
tively) with Λ(t) → ΛC as t →∞ replicating the metastable vacuum decay scenario from a
phenomenological approach. This type of hybrid dynamic nature of Λ keeps the main spirit of
phenomenological dynamic Λ models intact since Λ is still a decaying parameter but it also
adds a new dimension to phenomenological variable Λ-cosmology by linking it to quantum
mechanical principles. An added advantage of this type of model is that standardΛCDM model
and pure3 dynamic Λ models can be readily recovered as special cases simply by setting ΛC or
Λv equal to zero with suitable choice of parameters. This flexibility provides ground for com-
parison with the standard model when confronted with observations. Another important feature
of this type of model is that the presence of the additive constant in the expression of Λ ensures
the signature flip of deceleration parameter (q) which is not readily obtained in pure dynamic
Λ models. So, the hybrid dynamic Λ model has certain advantages, and, in this work, we will
explore this model.

2. Mathematical formulation

A realistic Universe is made up of multiple components but in order to keep the calculations
simple, we will assume the Universe to be made up of two fluids—exotic (decaying) DE com-
ponent represented by phenomenological hybrid dynamic Λ and another major component of
the Universe, besides DE/vacuum. Furthermore, we will also assume a flat Universe in line
with WMAP results [14].

The Einstein field equation (EFE) of GR including a time-varying Λ term takes the form,

Gμν = −8πG

[
Tμν − Λ (t)

8πG
gμν

]
, (1)

(where we have used relativistic units c = 1).

1 Check the review [12] and references within for an account of various works done with time varying cosmological
constant.
2 The terms ‘hybrid dynamic’ and ‘pure dynamic’ are used throughout this text to refer to the cases of variation of Λ
with the additive constant and without the additive constant, respectively. These phrases have no definite mathematical
meaning and are only used to conveniently differentiate between the two types of variation of Λ.
3 See footnote 2.
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We will assume the cosmological principle to be valid even in the presence of a variable-
Λ term, therefore the background geometry of the Universe will follow the standard FLRW
metric given by,

ds2 = −dt2 + a (t)2

[
dr2

1 − kr2
+ r2

(
dθ2 + sin2 θ dϕ2

)]
. (2)

The metric (2) and EFE (1) readily gives the cosmological field equations for Λ(t)(
ȧ
a

)2

=
8πGρ

3
+

Λ (t)
3

− k
a2

(3)

ä
a
= −4πG

3
(ρ+ 3P) +

Λ (t)
3

. (4)

Introducing the equation of state (EOS) P = ωρ where ω denotes the EOS parameter of the
other major component, we can write (4) as,

ä
a
= −4πG

3
(1 + 3ω)ρ+

Λ (t)
3

. (5)

The energy conservation equation for cosmology with variable c, Λ and G was derived by
Vereshchagin and Yegorian [15] which reduces to the following form when c and G is kept
constant but Λ is taken to be variable:

ρ̇ + 3
ȧ
a

(ρ+ P) = − Λ̇

8πG
. (6)

Since we are associating cosmological constant with vacuum energy fluid represented by
PΛ = ωΛρΛ, therefore the usual relation between vacuum energy density and cosmological
constant will be valid even when Λ is a time-varying parameter. Henceforth, in general for Λ
we can write,

ρΛ =
Λ (t)
8πG

. (7)

In case of hybrid dynamic nature ofΛ undertaken in this work, equation (7) takes the specific
form,

ρΛ =
ΛC + Λv

8πG
. (8)

An important aspect of phenomenological dynamic Λ models is that correspondence
between models of different categories can often be established [10]. Therefore, it does not
really matter which approach one takes, and, in this paper, we will take the kinematic approach
where expressions of Λ are justified from dimensional arguments. From the mathematical
point of view, since our hybrid dynamic Λ model just adds an additive constant to the vari-
able Λ term, therefore if we use the dimensionally valid expressions of Λ available in literature
as phenomenological expressions of Λv, it will still be valid on dimensional grounds.

In particular, we will choose three such expressions of Λ for the present work which are
frequently used in literature [16]:4 (i) Λ ∼

(
ȧ/a

)2
, (ii) Λ ∼ ä/a, (iii) Λ ∼ 8πGρ.

We will use these expressions as expressions of Λv with suitable proportionality constants
and solve for each one of them separately to obtain the expression of density parameters.

4 Check the references within [16] for different works done with these three types of models.
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2.1. Solution for phenomenological model Λv = 3α
(

ȧ
a

)2

Using the ansatz Λv = 3α
(

ȧ
a

)2
, we have:

Λ (t) = ΛC + 3α

(
ȧ
a

)2

. (9)

Substituting (9) in (3) and setting k = 0 for flat Universe, we get:

Λ (t) − ΛC

3α
=

8πGρ

3
+

Λ (t)
3

. (10)

Equation (10) reduces to

Λ (t) =

(
α

1 − α

)[
8πGρ+

ΛC

α

]
. (11)

Taking derivative of (11) w.r.t. cosmic time (t), we get,

Λ̇ =
α

1 − α
(8πGρ̇) . (12)

Substituting (12) in energy conservation equation (6),

ρ̇+ 3
ȧ
a

(ρ+ P) = −
α

1−α
(8πGρ̇)

8πG
. (13)

(13) simplifies to,

ρ̇+ 3
ȧ
a
ρ (1 − α) (1 + ω) = 0. (14)

Replacing the time derivative in (14) with derivative w.r.t. scale factor (a) and integrating,
the expression of density can be readily obtained as,

ρ = Ca−3(1−α)(1+ω), (15)

(where C is the integration constant).
Writing present day density as ρ0 and noting that present day normalised scale factor is

given by, a0 = 1, equation (15) can be written as,

ρ = ρ0a−3(1−α)(1+ω). (16)

Substituting the ansatz Λv = 3α
(

ȧ
a

)2
in (8), we obtain the vacuum energy density as,

ρΛ =
ΛC + 3α

(
ȧ
a

)2

8πG
. (17)

Substituting (3) in (17) with k = 0,

ρΛ =
ΛC + 3α

[ 8πGρ
3 + Λ(t)

3

]
8πG

. (18)

5
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Equation (18) simplifies to:

ρΛ =
ΛC

8πG
+ αρ+ αρΛ. (19)

Substituting the value of ρ from (16) in (19) and simplifying, we finally obtain the vacuum
energy density as,

ρΛ =

(
α

1 − α

)
ρ0a−3(1−α)(1+ω) + ρΛCα , (20)

where we have defined ρΛCα = ΛC
8πG(1−α) as the constant component of vacuum energy density

corresponding to this model.

2.2. Solution for phenomenological model Λv = β
(

ä
a

)

The ansatz Λv = β
(

ä
a

)
gives:

Λ (t) = ΛC + β

(
ä
a

)
. (21)

Substituting (21) in (5) gives,

Λ (t) − ΛC

β
= −4πGρ

3
(1 + 3ω) +

Λ (t)
3

. (22)

Equation (22) simplifies to,

Λ (t) =

(
β

β − 3

)
4πGρ (1 + 3ω) +

(
3

3 − β

)
ΛC. (23)

Taking derivative of (23) w.r.t. time, we get,

Λ̇ =

(
β

β − 3

)
4πGρ̇ (1 + 3ω) . (24)

Substituting (24) in (6),

ρ̇+ 3
ȧ
a
ρ (1 + ω) = −

(
β

β−3

)
4πGρ̇ (1 + 3ω)

8πG
(25)

(25) simplifies to,

ρ̇+ 3
ȧ
a
ρ (1 + ω)

[
2β − 6

3β − 6 + 3βω

]
= 0. (26)

Replacing time derivative with derivative w.r.t. scale factor (a) and integrating as before, we
get the expression of density in this case as,

ρ = ρ0a
−3(1+ω)

(
2β−6

3β−6+3βω

)
, (27)

(where the present-day density ρ0 = C with C being the constant of integration as before).
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Vacuum energy density in this case will be given by substituting the ansatz Λv = β
(

ä
a

)
in (8),

ρΛ =
Λ (t)
8πG

=
ΛC + β

(
ä
a

)
8πG

. (28)

Substituting the value of ä
a from (4), we get,

ρΛ =
ΛC + β

[
− 4πG

3 (1 + 3ω) ρ+ Λ(t)
3

]
8πG

(29)

(29) simplifies to

ρΛ =
ΛC

8πG
− βρ (1 + 3ω)

6
+

β

3
ρΛ. (30)

Substituting (27) in (30), we finally get the vacuum energy density as,

ρΛ = ρΛCβ +
β (1 + 3ω)
2 (β − 3)

ρ0a
−3(1+ω)

(
2β−6

3β−6+3βω

)
, (31)

where we have defined ρΛCβ =
(

3
3−β

)
ΛC
8πG as the constant component of vacuum energy

density corresponding to this model.

