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Abstract

Aspheric surfaces are widely used in advanced optical instruments. Measuring the aspheric surface parameters
(ASPs) with high accuracy is vital for manufacturing and aligning optical aspheric surfaces. This paper provides a
review of various techniques for measuring ASPs and discusses the advantages/disadvantages of these
approaches. The aim of this review is to contribute to advancements in the fabrication and testing of aspheric
optical elements and their practical applications in diverse fields.
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Introduction

Asphere is a general term for surfaces that deviate from
a sphere'”’. The phrase ‘aspheric surface’ used herein is
specific to a rotationally symmetric aspheric surface.
Compared with a spherical surface, which exhibits the
same curvature, an aspheric surface exhibits different
curvature. Aspheric surfaces have higher degrees of
freedom than spherical surfaces, thus allowing them to
perform more functions. For example, aspheric surfaces
can correct high-order aberrations and improve imaging
quality, thus enabling effects that are only possible using
multiple spherical mirrors and reducing the size of the
optical system. Consequently, optical designers are
inclined to use aspheric surfaces in modern optical
systems, such as biomedical, lithographic, astronomical
optics, and high-power laser systems, when considering
system volume and imaging quality”’. The design and
manufacturing capabilities of aspheric surfaces have
gradually improved and high-order aspheric surfaces have
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become increasingly well-known owing to the increasing
demand for aberration correction in optical systems'™ .
Sloan et al."" designed a double-Gaussian system and used
three eighth-order aspheric surfaces to improve the image
quality of an optical system. Yatsu et al.” reduced the
zoom lens length of a camera by 30% using only a 10th-
order aspheric surface instead of spherical surfaces. Optical
systems with aspheric surfaces are continuously being
improved owing to the ongoing development of optical
design theory”™. The use of aspheric surfaces, particularly
high-order surfaces, in optical systems is expected to
increase.

The measurement of aspheric surfaces is vital to their
manufacture. Although fabrication technology has
developed rapidly in recent years’ ”, advances in
fabrication technology have exceeded
measurement capabilities. A well-established corollary of
the saying, ‘you cannot make it if you cannot measure it’
has been established recently, i.e. ‘If you can measure it,
you can indeed make it’. Manufacturing process
bottlenecks typically arise from a lack of routine, cost-
effective, and timely metrology solutions™.

An aspheric surface is primarily measured based on its
form and parameters. The surface form is the three-

occasionally
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dimensional distribution of the surface in the spatial
domain. The measurement result of the surface form is a
geometric quantity that is typically expressed in terms of
the surface height, which is a function of the (x, y)
coordinates in units of length. Meanwhile, the aspheric
surface parameters (ASPs) are well-defined quantities that
can be derived from the surface form. Measurements of the
surface form and parameters can be used to assess the
aspheric surface quality. According to the international
standard ISO 10110-12”, the general expression for a
rotationally symmetric aspheric surface comprises a conic
term and an even term for the power series. The surface
form is expressed as shown in Eq. 1.
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In Eq. 1, R, K, and 4,; are the ASPs; R is the vertex
radius of curvature; K is the conic constant; 4,; is the high-
order aspheric coefficient; # is the surface height
perpendicular to the z-direction; and z is the sag of the
aspheric surfaces. Fig. 1a shows a schematic illustration of
the change in the quadratic aspheric surface with respect to
R when K = 0.6. Fig. 1b shows a schematic diagram of the
change in the quadratic aspheric surface with respect to K
when R = 40. Fig. 1c¢ shows a schematic illustration of the
addition of the fourth-order coefficient 4, to the aspheric
surface based on the quadratic aspheric surface. The length
units of the vertical and horizontal axes in Fig. | are in
millimetres, and the different line types and colours
correspond to the various ASPs. Fig. | shows that R
directly affects the overall curvature of the aspheric

z(h) =
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surface, the focal length of the aspheric surface, and the
curvature near the vertex. Meanwhile, K determines the
surface characteristics and type of aspheric surface".
Table I shows that K determines whether an aspheric
surface is ellipsoid, spherical, paraboloid, or hyperbolic
when it is quadratic. K exerts a minimal effect on the
curvature near the vertex. The
coefficient 4,; is a high-order term added to the quadratic
aspheric surface to further adjust the aspheric surface form,
which barely affects the curvature near the vertex but
significantly affects the curvature at the edges. The
aforementioned parameters typically characterise an
aspheric surface and are used in the entire design,
fabrication, testing, and adjustment of aspherical optical
systems.