2.3. Solution for phenomenological model Λv = 8πGγρ

The ansatz Λv = 8πGγρ readily gives,

Λ (t) = ΛC + 8πGγρ. (32)

Taking time derivative of (32), we get,

Λ̇ = 8πGγρ̇. (33)

Substituting (33) in (6) we get,

ρ̇+ 3
ȧ
a

(ρ+ P) = −8πGγρ̇

8πG
(34)

(34) simplifies to

ρ̇ (1 + γ) + 3
ȧ
a
ρ (1 + ω) = 0. (35)

Replacing time derivative with derivative w.r.t. scale factor (a) and integrating as previous
models, we get the expression of density in this case as,

ρ = ρ0a
−3(1+ω)

1+γ , (36)

(where the present-day density ρ0 = C with C being the constant of integration as in previous
cases).

Vacuum energy density for this model can be obtained by substitution of the ansatz Λv =
8πGγρ in (8),

ρΛ =
Λ (t)
8πG

=
ΛC + 8πGγρ

8πG
(37)

7
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(37) simplifies to,

ρΛ =
ΛC

8πG
+ γρ. (38)

Substituting (36) in (38), we get the expression of vacuum energy density as,

ρΛ = ρΛCγ + γρ0a
−3(1+ω)

1+γ , (39)

where we have defined ρΛCγ = ΛC
8πG as the constant component of vacuum energy density

corresponding to this model.
For all the three types of model explored in this section, the expression of density shows that

the dilution of the other major component with the expansion of Universe is dependent upon the
variable component of cosmological constant (Λv) since it includes the parameters (α, β, γ).
This feature is an indication that (Λv) decays into the other major component of the Universe
in our two-fluid approach5 which results in modification of the dilution rate of the other major
component in accordance with the variation of Λv. We therefore have a ‘vacuum/DE decaying
into other major component’ picture and for convenience we will call it ‘decaying vacuum
product component’. In section 5, we will look into the possible candidates which can be the
product component.

The expressions of density of the vacuum/DE for all the three models points out that in
the limit t →∞ i.e. a →∞, ρΛ → ρΛC , which clearly reflects the parallels between the quan-
tum metastable DE decay and phenomenological hybrid dynamic Λ models. Furthermore, the
variable component of vacuum and the decaying vacuum product component of the Universe
dilutes at the same rate. This feature leads to redefining the ‘coincidence problem’ as we shall
see later.

3. Equivalence of the models and dilution rate parametrization

Ray et al [17] showed that the models Λ = 3α
(

ȧ
a

)2
, Λ = β ä

a and Λ = 8πGγρ become equiv-
alent when written in terms of dimensionless density parameters. Since from a mathematical
point of view, our models are essentially similar to these models with an additive constant, it
can be expected that the equivalence should hold for our hybrid models as well. The equiva-
lence can indeed be shown in a straightforward manner by introducing a new parameter (u) in
the models which is the exponent of scale factor in the expression of density of the decaying
vacuum product component representing how it dilutes with the expansion of the Universe in
the presence of dynamic Λ. We will identify this parameter as ‘dilution parameter’.

For the three models used in previous section, we can write the corresponding dilution
parameters as,

uα = 3 (1 − α) (1 + ω) ; uβ = 3 (1 + ω)

(
2β − 6

3β − 6 + 3βω

)
; uγ =

3 (1 + ω)
1 + γ

, (40)

(where we have adopted the notational convention of adding the model parameters α, β, γ as
suffixes to the dilution parameter in order to denote the respective models).

5 This physical scenario will only hold if density of the other major component (ρ) dilutes in our model at a rate slower
than ΛCDM model which translates to the constraints 0 < α<1, β <0 and γ >0 on the model parameters respectively.

8



Class. Quantum Grav. 39 (2022) 035010 A Aich

For the model Λv = 3α
(

ȧ
a

)2
the density parameters in equations (16) and (20) of the model

can then be written as,

ρ = ρ0a−uα ; ρΛ =

(
3 (1 + ω) − uα

uα

)
ρ0a−uα + ρΛCα . (41)

Similarly, for model Λv = β
(

ä
a

)
the density parameters in (27) and (31) can be written as,

ρ = ρ0a−uβ ; ρΛ =

(
3 (1 + ω) − uβ

uβ

)
ρ0a−uβ + ρΛCβ . (42)

Finally, for the model Λv = 8πGγρ, the density parameters in (36) and (39) will be
given by,

ρ = ρ0a−uγ ; ρΛ =

(
3 (1 + ω) − uγ

uγ

)
ρ0a−uγ + ρΛCγ . (43)

It can be clearly seen from equations (41)–(43), that when expressed in terms of dilution
parameter, the evolution of the density parameters as functions of scale factor follows exactly
the same pattern for all three models. As a consequence, the three models cannot be distin-
guished from each other and can be viewed as equivalent. Henceforth, without any loss of
generality, we can write,

uα = uβ = uγ = u (44a)

ρΛCα = ρΛCβ = ρΛCγ = ρΛC . (44b)

The density parameters for all the three models used in this work can then be simply written,
without reference to any particular model as,

ρ = ρ0a−u; ρΛ =

(
3 (1 + ω) − u

u

)
ρ0a−u + ρΛC . (45)

Here u can be simply interpreted as a common ‘dilution parameter’ which represents the
dilution rate of decaying vacuum product component for all the three models described in
this paper and ρΛC can be interpreted as the common ‘constant component of vacuum energy
density’ representing the limiting value of vacuum energy density corresponding to the limit
a →∞ for all the three models described in this work. From this point onwards we will adopt
this common parametrisation for the remaining part of the paper without reference to any par-
ticular model. However, if desired one can quickly recover the expressions for any particular
model by substituting the respective model parameters in place of u by following equation (40).

Equations (44a) and (40) readily gives us an equation connecting the parameters of the three
models as,

(1 − α) =

(
2β − 6

3β − 6 + 3βω

)
=

1
1 + γ

. (46)

This is exactly the same relation that connected the model parameters in phenomenolog-
ical models Λ = 3α

(
a
a

)2
, Λ = β ä

a and Λ = 8πGγρ [17]. Therefore, not only are the hybrid
dynamic models equivalent but the relation connecting the model parameters are also exactly
same with their pure dynamic model counterparts. Such equivalence among kinematic models
may be attributed to the fact that the underlying phenomenological expressions are introduced
from the common ground of dimensional consistency.

9
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4. Cosmology with hybrid dynamic Λ and dilution parameter

It was highlighted in section 2, that the background geometry of the Universe will be described
by FLRW metric since GR and cosmological principle has been assumed to hold in this work.
As a result, the hybrid dynamic variation of Λ will have no impact on the useful geometrical
relations of standard FLRW cosmology and we can use them straightaway. The impact of the
variation of Λ as opposed to a constant one lies on the cosmological equations which will
be modified. After finding the solutions of cosmological field equations and developing the
general parametrisation in the previous sections, we will now derive some of the modified
cosmological relations.