Surface form measurements are typically performed in
the manufacturing of optical surfaces. Surface form
measurement yields the deviation in the spatial domain
between the surface under test and the design model, which
can effectively guide processing in an optical shop. The
peak-to-valley (PV) and root-mean-square (RMS) errors
are generally adopted in surface form measurements to
assess the quality of a single surface under test and can

high-order aspheric

Table 1 Effect of conic constant K
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Fig. 1 Effects of ASPs on curvature: a vertex radius of curvature R, b conic constant X, and ¢ high-order aspheric coefficients 4,,.
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indicate the processing precision of the surface under test.

However, in an optical shop, assigning the exact final
processing precision of each surface using only the PV and
RMS errors of an aspherical optical system is challenging.
Theoretically, an optical system can meet the requirements
as long as the PV and RMS errors of each surface are
sufficiently small. However, extremely small PV and RMS
errors are rarely required for each surface because such an
excessively high processing target will increase the cost
significantly. Moreover, aspheric surfaces with excessive
PV and RMS errors may form satisfactory systems in
practice. The discussion above shows that the surface form
measurement of each surface is insufficient for describing
the performance of an optical system. Thus, assigning the
exact final processing precision target to each surface using
only PV and RMS errors is difficult. Hence, another
measurement that can reflect the modulation of each light
surface should be performed to evaluate the entire system.

In the context of optical system assessments, parameter
measurement is an essential step in the manufacture of
optical systems as it yields the light modulation deviation
(e.g., the focal length change owing to curvature variations,
as shown in Fig. 1) between the surface under test and the
design model. This allows us to effectively assess whether
the surface can function as expected in the optical system.
For example, the measurement results of R can provide
feedback to the model of an aspherical optical system in
commercial optical design software to determine whether
the focal length satisfies the requirements before the
system is assembled. Moreover, the tolerance analysis of R
can offer an exact processing target for aspheric surfaces
prior to processing.

The parameter is a concrete form of the surface form in
terms of the specific modulation of light. The surface form
measurement yields the deviation in the spatial domain and
can effectively guide the processing, whereas the parameter
measurement can successfully assign the processing target
of each surface by assessing the system performance
degradation. A routine, cost-effective, and timely
metrology solution for manufacturing aspheric surfaces is
based on a reasonable combination of these approaches.

ASPs are highly demanded in modern advanced optical
systems for ensuring good system performance. For
example, the R of the primary mirror of the Giant Magellan
Telescope is required to be R = 36,000.0 = 1.0 mm™, the R
of the primary mirror of the James Webb Space Telescope
is required to be R = 15,879.722 + 1.0 mm, and the conic
constant is required to be X = —0.9967 + 0.0005 mm”.
Therefore, the measurement accuracy should be higher
than the abovementioned fabrication accuracy. In this case,
the measurement results of the ASPs can offer a vital
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reference for aspheric processing, thus providing guidance
for the following processing steps as well as feedback on
possible errors in the processing equipment.

Moreover, Eq. 1 is not the only expression used for the
aspheric surfaces. The aspheric surface expressed in Eq. 1
is known as ‘even asphere’ in some commercial optical
design software, such as Zemax. An extended version of

Eq. 1 with a complete power series is known as ‘odd
asphere’, which is expressed in Eq. 2.
h? - ;
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The typically performed characterisation of rotationally
symmetric aspheric surfaces adds a high-order power series
to the conic surface. This representation is simple and
provides substantial freedom in optical design.
Theoretically, this representation can characterise any
symmetric surface with arbitrary accuracy if i is
sufficiently large”. Nevertheless, this representation has
been reported to be numerically deficient, and the non-
orthogonality of the power series introduces considerable
difficulty in the least-squares fitting of ASPs™*'.

Forbes"** proposed 0*" and Q°® polynomials based on
Jacobi polynomials to address the challenges above. The
O™ polynomial was proposed for characterising a strong
aspheric surface with large aspheric deviations and
represents the aspheric deviations in the z-direction
between the strong asphere and its conic base™*’. The O*"
surface is generated by combining a conic base and the 0"
polynomial amplitude. The

expressions for a 0" surface is shown in Eq. 3.

" +w Z B0 (w?) (3)
i=1

2
R|1+ ,,1—(1+K)(1%)

In Eq. 3, w is the normalised surface height and is
defined as w = h/hy, where h, represents the upper limit of

with an orthonormal

con

z(h) =

h, B; is a coefficient, and Q°" is a polynomial term”".

The O™ polynomial was proposed for characterising a
mild aspheric surface with a constrained slope and
represents the aspheric deviations in the normal direction
of the best-fit sphere™"’. The best-fit sphere matched the
sag of the aspheric surface at the vertices and edges. The
O™ surface can enhance the manufacturability of an
aspheric surface and is generated by combining a spherical
base and the 0™ polynomial, which contains orthonormal
derivatives. A Q" surface is expressed as shown in Eq. 4.
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In Eq. 4, C; is a coefficient, and Q°® is a polynomial
term’’. Moreover, the O surface can be generated by
combining a conic base and the 0™ polynomial as follows:

z(h) =

z(h)=

R1+\/1—(1+K)(I%) \/1—(%) '
©)

The aspheric surface types are listed in Table 2. An
aspheric surface is typically generated using a quadratic
surface, power series term, or (-type polynomial. The
ASPs include the vertex radius of curvature R, a conic
constant K, and higher-order coefficients 4,;, 4;, B;, and C;.
This review primarily focuses on even asphere because it is
the most commonly used. In this case, ASPs include vertex
radius of curvature R, conic constant K, and high-order
coefficient 4,;.

Over the past few decades, methods for measuring ASPs
have emerged to satisfy the increasing demand for various
optical systems. However, the relevant reviews are
currently unavailable. This paper reviews various
techniques for measuring ASPs, which we hope will
contribute to advancements in the fabrication and testing of
aspheric optical elements and their practical applications in
diverse fields.

The two core issues for a metrology solution are as
follows: where data comes from and where data goes. The
phrases ‘where data comes from’ and ‘where data goes’
refer to the measurement data source and the data
processing approach, respectively. In many research areas,

w + w?[1-w?] i CiQ})fs (W2>
i=0
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measurement techniques are typically classified based on
the measurement data sources, which are directly related to
the measuring instrument; therefore, the classification
method is highly intuitive and informative. Meanwhile,
unlike conventional physical quantities such as length and
weight, ASPs cannot be directly quantified by measuring
instruments. Therefore, research on ASP measurement is
extremely diverse. Classifying ASP measurement methods
using measurement data sources is difficult, and no clear
classification exists currently.

Therefore, the ASP measurement methods presented
herein are classified into two main categories based on the
data-processing approach: general fitting and center-of-
curvature-based methods. If the measured data are directly
used to calculate the ASPs, then the method is classified as
the general fitting method. If the measured data are used to
position the corresponding centre of curvature, then the
method
method. In the center-of-curvature-based method, ASPs are

is classified as the center-of-curvature-based

typically calculated based on the distance between the local
surface and the corresponding centre of curvature.
Subcategories are then classified using a measurement data
source.

This paper presents the basic principles, implementation
schemes, and results of the different
approaches. A summary and future outlook on techniques
for measuring ASPs are provided at the end.

exemplary

General fitting method

General fitting methods can be classified into the
following three types based on the measurement data
source: 1) the direct fitting method (surface form), 2) the
interferometric method (wavefront aberration), and 3) the
geometrical method (surface slope).