4.1. Dimensionless density parameters

We will adopt the standard definition of dimensionless density parameter given by,Ωi =
8πG
3H2 ρi

and express the decaying vacuum product component density as,

Ω =
8πG
3H2

ρ =
8πG
3H2

ρ0a−u, (47)

(where H is Hubble parameter).
Similarly, the vacuum density can be expressed as,

ΩΛ =
8πG
3H2

ρΛ =
8πG
3H2

(
3 (1 + ω) − u

u

)
ρ0a−u +

8πG
3H2

ρΛC . (48)

Using (47), equation (48) can be written as,

ΩΛ =

(
3 (1 + ω) − u

u

)
Ω+ ΩΛC , (49)

(where we have defined ΩΛC = 8πG
3H2 ρΛC representing the dimensionless density parameter

corresponding to constant component of vacuum density).
The corresponding present-day dimensionless density parameters can be readily defined

from (47)–(49) as,

Ω0 =
8πG
3H2

0

ρ0 (50a)

ΩΛC0 =
8πG
3H2

0

ρΛC0 (50b)

ΩΛ0 =
8πG
3H2

0

ρΛ0 =

(
3 (1 + ω) − u

u

)
Ω0 +ΩΛC0 , (50c)

(where we have used the notational convention of adding ‘zero’ as suffix to denote present-day
values of parameters).

Using (47) and (48), and definition of Hubble parameter
(
H = ȧ

a

)
, we can write the

cosmological field equation (3) in terms of dimensionless density parameters as,

Ω+ ΩΛ = 1, (51)

(where we have assumed flat Universe with k = 0).

10
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Substituting (49) in (51) we get,

Ω

[
3(1 + ω)

u

]
+ΩΛC = 1. (52)

Equation (52) is the field equation for our phenomenological hybrid dynamic Λ model in
terms of dimensionless density parameters which must hold at all epoch for a flat Universe.
This equation is readily used in computational cosmology to extract the model parameters for
a flat Universe.

4.2. Hubble parameter equation

A very important parameter in cosmology is the Hubble parameter (H ) which measures the
expansion rate of the Universe. Mathematically, it is defined in terms of normalised scale
factor as H = ȧ

a . The cosmological field equation (3) when written in terms of present-day
dimensionless density parameters, using (50a) gives the Hubble parameter expression,

H2 = H2
0

[
3 (1 + ω)

u
Ω0a−u +ΩΛC0

]
, (53)

(where H0 denotes the present-day Hubble parameter i.e. Hubble constant).
A useful relation that comes from FLRW geometry is the relation a = (1 + z)−1 connect-

ing redshift parameter (z) and normalised scale factor (a). Using it, the Hubble parameter
equation (53) can be written in terms of redshift as,

H (z)2 = H2
0

[
3 (1 + ω)

u
Ω0(1 + z)u +ΩΛC0

]
. (54)

The Hubble parameter equation (53), (54) is perhaps the backbone of cosmology since many
other useful relations are derived with it. It builds up into ‘luminosity distance’ and ‘angular
diameter distance’ equations which are vividly used in observational cosmology and as well
into the expression of look-back time which is another vital relation of cosmology.

4.3. Deceleration parameter and transition redshift

The acceleration or deceleration of the expansion rate of the Universe is characterized in cos-
mology by the dimensionless deceleration parameter (q) which is mathematically defined as,
q = − 1

H2
ä
a . An expression for deceleration parameter can be obtained by writing the cosmo-

logical field equation (5) in terms of dimensionless density parameters using (47)–(49) which
gives,

q = Ω

[
(1 + ω) (3u − 6)

2u

]
− ΩΛC . (55)

Equation (55) is the deceleration parameter equation for our model. It can be expressed in
a convenient form by writing (55) in terms of present-day density parameters using (47)–(50)
and redshift parameter (z) using a = (1 + z)−1 which gives,

q =
H2

0

H2

[
Ω0(1 + z)u

(
(1 + ω) (3u − 6)

2u

)
− ΩΛC0

]
. (56)

For the present Universe to expand at an accelerating rate, the present-day deceleration
parameter must have negative sign. However, structure formation in the Universe cannot take

11
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place during acceleration and the accelerating phase must be preceded by a decelerating phase
[18]. Observational studies [14, 19] also support the idea that cosmic acceleration is a recent
phenomenon.This means that at some epoch the deceleration parameter must undergo a change
of sign in any physically sensible cosmological model. At this juncture, we will highlight an
important feature of the hybrid dynamic nature of Λ that we adopted in this work. The additive
constant (ΛC) in the expression of Λ i.e. the constant component of Λ, manifests itself through
the second term in the expression of q. The presence of the second term in equations (55) or
(56) ensures that the signature flip of q can always be achieved in a straight-forward manner.
In case of pure dynamic Λ models, the second term will be absent and as a consequence, the
characteristic sign change of q cannot be readily achieved with two-fluid assumption and such
model Universes will either be always accelerating or always decelerating which is physically
absurd.

The transition point of the Universe from a decelerating phase to an accelerating phase is
characterized by null value of the deceleration parameter. The corresponding redshift is the
transition redshift (zt). An expression for transition redshift can be obtained by substituting
(52) and (54) in (56) and setting q = 0 to represent the transition point. It readily gives,

zt =

[
2u − 6Ω0 (1 + ω)

(1 + ω) (3u − 6)Ω0

] 1
u

− 1. (57)

In section 7, we will estimate the value of present-day deceleration parameter and transition
redshift for our model.

4.4. Distance relations: luminosity distance and angular diameter distance

In FLRW cosmology, the proper distances to an object cannot be measured and as such
‘distances’ are usually specified by ‘luminosity distance’ and ‘angular diameter distance’
which simply corresponds to measuring distances in terms of luminosity and angular diam-
eters of astrophysical objects respectively. These quantities are widely used for observational
studies and therefore it is necessary to find the modified expressions of these quantities for our
model.

In FLRW geometry, luminosity distance (dL) and angular diameter distance (dA) for flat
Universe (k = 0) are expressed as,

dL = χ (1 + z) ; dA =
χ

(1 + z)
, (58)

(where χ is co-moving coordinate of the astrophysical source, which is defined in terms of
Hubble parameter as χ =

∫ z
0

dz
H(z) ).

Using the Hubble parameter expression (54), we can write the luminosity distance expres-
sions as,

dL =
(1 + z)

H0

∫ z

0

dz√
3(1+ω)

u Ω0(1 + z)u +ΩΛC0

. (59)

Similarly, using (54), the angular diameter distance can be expressed as,

dA =
1

(1 + z) H0

∫ z

0

dz√
3(1+ω)

u Ω0(1 + z)u +ΩΛC0

. (60)

12
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In particular we will be using the luminosity distance relation (59) to confront our model
with observations and extract the values of cosmological parameters by using type 1a supernova
method. This will be explained in more details in section 6.