The direct fitting method is typically used to measure

Table 2 Summary of aspheric surface type and representation formulas

Type

Basic surface function

Additional term Orthogonality

Even asphere

Non-orthogonal

n .
i=2

Odd asphere

Q°" surface

Q" surface based on a conic surface

Non-orthogonal

n
ZA,-h"
i=1

Q" surface based on a spherical surface

W4ZB,~Q§°“(WZ) Orthogonal
i=0
Orthogonal
2 wi-w?] < bfs (2
hi h 2 ZClQl (W )
1—[1;] i=0 Orthogonal
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ASPs and is introduced in Section 2.1. It includes the
following three important aspects: absolute surface form
measurement, polynomial, and fitting algorithm. It is worth
noting that though the surface form measurement is
typically measured using an interferometer, the results
obtained cannot be applied in the direct fitting method.
This is because interferometry is a relative measurement
method that can only yield the surface form deviation
between the measured and reference surfaces, i.e., it cannot
yield the absolute surface form. The technology for
measuring the aspheric surface form is relatively mature.
Related issues have been discussed by other scholars™’ ™
and will not be discussed further herein. Section 2.1
introduces the polynomials and fitting algorithms for ASPs.

Accurate measurement of the aspheric surface form is
expensive and inefficient. Therefore, other methods have
been devised to measure the characteristics of light
modulated by a surface instead of directly measuring the
aspheric surface form. The phrase ‘characteristics of the
light’ refers to a non-null system wavefront, longitudinal
aberration, spot deviation, or other measurable quantity.
Complex formula derivations and optical path parameter
measurements are typically required prior to ASP fitting.
These methods are introduced in Sections 2.2 and 2.3
based on the type of measured characteristics.

Direct fitting method

In the direct fitting method, a coordinate measuring
machine™”, a swing arm profilometer””’, a Hartmann
sensor ", a scanning white light interferometer”, or other
instruments’ " are used to measure the aspheric surface
form. Subsequently, the measured data are mathematically
fitted to obtain the ASPs. A typically used mathematical
fitting process is described as follows™":

Determining the best fit for a model function F to a set
of measured data F,, with N data points typically requires a
minimisation process. A model function ' can generally be
expanded by a polynomial P of degree [ as follows:

F= 2 PA, (6)

This process can be described as obtaining coefficients 4;
to minimise the merit function M, which is expressed as

N 2

M(AO,AI...A,)zz

n=1

= minimum

(M
In Eq. 7, M is a quadratic function of coefficient A4;.
According to the extreme value theorem, if M is a
differentiable function, then the minimum is obtained when
the partial derivatives of the function for each coefficient

F,- 2 Pi (X, ya) A

i=0
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are zero.
oM
oA =
This implies that for Eq. 7,

0 (8)

N

oM
o =2

n=1

J
Fu= " P 0)A;|(=Pix,y) =0 (9)

J=0

for all i =0,1, 2, ..., I, and J = I. Resolving this equation
yields

6M J N N
G = 20 A D PP () = ) FuPi(3,.3,) =0
! Jj=0 n=1 n=1
(10)

Thus, the following can be obtained at each minimum:

N
Pi(xmyn)Pj(-xn»yn) = ZFnPi(xmyn) (11)

N
=1 n=1

J
24
Jj=0 n=

Subsequently, the variables below are introduced:

N
Ci = ZFnPi(-xn’yn)
n=1

N (12)
Gi,j = ZPi(xn’yn)Pj(-xn’yn)
n=1
Hence, Eq. 11 becomes
J
> GuA =c (13)
j=0
and can be expanded as
GOOAO +G0]A] +--- +G()]A] =y
G10A0+G11A1+"'+G”AJ=CI (14)

G]0A0+G11A1+"'+G_/]A]=C]

Egs. 13, 14 are the normal equations of the least-squares
data fitting problem: If the determinant of G does not
vanish, then a unique set of solutions 4, 4,, ..., A; exists.
This equation can be easily obtained using the classical
least-squares matrix inversion method”.

Eq. 6 can be represented in matrix form as

F=PA (15)

Subsequently, the following can be obtained using the
least-squares matrix inversion method:

A=(P'P) P'F (16)

a. Challenges in conventional least-square direct fitting
method

As shown in Eq. 16, the least-squares matrix inversion
method inverts the Gram matrix G = P"P, which results in
numerical instability in the high-order power series fitting
process’’.
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Forsythe”” used regression theory to show that the
aforementioned least-squares matrix inversion method is
computationally intensive and utilised a typical numerical
model to illustrate the strict tolerance of the method under
high-order conditions. When N is large and P (x,, y,) is
distributed approximately uniformly on (0, 1), one may
expect

N
1 . .
Gij= ZPi(xn,yn)P,-(xn,yn) ~ Njo P'P/dP
n=1

N
i+j+1

=N [ Pap= (17)
0

In this case, matrix G is N times the matrix [[(i +j + 1) ']
(i,j=0,1, ..., k), which is the well-known principal minor
of order £ + 1 of the infinite Hilbert matrix.

' 1 1
1 = =
2 3
1 1 1
H=| 2 3 4 18
1 1 1 (18)
3 4 5
Solving linear equations involving the minor

components of H is difficult. For example, for £ = 9, the
order of the principal minor H, is 10 and the inverse H,, "'
contains elements of magnitude 3 x 10 In this case, a
slight error of 10" in ¢; results in an error of approximately
300 in 4;, indicating that the solution to Eq. 16 is highly
sensitive to errors in F, . The simplistic fitting process
fails when the terms are in excess, owing to the strict
tolerance. However, if / is specified within a certain range,
the number of terms will be reduced, resulting in the
inability of the expression to adequately describe the
aspheric surface.

The discussion above indicates that the performance
stability of the least-squares matrix inversion method
depends significantly on the Gram matrix G, which is
determined by the polynomial set P. The spectral condition
number x can determine the condition of G.

_ max|y|
~ minlul
where o(G) denotes the set of all eigenvalues of G.
Condition values of approximately 1 indicate that G is
well-conditioned, whereas high values indicate that G is
ill-conditioned”.

In the fitting process using the least-squares matrix
inversion method and the power series in Table 1, massive
coefficients can be obtained when the peak polynomial
coefficient increases with the polynomial order. These

«k(G)

with u € o (G) , (19)
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coefficients are typically several orders of magnitude
higher than the sagittal height. This condition may result in
a remarkably small number from the subtraction of two
large numbers during the sagittal height calculation. Thus,
the effective numbers during the calculation decrease
because of the limited accuracy of numerical storage in
computers. The loss of effective numbers induces
numerical instability in the optimisation algorithm used in
the calculation. This problem of fitting ASPs can be solved
using polynomials and fitting algorithms.

b. Polynomials

An orthogonal polynomial can sufficiently eliminate the
numerical instability of the fitting algorithm during the
calculation. Forsythe remarked that setting G;;, (i # /) to be
substantially smaller than the diagonal elements of G, will
significantly simplify the solution to Eq. 14 for large values
of polynomial degree I”. A typical practice is to select
polynomials that are orthogonal to the dataset as follows:
X, X3, ..., xy. Owing to the discrete orthogonality
condition, if the polynomial set P; is orthogonal, then

N 0 i#]
Gz:,j = ; Pi(xn»yn)Pj(xnayn) = ZN: [P_;(xn,yn)]z i=j
" (20)
and the simple form of Eq. 14 can be obtained as follows:
GoAo = 0O
G A, = (¢ @1
GA; = ¢

Thus, the coefficients for the best fit can be easily
calculated as follows:

N
Z FnPj(xn’yn)
1

= (22)
[Pj(xn’yn)]z

A=
T G./vj

M=

n

0,42-44

Instead of a simple additional power series, Forbes'
used a nonstandard orthonormal basis in the aspheric
expression formula to avoid an ill-conditioned Gram
matrix and proposed three types of function polynomials:
O™, 0™, and 0™ extended. The O°" and Q™ polynomials
are typically used to characterise symmetrical surfaces, as
listed in Table 1. O™ extended polynomials are used to
define complex surface shapes with local protrusions or
depressions and can be extended to characterise freeform
surfaces. However, QO-type polynomial is defined as
orthogonal over continuous data and may not be orthogonal
for discrete data. Meanwhile, data obtained from actual
tests are typically discrete. Hilbig et al.” proposed the
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Gram-Schmidt orthonormalization of these polynomials
over a discrete dataset to solve this problem. Wang et al.”
expanded the quadratic portion of an aspheric surface into
a series of even-order terms using binomial expansion to
generate discrete orthogonal polynomials. The definition of
the fitting error is directly related to the inner products;
therefore, Cheng et al.” projected polynomials to the vector
space based on their relationship with the inner products.
Polynomials were analysed using vector analysis methods,
where polynomial problems were transformed into vector
problems. This method can achieve high accuracy and
effectively solve numerical ill-conditioning problems.