4.5. Look-back time and age of the Universe

Another important expression in analysis of cosmological models is the ‘look-back time’ which
refers to the difference between the cosmic time in which a galaxy emitted a photon (t) and
present cosmic time when it is received by us (t0). From FLRW geometry, the look-back time
is given in terms of redshift as,

t0 − t =
∫ z

0

dz
(1 + z) H (z)

. (61)

Using (54), the expression of look-back time for our model can be readily obtained as,

t0 − t =
1

H0

∫ z

0

dz

(1 + z)
√[

3(1+ω)
u Ω0(1 + z)u +ΩΛC0

] . (62)

In cosmological models which has a Big-Bang origin, a very important quantity is the cos-
mic age or age of the Universe which refers to the time that has elapsed between the epoch
where scale factor a (t) = 0 and present epoch (t0). The expression of cosmic age can be easily
obtained from the expression of look-back time (62) by putting (z →∞) which gives,

t0 =
1

H0

∫ ∞

0

dz

(1 + z)
√[

3(1+ω)
u Ω0(1 + z)u +ΩΛC0

] . (63)

Analysis of cosmic age is a very important aspect of cosmological models because of its con-
nection with the historic cosmic age problem which refers to the puzzling situation of finding
age of the Universe in a cosmological model to be less than ages of some objects in the Uni-
verse. We will come back to this topic in details in section 7 where we will estimate cosmic
age for our model.

4.6. Particle number density and creation rate

In section 2, it was seen that the solutions of the three models hinted towards a physical sce-
nario of vacuum decaying into the other major component. Naturally, this implies creation of
particles of the decaying vacuum product component6 from decay of vacuum. If n denotes the
number density and m denotes the mass of the product component, then assuming particles are
mass invariant, the conservation equation (6) can be written as,

mṅ + 3
ȧ
a

mn (1 + ω) = −ρ̇Λ. (64)

Equation (64) can be conveniently expressed in the form,

ṅ + 3
ȧ
a

n (1 + ω) = −n

(
ρ̇Λ
ρ

)
. (65)

6 In appendix A, we have explored an alternative scenario where instead of creation of particles, decay of vacuum is
causing an increase in mass of the particles of decaying vacuum product component.
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In cosmological models involving particle creation or annihilation in an FLRW background,
a general equation for the number density of the relevant component of cosmological fluid can
be obtained [20] as,

ṅ + 3
ȧ
a

n (1 + ω) = ψ = nΓ. (66)

In equation (66) ψ > 0 for particle sources and ψ < 0 for particle sinks. Particle creation
or annihilation rate parameter defined by Γ = ψ/n in the general equation can be related to
any physical process which creates or annihilates particles of the relevant component of cos-
mological fluid. In the context of our model, Γ will relate to decay of vacuum energy and
corresponding creation of particles of the other major component. From equations (65) and
(66), we can write the mathematical form of creation rate parameter for our model as,

Γ = − ρ̇Λ
ρ
. (67)

Using expressions of ρ and ρΛ from equation (45), the expression of particle creation rate
parameter becomes,

Γ = [3 (1 + ω) − u]
ȧ
a
. (68)

Using the expression of Γ obtained in expression (68), conservation equation (65) can be
written as,

ṅ + nu
ȧ
a
= 0. (69)

The above expression can be easily solved to yield,

n = n0a−u, (70)

where n0 denotes the present day value of number density. Equation (70) gives the evolution of
particle number density of the other major component in terms of scale factor in the presence
of variable cosmological constant which clearly differs from ΛCDM model where evolution
of particle number density of a component having E.O.S. ω, follows the standard expression
n = n0a−3(1+ω).

Particle creation rate parameter can also be written in terms of density parameters and by
substituting Hubble parameter equations (53), (54) in (68) which readily gives the following
equations for the parameter in terms of scale factor and redshift respectively,

Γ(a) = H0 [3 (1 + ω) − u]

[√
3 (1 + ω)

u
Ω0a−u +ΩΛC0

]
(71)

Γ(z) = H0 [3 (1 + ω) − u]

[√
3 (1 + ω)

u
Ω0(1 + z)u +ΩΛC0

]
. (72)

Particle creation rate parameter is an extremely crucial parameter in cosmologies involving
some form of particle creation. In section 7, we will estimate the value of the parameter for our
model.
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5. Components of cosmological fluid

So far, we have held the notion that our model Universe is made up of two fluids—a DE com-
ponent represented by phenomenological hybrid dynamic cosmological constant with E.O.S.
ωΛ = −1 and a decaying vacuum product component with E.O.S. ω. We have built up the
model and obtained the relevant cosmological equations with this consideration. Therefore, in
this analysis we are restricted to a two component cosmological fluid, one of which is DE. How-
ever, the decaying vacuum product component has not been specified yet. In this section we
will look at some of the choices for it and will also adopt a particular case for our observational
analysis.

5.1. Choices for the decaying vacuum product component

Since the E.O.S. parameter ω depends solely on the nature of the decaying vacuum prod-
uct fluid, a choice for the ‘decaying vacuum product component’ boils down to the choice
for E.O.S. parameter. It was highlighted in section 2 that our variable-Λ approach coincides
with the physical scenario of ‘vacuum decaying into the decaying vacuum product component’
which naturally sets up a constraint that the physical decay process must be realizable for the
model to be realistic. The two most natural candidates for decaying vacuum product compo-
nent are pressureless dust with ω = 0 and radiation with ω = 1/3. Cosmology with vacuum
decaying into massless radiation has been explored by Freese et al [21]. Vacuum decaying into
radiation will lead to creation of photons which will have observable impact on microwave
background [22, 23]. Although such a possibility cannot be ruled out completely, observational
studies [24] suggest that even if such a decay process happens, it will be so small that it will be
practically equivalent to zero vacuum decay. The other choice which involves vacuum decay-
ing into dust is feasible. In the introduction section, we highlighted that one of the advantages
of using hybrid dynamic nature of Λ instead of a pure dynamic Λ is that in our approach par-
allels can be drawn between standard ΛCDM model with constant Λ and variable-Λ scenario.
Keeping the same spirit, we will adopt pressureless dust to be the decaying vacuum product
component for our observational studies since it reciprocates the standardΛCDM scenario with
radiation ignored and DE represented by Λ. The only difference with the standard model being
the variation of Λ. For the sake of completeness, we should mention that vacuum decaying into
baryonic matter is problematic on grounds of Baryon number conservation [22] and for a real-
istic case, we should have vacuum decaying into dark matter only. However, such a scenario is
difficult to handle in our approach since both CDM and baryonic matter correspond to ω = 0.
Henceforth, we will not distinguish between the two types of matter and instead club them
together as ‘dust’. If desired, one can of course assume the decaying vacuum product compo-
nent to be dark matter in our parametrization and ignore the presence of Baryons which will
replicate the ‘vacuum decaying into dark matter’ scenario approximately. With such choice of
decaying vacuum product, our model overlaps to some extent with the ‘vacuum decaying to
cold dark matter’ scenario explored in [25]. However, our approaches are different. While [25]
postulates a modified expression for cold dark matter density different from the standard case
as a consequence of decay of vacuum energy, a priori, our approach on the other hand starts of
with phenomenological expressions of Λ(t) and obtains the density expressions. Furthermore,
even though we are eventually using dust as the decaying vacuum product component, the gen-
eral theoretical framework of our model do not fix the product component beforehand which
naturally opens up the window for further explorations with various choices of the component,
including non-conventional ones such as stiff fluid with ω = 2 which sterns out from the pos-
sibility that Universe might had a stiff fluid era [26]. Finally, we should mention that Basilakos
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[27] explored a Λ(t) model where the decaying vacuum product component was identified
as the dominating component of the Universe i.e. radiation in the radiation era and matter in
matter era. The model is interesting and implies that vacuum can decay both into matter and
radiation and depending on the era one of the decay process will take prominence. This type of
scenario is achievable within the mathematical framework of our model as well but as already
noted above decay of vacuum into radiation is unlikely. Henceforth we will stick with ‘vacuum
decaying into dust’ scenario for our observational analysis and from this point onwards, the
mention of hybrid dynamic Λ model in this paper will indicate a Universe made up of dust and
DE (decaying) unless specified otherwise.