c. Fitting algorithms

The fitting algorithm determines the performance and
efficiency of the direct fitting method. Herein, the main list
of fitting algorithms applied to ASP fitting is presented.
Zhang” (1997) derived aspheric parameter fitting
comprehensively and compared various algorithms. The
parameter estimation problem was regarded as an
optimisation process. A comprehensive discussion of the
minimisation criteria and the robustness of the different
algorithms was provided. The importance of selecting an
appropriate criterion was highlighted as it can affect the
accuracy of the estimated parameters, the computation
efficiency, and the robustness to predictable or
unpredictable errors”. Gugsa” (2005) used the least-
squares method to determine the best-fit conic of aspheric
microlenses based on white-light interferometry, where the
Monte Carlo process was used to estimate the measurement
uncertainty of the test results. Sun” (2009) utilised the
Gaussian—Newton algorithm to fit aspherical curves and
surfaces by minimising the vertical distances. This fitting
process converged rapidly in the simulated ideal data and
data containing random irregularities. In the same year,
Chen et al.” discussed the form-fitting of rotationally
symmetric aspheric surfaces using the least-squares method
and the Levenberg—Marquardt algorithm, which resulted in
rapid convergence. El-Hayek" (2014) evaluated the
following three algorithms based on their performances on
simulated datasets: the limited memory Broyden—Fletcher—
Goldfarb—Shannon (L-BFGS) algorithm, the Levenberg—
Marquardt algorithm, and one variant of the iterative
closest point algorithm. The L-BFGS algorithm showed
linear time complexity with respect to the number of data
points, executed faster than the Levenberg—Marquardt
algorithm, and was significantly faster than the iterative
closest point algorithm.

In general, the direct-fitting method exhibited good
versatility. However, the direct use of a non-orthogonal
power series for fitting high-order aspheric surfaces causes
numerical instability in the calculation. Robustness and
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efficiency are prioritised in fitting algorithms. A fitting
algorithm 1is susceptible to non-convergence when the
number of fitting points is small. The efficiency of fitting
algorithms for addressing large-volume datasets garnered
considerable attention. Therefore, researchers have focused
on different orthogonal polynomials as well as rapid and
accurate fitting algorithms.

Interferometric methods

Interferometry is an efficient optical method that is
widely used to test optical aspheric surfaces'™” "™, This
method requires a compensator to reduce the maximum
slope of the residual wavefront of the interferometry
system; thus, the density of the interference fringes
satisfies the Nyquist theorem. The compensator converts
the aspheric wavefront into a spherical or plane wavefront,
the latter of which interferes with the reference wavefront.
Interferograms are analysed to obtain the target
information of the aspheric surface under testing (ASUT).
Interferometric measurement methods involving a
compensator can be classified into null and non-null
interferometry based on the compensator type™* ™.

Null interferometry adopts a null compensator or
computer-generated hologram (CGH), which generates a
wavefront consistent with the ASUT to compensate for the
normal aberration of the aspheric surface, thus allowing a
null interferogram to be obtained™". This method can
achieve high accuracy; however, a null compensator or
CGH can only measure a specific aspheric surface, thus
significantly increasing the manufacturing costs. The null
interferometric measurement system requires the precise
positioning of the ASUT at the confocal position of the
measurement system, thereby increasing its complexity. In
addition, the manufacturing and testing of the null
compensator or null CGH is complex, which limits the
wide application of null interferometry for ASPs.

Non-null interferometry is widely used to measure
ASPs. As shown in Fig. 2, the typical non-null
interferometry uses a partial compensator (PC) to construct
a partial compensation interference system”>”. A PC can
be used to test a series of aspheric surfaces, thereby
reducing the measurement costs and improving the
versatility.  Unlike null interferometry, non-null
interferometry features a large residual normal aberration
in the system wavefront, which is known as the residual
wavefront, thus resulting in a retrace error that must be
corrected. The residual wavefront is related to the
compensation distance, which is defined as the distance
between the final surface of the PC and the vertex of the
ASUT'". The compensation distance is important and was
adopted widely in previous studies.
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ASUT

Partial compensator

Reference
surface

Interferometer

Compensation distance

Fig. 2 Definition of compensation distance

Yang et al."” proposed a measurement method for R of
an aspheric surface using a non-null interferometry system.
As shown in Fig. 3, this method uses the multi-
configuration of a non-null interferometer for optimisation
and can simultaneously yield the R and surface form of the
ASUT. An aspheric shift with precisely determined axial
displacements was conducted to realise multiple
measurements, and a multi-configuration model was
established accordingly. The R and aspheric surface error
were entered into the multi-configuration model as
variables, whereas the experimentally tested residual
wavefronts were regarded as optimisation objectives.
Subsequently, the actual R was retrieved via a
simultaneous optimisation process. Theoretically, the

accuracy of the results can be improved by increasing the

number of  measurements. Nevertheless, such
improvements typically require additional complex
operations and present cumulative errors. The

computational efficiency of this method relies on the
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estimation of the initial value of R and the initial position
of the measured aspheric surface. The relative
measurement accuracy of this method can exceed 0.025%
when measuring a paraboloid mirror with a nominal R of
819.52 mm.

The measurement of R using the introduced method does
not rely on the absolute positioning of the confocal position
or the absolute value of the compensation distance, thereby
reducing the adjustment difficulty. In fact, this method is
applicable to the measurement of R for annular aspheric
surfaces. However, its requirements for accurate axial
displacement measurements and for fitting rotationally
symmetric aberrations in the measured wavefront are high,
and neither K nor A4,; is measured.

Hao and Hu et al’"™'" "' comprehensively
developed non-null interferometry to measure ASPs both
theoretically and experimentally.

First, a new concept known as the best compensation
distance was defined to assist the measurement "', In a
non-null measurement system, the maximum slope of the
residual wavefront changes as the aspheric surface
propagates along the optical axis. When the maximum
slope and density of the interference fringes reaches the
minimum value, the compensation distance is defined as
the best compensation distance. This position can be
identified by observing the density of the interference
fringes. The system wavefront obtained at the best
compensation distance is the best compensation wavefront.

Subsequently, a mathematical model is established to
define the relationship among the ASPs, system wavefront,

Caustic
PZT
Mirror SR
Beam “dii\\\
Laser expander

g tcpe s

Beam splitter
image lens

CCD

Interferograms

Non-null
wavefront

Five-dimensional
adjusting mechanism

4
Aspheric

under test /— Fixed prism

. —— DMI m

Movable prism

Translation

Aspheric
initial position

Publishing Group)

pa_0

—
PNL
-
“— P
.
_~— =
=~
I |
d Ad,, ;

Fig. 3 Schematic illustration of aspheric non-null interferometry for different axial positions (Reprinted with permission from Ref. 101 © Optica




Hao et al. Light: Advanced Manufacturing (2023)4:19

and best compensation distance. By considering the
McLaurin series expansion of Eq. 1, z can be expressed as
shown in Eq. 23.

= ZDZiVZi :D2-rz+D4-r4+D6~r6+D3~r8+ZD2,vr2i
=1 i=5
i=1,2,3,---,N
(23)
The relationships between the ASPs and system wavefront
are as follows'”:

AD. 1 1 AR
> 2(R+AR) 2R~ 2R(R+AR)
1 (K+AK+1) 1 (K+1
AD4:AA4+—'( + +3)__'( * )
8 (R+ARY 8 R
1 (K+AK+17? 1 (K+1)
AD(}:AA“._.u__.u
16 (R+ARY 16 R
K+AK+1) K+1)°
ADSZAAXJFL.M_i.Q
128 (R+AR) 128 R (24)
2n-3)! (K+AK+1)""
ADZn:AAZn+(n ) ( i +221 -
@cm!! (R+AR)™
@n=3)" (K+1)"!
@n)!! R
, AT <&
A¢=¢—¢~7-;AD2,-