5.2. Cosmological equations for dust–dark energy (decaying) type hybrid dynamic Λ
Universe

Following up from the discussion in previous sub-section, we will write down the cosmological
equations derived in section 4 for dust–DE (decaying) Universe by setting E.O.S. parameter
ω = 0 in all the equations of section 4 which gives,

Ωm

(
3
u

)
+ΩΛC = 1 (73)

H2(a) = H2
0

[
3
u
Ωm0a−u +ΩΛC0

]
(74a)

H2(z) = H2
0

[
3
u
Ωm0(1 + z)u +ΩΛC0

]
(74b)

q = Ωm

(
3u − 6

2u

)
− ΩΛC (75a)

q =
H2

0

H2

[
Ωm0(1 + z)u

(
3u − 6

2u

)
− ΩΛC0

]
(75b)

zt =

[
2u − 6Ωm0

(3u − 6)Ωm0

] 1
u

− 1 (76)

dL =
(1 + z)

H0

∫ z

0

dz√
3
uΩm0(1 + z)u +ΩΛC0

(77)

dA =
1

(1 + z) H0

∫ z

0

dz√
3
uΩm0(1 + z)u +ΩΛC0

(78)

t0 − t =
1

H0

∫ z

0

dz

(1 + z)
√[

3
uΩm0(1 + z)u +ΩΛC0

] (79)

t0 =
1

H0

∫ ∞

0

dz

(1 + z)
√[

3
uΩm0(1 + z)u +ΩΛC0

] (80)

nm = nm0a−u (81)
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Γm(a) = H0 [3 − u]

[√
3
u
Ωm0a−u +ΩΛC0

]
(82a)

Γm(z) = H0 [3 − u]

[√
3
u
Ωm0(1 + z)u +ΩΛC0

]
, (82b)

(where we have added m to the suffix to denote that the other major component is pressureless
dust i.e. matter).

6. Confronting the model with observations and estimating the parameters

Estimation of model parameters in cosmology is done using different methods such as type
1a supernova, baryon acoustic oscillations (BAO), weak lensing (WL), Galaxy clusters and
redshift space distortions (RSD). A combination of different methods is often used in different
studies. In this work, however, we have only used the type 1a supernova technique which
considers the supernovae to be ‘standard candles’ with fixed intrinsic luminosity and estimates
the model parameters using luminosity distance relation (77). If M be the absolute magnitude
and m be the apparent magnitude of a type 1a supernova, then, the theoretical relation between
the luminosity distance and magnitude is given by,

M = m − 5 log10

(
dL

1 Mpc

)
− 25. (83)

Defining distance modulus, μ = m − M, equation (83) can be written as,

μmodel = 5 log10

(
dL

1 Mpc

)
+ 25, (84)

(where the expression of luminosity distance depends on the cosmological model chosen for
investigation thereby making μ model dependent as well which is indicated by suffix).

6.1. Statistical procedure

The measured apparent magnitude (mobs) of a supernova cannot be used to obtain observa-
tional value of distance modulus (μobs) directly, rather it has to be corrected for stretch factor,
colour, corrections from distance biases etc which are associated with their respective nuisance
parameters. The absolute magnitude M is also treated as a nuisance parameter. The supernova
data from Union 2.1 compilation [28] comprises of a dataset of 580 supernova presented as
(μobs, z) pairs. The nuisance parameters are set to their global derived values and this data can
be readily used for cosmological model fitting to determine the cosmological parameters. We
will use this sample7 for fitting in our model. However, we will fit for matter density (Ωm0)
and dilution parameter (u). Hubble constant H0 cannot be fitted from supernova data alone
since it is degenerate with the value of absolute magnitude M [29]. The Union 2.1 dataset
derived the value of nuisance parameter M by setting the value of reduced Hubble constant,
h = H0

100 = 0.7. Therefore, we will also set H0 = 70 in our fitting procedure since we will
use the dataset as it is given in [28].

7 In appendix B, we have included the results of fitting the model with supernova data from Pantheon sample.
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Table 1. Comparison table of fitting different models.

Model Parameter fit results (h = 0.7) Reduced chi-square

ΛCDM model ΩΛ0 = 0.72 ± 0.01 0.9711
oΛCDM model Ωm0 = 0.29 ± 0.16,Ωk0 = −0.01 ± 0.28 0.9729
wCDM model Ωm0 = 0.28 ± 0.06, w = −1.00 ± 0.15 0.9727
Hybrid dynamic Λ model Ωm0 = 0.29 ± 0.03, u = 2.90 ± 0.54 0.9728

The goodness-of-fit parameter for fitting procedure is given by,

χ2 =
∑

i

(
μobsi − μmodel

)2

σ2
i

. (85)

The likelihood probability (P) of cosmological parameters can then be written as,

P ∝ −χ2

2
. (86)

Here μobsi and σi represents the observational value and uncertainty corresponding to the
redshift (zi) whereas μmodel is the model-dependent theoretical value of distance modulus
obtained from (84). For the fitting procedure, we have extracted the cosmological parame-
ters by fitting using emcee [30] which is a python module that implements the affine invariant
Markov chain Monte Carlo (MCMC) method to estimate the model parameters. In order to
carry out the fitting, we built our own personalized fitting code [31]8 using Lmfit module [32]
of python. As a cross-check for the accuracy of the parameter estimates for our fitting proce-
dure, we checked it by fitting it to the base ΛCDM model (radiation ignored & DE represented
by constant Λ) using the same Union 2.1 dataset [28]. It yielded results ΩΛ0 = 0.72 ± 0.01 for
standard ΛCDM model which is excellent agreement with official release [33] of Union 2.1
project. Therefore, we conclude that our fitting method does produce reasonable estimates of
fit parameters and can be used for parameter estimation.

6.2. Parameter estimates

Using the statistical procedure described above, the best fit values for the model parameters
for our model have been found to be:

Ωm0 = 0.29 ± 0.03; u = 2.90 ± 0.54

(errors reported are 1σ).
The Hubble diagram and corner plots [34] for the fitted parameters for hybrid dynamic Λ

model using Union 2.1 dataset is shown in figures 1 and 2, respectively. In table 1, results of
fitting the dataset against different cosmological models has been shown for comparison.

In our model Universe since DE is decaying into dust, dust must decay slowly compared
to standard ΛCDM model which is reflected by the marginal deviation of best-fit values of
the parameters compared to the ΛCDM counterparts. The uncertainty in dilution parameter
is however quite high which will prevent us to conclude whether our model is better than the
standard model or not. A joint analysis combining other methods might be able to bring down

8 All codes used in this work for statistical analysis, generating plots and calculations can be found in [31].
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Figure 1. The top plot shows the Hubble diagram using 580 supernova sample of
Union 2.1 dataset for hybrid dynamic Λ cosmological model with dust–DE (decaying)
Universe. The bottom plot shows the corresponding residuals.

the uncertainty. However, as of now we can study the physical features of the Universe using
the best-fit values.

7. Cosmological implications

In the last section, we estimated the best fit parameters for our model Universe. Here we will
focus on the cosmological implications of these estimates and look into the physical features
of the model.
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Figure 2. The top figure (a) is the corner plot output showing results of our MCMC
parameter estimation for hybrid dynamic Λ cosmological model with dust–DE (decay-
ing) Universe. The bottom figure (b) is the zoomed in image of the parameter contours
which has been terminated at u = 3 to represent realistic scenario. The mark in the bot-
tom figure represents the point (Ωm0 = 0.31, u = 2.475) which will be discussed later.
Note—the label ‘OM’ in the corner plots is equivalent to Ωm0.
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Figure 3. Plot of scale factor as a function of relative time parameter for standardΛCDM
model and hybrid dynamic Λ model with dust–DE (decaying) Universe.

7.1. Scale factor evolution

Using the definition of Hubble parameter, the Hubble parameter equation for dust–DE
(decaying) Universe (74a) can be written in terms of scale factor as,

ȧ2 = H2
0

[
3
u
Ωm0a2−u +ΩΛC0a2

]
. (87)

Introducing dimensionless relative time parameter defined by, t̂ = Ho (t − t0), (87) can be
written as, (

da
d̂t

)2

=
3
u
Ωm0a2−u +ΩΛC0a2. (88)

Equation (88) gives the evolution of the scale factor for specific values of u and Ωm0. In
particular, we will plot our model Universe for the fitted parameter values obtained in section 6
and as well as for standard ΛCDM model with fitted parameter values from Union 2.1 analysis
[33]. The plot is shown in figure 3.

The side-by-side plot of scale factor evolution of standard model and hybrid dynamic Λ
model indicates that the characteristics of the two types of models are similar and are almost
indistinguishable at present epoch. However, there is a visible splitting between the two curves
at future epochs showing that our model Universe evolves slowly compared to standard model.
However, such marginal deviation of scale factor evolution fromΛCDM case is unlikely to have
any direct observational implication, specially at current epoch.
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Figure 4. Plot of deceleration parameter as a function of redshift for standard ΛCDM
model and hybrid dynamic Λ model with dust–DE (decaying) Universe.

7.2. Deceleration parameter and transition redshift

In section 4, it was pointed out that the deceleration parameter in hybrid dynamic Λ model
exhibits a sign change reflecting transition of the Universe from decelerating to accelerating
phase which is necessary for a realistic Universe. The present-day value of deceleration param-
eter and transition redshift can be easily derived for our model, from equations (75b) and (76),
with the best fit parameter values obtained in section 6 as,

q0 = −0.56; zt = 0.76.

The plot of deceleration parameter as a function of redshift is shown in figure 4 both for
our model and standard model. Once again, the two curve bear similarity in characteristics
and the transition point for the two curves is so close that they cannot be distinguished from
the graph (transition redshift quoted in Union 2.1 paper [33] for standard model is zt = 0.75
which is a close match to our model). The present-day deceleration parameter when computed
for ΛCDM model with Union 2.1 values yields q0 = −0.59 which is also very close to the
values in our model. The marginal difference in the values indicates that the onset of accel-
erating phase happens earlier at smaller value of scale factor which is logical because in our
model Universe scale factor evolves slowly compared to the standard model, but the differ-
ences lie within 1σ error levels which makes it very difficult to distinguish the models from
observations.
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7.3. Age of the Universe and cosmic age problem

It was mentioned in section 4 that a very important parameter in analysis of cosmological
models is the cosmic age parameter due to the associated ‘cosmic age problem’ with this param-
eter. Most standard models of different eras have been bugged by this issue. It was previously
thought thatΛCDM model is free from it since all the estimates of cosmic age inΛCDM model
from different surveys revolve around the values of 13.7–13.8 Gyr [14, 19] which is above the
lower limit on age of the Universe (11 Gyr) set up by studying ages of globular clusters [35].
However, recently some globular clusters were found which are older than the cosmic age of
ΛCDM model [36, 37] with the oldest one (BO50) having an age of 16 Gyr. It has brought the
cosmic age problem back to limelight and till now there is no answer to this problem in the
framework of standard ΛCDM cosmology.

The phenomenological dynamic Λ models stand in a very peculiar position in regard to
cosmic age issue. The ages found in different models have been found to vary widely. While
some models have cosmic age as low as 5.4 to 7.4 Gyr [9], others have cosmic age as high as
27.4 ± 5.6 Gyr [38]. In our model, cosmic age can be estimated from equation (80) with the
best-fit values obtained in section 6 which gives,

Cosmic age(t0) = 13.93 Gyr.

This is little higher than the estimates for standard ΛCDM models from various surveys (in
comparison, cosmic age computed for ΛCDM model using Union 2.1 parameter values yields
13.85 Gyr), but it is within 1σ error of the standard model values just like other parameters.
However, the marginal increase in the value of age is once again a reflection of the Universe
evolving slowly compared to the standard model. Evidently, hybrid dynamic Λ model with
dust and decaying DE does not solve the cosmic age problem but unlike many pure dynamic Λ
models, it does not suffer from high age/low age issues either. Rather it finds a value of cosmic
age which is close to standard model and in this regard, it can be stated that the status of cosmic
age problem in this model is at same footing with the standard model.

7.4. Particle number density and creation rate parameter

In equation (81), we obtained the expression for evolution of particle number density parameter
with scale factor of the Universe. The present day value of particle number density for our
model can be written in terms of dimensionless density parameter as,

nm0 =
ρm0

m
=

Ωm0

(
3H2

0
8πG

)
m

. (89)

For standard ΛCDM model, a similar expression can be obtained,

nΛCDM
m0 =

ρΛCDM
m0

m
=

ΩΛCDM
m0

(
3H2

0
8πG

)
m

, (90)

where we have used the superscript ΛCDM to represent the relevant quantities for ΛCDM
model. Since, present day matter density in ΛCDM Universe is less than present day mat-
ter density in Universe with varying cosmological constant due to additional particles being
created due to decay of vacuum energy, it follows from (89) and (90) that,

nm0 > nΛCDM
m0 . (91)
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Figure 5. Plot of creation rate parameter as a function of redshift for hybrid dynamic Λ
model with dust–DE (decaying) Universe.

Equation (91) can be viewed as a general criteria that must hold when Λ is a time-varying
parameter as opposed to a constant one where decay of vacuum energy leads to a simultaneous
creation of dust particles. The present day particle creation rate parameter specific to the hybrid
dynamic Λ model can be estimated from equation (82a) or (82b) using the best fit values of
cosmological parameters which readily gives,

Γh=0.7
m0 = 0.227 × 10−18 s−1.

In figure 5, a plot of particle creation rate is shown as a function of redshift.
Λ(t) cosmology thus leaves its signature through the creation of additional particles which

alters the particle number density of the decaying vacuum product component compared to
standard ΛCDM model. In cosmological models involving gravitationally induced continuous
particle creation from global curvature, particle production have an impact on structure forma-
tion in the Universe [39]. In an Universe with time-varying cosmological constant, even though
particle creation has a different mechanism, but it will also have a similar impact on structure
formation and will likely have observational consequences on WL effect induced by structure
formation.

8. Status of cosmological problems

As elaborated in section 1, the motivation behind introduction of time varying cosmological
constant as opposed to a constant one revolves around addressing the fine tuning issues of
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standard ΛCDM model viz., cosmological constant problem and coincidence problem. In this
section, we will check whether the issues are actually resolved or not.

8.1. Cosmological constant problem

Standard cosmology is bugged by the cosmological constant problem which refers to the issue
of theoretically predicted value of quantum vacuum energy density at Planck era being 120
orders of magnitude larger than the observed value of vacuum energy density in present era.
To conveniently check the issue, we will introduce a new parameter, in the context of Λ(t)
cosmology, namely, ‘vacuum energy density ratio parameter’ which will refer to the ratio of
magnitude of vacuum energy densities at two distinct cosmic times (or scale factors) in the
history of evolution of the Universe. Mathematically, it can be expressed as,

RρΛ(t1, t2) =
ρΛ(t1)
ρΛ(t2)

(92a)

RρΛ(a1, a2) =
ρΛ(a1)
ρΛ(a2)

. (92b)

In standard ΛCDM model, the ratio parameter is always unity since vacuum energy den-
sity is constant. In Λ(t) cosmology, the ratio parameter will take different values depending on
chosen cosmic times. Technically, the cosmological constant problem will be resolved in a spe-
cificΛ(t) cosmological model, if the model satisfies the condition, RρΛ(tPl, t0) = RρΛ(aPl, a0) ∼
10120 where tPl and aPl denote the Cosmic time and scale factor corresponding to Planck era
respectively while t0 and a0 represent the corresponding quantities in present era.

From equation (45) and the definitions of dimensionless density parameters, the expression
of vacuum energy density in Planck era for hybrid dynamic Λ(t) model with dust and decaying
DE can be written as,

ρΛ(tPl) = ρΛ(aPl) =

[
3 − u

u
Ωm0a−u

Pl +ΩΛC0

]
3H2

0

8πG
. (93)

Similarly, the expression of vacuum energy density in present era (t0, a0) is,

ρΛ(t0) = ρΛ(a0) =

[
3 − u

u
Ωm0a−u

0 +ΩΛC0

]
3H2

0

8πG
. (94)

Using equations (93) and (94), we can write down the vacuum energy density ratio
parameter for vacuum energy density at Planck era and present era as,

RρΛ(aPl, a0) =
ρΛ(aPl)
ρΛ(a0)

=
3−u

u Ωm0a−u
Pl +ΩΛC0

3−u
u Ωm0a−u

0 +ΩΛC0

. (95)

For low values of cosmic time, the first term in equation (87) will dominate and an approx-
imate analytical solution of scale factor as a function of cosmic time can be written as,

a(t) =

[
H0

u
2

√(
Ωm0

3
u

)
t

] 2
u

. (96)

From equation (96), the normalised scale factor corresponding to the end of Planck era
(tPl ∼ 10−43 s) can be approximately obtained as aPl ∼ 10−42. Substituting the best fit values
of cosmological parameters and aPl in (95), one obtains,

RρΛ(aPl, a0) ≈ 10120.
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Henceforth, it can be concluded that hybrid dynamic Λ model with dust and decaying DE
is free from cosmological constant problem9.

8.2. Coincidence problem

Another vital issue faced by standard cosmology is the coincidence problem which refers to
the issue of vacuum energy density and matter density being of same order in the present era
despite scaling differently invoking the question ‘why now?’. To evaluate the issue, we will
use ‘time-dependent proximity parameter’ introduced by Egan and Lineweaver [40] which is
defined as,

rp = min

[
ρΛ
ρm

,
ρm

ρΛ

]
. (97)

Since the proximity parameter is a ratio of densities10, it can also be expressed in terms of
dimensionless density parameters as,

rp = min

[
ΩΛ

Ωm
,
Ωm

ΩΛ

]
. (98)

From the definition of proximity parameter (97), it is clear that if the two densities are
exactly equal, then, rp = 1 whereas if they differ by many orders of magnitude, then rp ∼ 0.
In general if the two densities have same order of magnitude, then we will have rp � 0. In
present era, for ΛCDM model rp = 0.37 � 0 (using Union 2.1 parameter values). However,
in ΛCDM cosmology, ρΛ is a constant while ρm is a time-varying parameter. Therefore, if we
go back in cosmic history in ΛCDM Universe, the proximity parameter will inevitably drift
away from its present value towards rp ∼ 0 due to evolution of matter density. It implies that
we coincidentally live in a special time in cosmic history where the densities are of same order
of magnitude and this is essentially the infamous coincidence problem. A cosmological model
will be free from coincidence problem if rp ∼ O(1) is a general feature of the model holding
for most of cosmic history and is not a special occurrence at present era. To check the situation
in our model, we will write down the proximity parameter for our model in terms of present
day values of density parameters which gives,

rp(a) = min

[( 3−u
u Ωm0a−u +ΩΛC0

)
(Ωm0a−u)

,

(
Ωm0a−u

)(
3−u

u Ωm0a−u +ΩΛC0

)] . (99)

Figure 6 shows the plot of proximity parameter as a function of scale factor for our model
and standard ΛCDM model.

The plots reveal that the pattern of evolution of proximity parameter in both the models is
similar which stays close to zero for most of cosmic history implying that the densities differ by
many orders of magnitude but has a peak where the densities are comparable and the present era
a = 1 coincidentally lies near the peak for both the models. Therefore, it can be concluded that

9 In a more realistic cosmological model including radiation, the early Universe should be radiation dominated and the
scale factor corresponding to Planck era should be approximately aPl ∼ 10−32. Assuming the expression of vacuum
energy density is not affected by presence of radiation, it follows that RρΛ

(aPl, a0) ≈ 1091. This does not solve the
traditional cosmological constant problem but still solves the cosmological constant problem when partial cancelation
of boson and fermion vacuum energies is taken into account, which can decrease the quantum vacuum energy density
at Planck era by upto 1036 orders of magnitude [8] and bring down the discrepancy from 10120 to upto 1084 orders of
magnitude.
10 Proximity parameter is defined such that it is always the minimum of the two ratios.

26



Class. Quantum Grav. 39 (2022) 035010 A Aich

Figure 6. Plot of proximity parameter as a function of scale factor for standard ΛCDM
model and hybrid dynamic Λ model with dust–DE (decaying) Universe.

coincidence problem cannot be avoided by hybrid dynamic Λ model. It is interesting to note
that coincidence problem is often handled in literature by using some sort of tracker models
where DE energy density evolves in a fashion similar to evolution of matter and as a conse-
quence the two densities maintain a constant ratio which removes the coincidence problem. A
similar feature is achieved in pure Λ(t) cosmological models as well where the constant com-
ponent of cosmological constant is absent and evolution of vacuum energy/DE density tracks
the evolution of matter density. However, tracker models are unphysical in the sense that such
Universes are either always accelerating or always decelerating. Addition of a constant term
to Λ(t) cosmology makes the model physically viable by returning ΛCDM like behaviour but
along with it coincidence problem returns as well! Since the coincidence problem in hybrid
dynamic Λ model originates due to the constant component of vacuum energy density, the
coincidence problem can also be realised in a modified form, ‘why the density of constant
component of vacuum and matter density have same order in present epoch despite scaling
differently?’ In figure 7, the evolution of density parameters of ΛCDM model and hybrid
dynamic Λ is shown to elaborate the similarity in evolutions of density parameters for both
the models which is eventually responsible for the similar pattern of proximity parameter for
both the models.

To summarize, the hybrid dynamic nature of cosmological constant introduced in this work
can successfully solve the cosmological constant problem but cannot remove the coincidence
problem.
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Figure 7. Evolution of density parameters as function of scale factor for hybrid dynamic
Λ model with dust–DE (decaying) Universe (top plot) and standard ΛCDM Universe
(bottom plot).
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9. Discussions and conclusion

In this work, we introduced a new type of phenomenologicalΛ(t) model where Λ(t) was taken
to be a superposition of constant and variable components instead of being pure dynamic
as usually assumed in most phenomenological models of variable Λ(t) in literature. This
was mainly done with the motivation of linking the phenomenological models with quan-
tum models. However, we have not used any quantum theories or explanations in this work
and our approach has been strictly phenomenological in all aspects. It can be thought of as a
complementary approach which reciprocates metastable DE decay scenario from a classical
phenomenological approach without resorting to quantum theories.

For this investigation, we chose three expressions for variable component of Λ(t) justi-
fied from dimensional analysis and solved for each of them separately. The solutions that
we obtained for two-fluid model involving DE and another major component, showed that
variable component of DE and the other major component decays at the same rate which
rephrases the coincidence problem if the other major component is taken to be matter. Further,
we found the three models to be equivalent which allowed us to devise a new parametrisa-
tion of cosmological equations in terms of dilution rate of the components. The expression
of deceleration parameter shows that the switch from the decelerating to accelerating phase
can be readily obtained in our model which reflects that our model is physically sensible. In
general, the cosmological equations obtained in terms of dilution parameter showed resem-
blance to standard ΛCDM model. In fact, the corresponding equations for standard model
can be readily obtained just by substituting u = 3 in all the equations for dust–DE (decay-
ing) type hybrid dynamic Λ model and by substituting u = 3 (1 + ω) along with Ω0 = Ωm0 for
the general case. The standard ΛCDM model can thus be obtained as a special case for our
model, which provides a ground for comparison and can be viewed as an added advantage of
our model.

Finally, on confronting the model with observations using 580 supernovae from Union 2.1
dataset, we found that for dust–DE (decaying) Universe, the parameter estimates are Ωm0 =
0.29 ± 0.03, u = 2.90 ± 0.54. The corresponding values of derived parameters were found to
be, q0 = −0.56, zt = 0.76, t0 = 13.93 Gyr, Γm0 = 0.227 × 10−18 s−1. The plots of variation
of scale factor and deceleration parameter with redshift showed similar pattern with standard
model, but the Universe seemed to evolve little bit slowly compared to the standard case which
is also reflected by the marginal deviation of the parameter values in comparison to standard
case. Table 2 summarizes the cosmological parameters of standard ΛCDM model and hybrid
dynamic Λ model and provides a quick comparison.

The closeness of the model parameters estimates with standard ΛCDM model means that
it is difficult to distinguish the model from ΛCDM model from observational studies. How-
ever, on the contrary, it can also be stated that any observational results which favours ΛCDM
model, will also favour our model since our model retains most of the conclusions drawn
from ΛCDM model. Additionally, our model solves one of the alarming issues of modern
cosmology—‘cosmological constant problem’. The coincidence problem however cannot be
evaded in our model. The cosmic age increases marginally which does not solve the cosmic
age problem. However, the uncertainties on the parameters are high and instead of taking the
best-fit values, if we roughly take a point at the boundary of the 1σ contour in figure 2, say,
(Ωm0 = 0.31, u = 2.475) (shown by a mark in figure 2(b)), then we immediately get a cosmic
age of 15.31 Gyr which can accommodate all the old globular clusters in [36, 37] except the
oldest one and is very close to solving the cosmic age problem! We are not claiming this to
be true since it is very absurd for the dilution rate to deviate that much from the standard case
but we are merely pointing out the necessity of reducing the uncertainty. Henceforth, from
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Table 2. Comparison table of cosmological parameters.

Parameters
ΛCDM model (with Union 2.1

parameter values)
Hybrid dynamic Λ model (with dust and

decaying DE)

Ωm0 0.271 0.29
u Fixed at 3.0 2.90
q0 −0.59 −0.56
zt 0.75 0.76
t0 13.85 Gyr 13.93 Gyr
Γm0 0 0.227 × 10−18 s−1

observational or computational point of view, an immediate extension of the work can be to
perform joint statistical analysis using different methods and more datasets so that the tighter
constraints can be imposed on the model parameters. From a theoretical point of view, it will
also be interesting to see how the hybrid dynamic Λ model behaves when combined with a
varying gravitational constant (G) scenario, an idea that comes out from Dirac’s large number
hypothesis [41].

We conclude this work by saying although our model is phenomenological in nature, but it
gives very sensible conclusions about the Universe and have the potential to become a precursor
to a more concrete theory that might be developed in the future.
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Appendix A. Time varying cosmological constant and variable mass particles
(VAMP)

In section 4.6, we developed the framework of particle creation effects in our model with the
presupposition that mass of particles of other major component is invariant. In this section,
being inspired by variable mass particle (VAMP) cosmology [42, 43],11 we will expand our
work to include the case where mass of the other major component is variable. In the context
of our model, VAMP scenario stands for the situation where the decay of vacuum energy do
not create new particles, rather the decay of vacuum is associated with variation (increase) of
mass of the particles of the decaying vacuum product component. In this case, the equations
developed in sections 4.6 and 7.4 will not hold and the conservation equation (6) written in
terms of mass and number density will take the form,

nṁ + mṅ + 3
ȧ
a

mn (1 + ω) = −ρ̇Λ (A1)

equation (A1) will replace equation (64) in this case. Since additional particles are not created
due to decay of vacuum energy, number density of the other major component will follow the
standard energy conservation equation given by,

ṅ + 3n
ȧ
a

(1 + ω) = 0. (A2)

Substituting equation (A2) in equation (A1) and simplifying, we have,

ṁ − 3m
ȧ
a

(1 + ω) + 3
ȧ
a

m (1 + ω) = −m
ρ̇Λ
ρ
. (A3)

Using expression of ρ and ρΛ from equation (45), equation (A3) can be written as,

ṁ − 3m
ȧ
a

(1 + ω) + mu
ȧ
a
= 0. (A4)

Equation (A4) can be readily solved to obtain,

m = m0a3(1+ω)−u, (A5)

where m0 denotes the present day mass of the particles of the other major component.
Equation (A5) gives the variation of mass of the particles of decaying vacuum product com-
ponent due to decay of vacuum energy. When the other major component is dust with ω = 0,
equation (A5) will take the form,

mm = mm0a3−u. (A6)

The variation of mass of product component is an alternative scenario to the particle produc-
tion picture. This alternative scenario does not change the variation of density parameters in
the model. Hence, the entire cosmology with time-varying Λ developed throughout this work,
except particle creation effects, will remain unaltered under such considerations.

11
See the references within [43] for an account of different works done with VAMP models.
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Figure 8. Hubble diagram for hybrid dynamic Λ model with dust–DE (decaying)
Universe (top plot) and residuals (bottom plot) using Pantheon supernova sample.

Appendix B. Testing the model with Pantheon supernova compilation

Here we present an updated result by fitting the model against latest supernovae data from
Pantheon compilation [44]. Pantheon catalogue [45] comprises of a dataset 1048 supernovae
as (mobs, z) pairs. The apparent magnitude reported in Pantheon dataset is actually the cor-
rected apparent magnitude obtained after determining and adjusting all the nuisance parameters
(except absolute magnitude) by BEAMS with bias corrections (BBC) method [46]. Since the
publicly available Pantheon dataset is presented in [45] without setting up any pre-determined
value for absolute magnitude, one can use any one of the independently measured value of
Hubble constant from observations along with Pantheon sample. The corresponding value of
absolute magnitude and its uncertainty can be determined from the following equations used
in [47, 48],

M = 5 log10
Hmeas

0

Hfid
0

+ Mfid (B1)

σM =
5

ln 10

σHmeas
0

Hmeas
0

, (B2)
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Figure 9. The top plots are the corner plot output showing results of our MCMC param-
eter estimation for hybrid dynamic Λ cosmological model with dust–DE (decaying)
Universe, using Pantheon supernova sample. Bottom plot is the zoomed in image of
parameter contours which has been terminated at u = 3 to represent realistic scenario.
Note—the label OM in the above figures is equivalent to Ωm0.
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where Hfid
0 and Mfid are the fiducial values of Hubble constant and absolute magnitude relevant

to Pantheon sample [47, 48].12 Hmeas
0 and σmeas

H0
are the measured value of Hubble constant and

uncertainty respectively which will be utilised for cosmological fitting.
Currently there is an ongoing tension in the value of Hubble constant between its value

determined from CMB measurements (67.4 ± 0.05) [19] and its value determined from local
supernova measurements (74.03 ± 1.42) [49]. We will take a conservative approach and use the
model-independentmeasurement of Hubble constant H0 = 69.8 ± 0.8 from Carnegie-Chicago
Hubble programme [50] which sits in the middle of the Hubble tension. The consequent value
of absolute magnitude and its uncertainty determined from equations (B1) and (B2) are M =
−19.346 21 ± 0.024 89. Plugging in all these together, the best fit values of model parameters
obtained are,

Ωm0 = 0.31 ± 0.02; u = 2.92 ± 0.34

(errors reported are 1σ).
The Hubble diagram and corner plots are presented in figures 8 and 9 respectively.
Fitting with the larger Pantheon supernova sample have decreased the uncertainty in param-

eters. The best-fit values have shifted as well but the shifting is marginal and it is not expected
to change any of the conclusions of this work significantly.
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