Eq. 24 establishes the relationship between the best
compensation wavefront deviation and errors in the ASPs.
In this equation set, AD,; is the difference between the
coefficients D" and D of the actual and theoretical aspheric
surfaces; AR, AK, and AA4,, are the errors in ASPs; and Agp
is the deviation between the actual best compensation
wavefront ¢’ measured in the actual non-null interferometer
and the ideal best compensation wavefront ¢. Nevertheless,
in this equation set, AD,; can be calculated from the last
equation while AR, AK, and AA4,; (i = 2, 3, and 4) are
unknown. A total of i equations and i + 1 unknown
quantities are involved. Therefore, the equations are
undetermined and have infinite solutions. Similar to the
best compensation wavefront, the best compensation
distance changes when an error is observed in the ASPs.
Another equation can be established by describing the
relationship between the deviation of the best
compensation distance and the error in the ASPs'”. The
detailed equation is complex and is omitted herein.

Finally, measurement methods for the best compensation
distance remain unknown. Unlike a  spherical
interferometry system, a non-null system does not have a
cat’s eye or confocal position. Therefore, measuring the
best compensation distance, which is key to the entire

Page 9 of 19

system, is difficult.

This issue can be mitigated by adding a removable
combined aplanat to the PC, as shown in Fig. 4, to locate
the cat’s eye position'""'”. The layout of this approach is
illustrated in Fig. 5. The distance between the PC and the
cat’s eye position can be obtained easily based on the
aplanat design. After locating the cat’s eye position, the
combined aplanat is removed and the aspheric surface
propagates along the optical axis on a precision linearity
rail to the position where the density of the interference
fringes reaches the minimum to calculate the best
compensation distance. However, determining the precise
position is difficult because the
interferogram fringes are similar near the target position.
Thus, an iterative optimisation algorithm is utilised to
calculate the real best compensation distance and ASPs.
The relative measurement accuracies of R and K yielded by
this method exceed 0.02% and 2%, respectively, for a
conic surface'”.

However, the versatility of this approach is insufficient.
Different aplanats must be designed for various PCs to
eliminate spherical aberrations, thus increasing the test
cost. The ASUT must traverse a long distance of
approximately the R of the ASUT, which is time-
consuming and risky when measuring a large optical
element. The accuracy of the guide rail limits the precision
of the compensation distance measurement. Theoretically,
this approach can be extended to measure A4,; however,
further study is required for confirmation.

The laser differential confocal technique was used in
another study to measure the best compensation distance'”.
A schematic illustration of this approach is shown in Fig. 6.
The system can be classified into two subsystems: the
partial-compensation interferometer system (which is
enclosed by the solid line) and the laser differential
confocal system (which is enclosed by the dashed line).
The real partial compensation interferometer system
the system wavefront, whereas the laser

confocal system measures the Dbest

location of this

measures
differential

Removable
combined
aplanat

PC

permission from Ref. 100 (© Optica Publishing Group)
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compensation distance. The compensation distance is
adjusted until the PV value of the residual wavefront
reaches the minimum. The wavefront of the system is
obtained using a Fizeau interferometer. The PC and ASUT
are mounted together to fix the compensation distance.
Subsequently, the best compensation distance can be
measured after moving the compensator and ASUT to the
laser differential confocal system integrally. This approach
increases the measurement accuracy of the compensation
distance and the versatility of non-null interferometry, thus
allowing high-order aspheric surfaces to be measured, and
is suitable for measuring concave and convex aspheric
surfaces. The relative accuracies of R, K and 4,; can reach
0.025%, 0.095%, and 3.02%, respectively.

In this method, the PC and ASUT should be fixed and
propagated between the interferometer and laser
differential confocal system, which is not feasible when
testing large optical elements.

In general, the interferometric method can achieve high
accuracy in surface form measurements. The information
retrieval of this method is based on light wavelength, thus
providing superior traceability to the test results. This

method requires a compensator to convert the reference
wavefront into an aspheric wavefront, and using multiple
compensators enable the comprehensive measurement of
various convex or concave aspheric surfaces.

The ASPs were calculated by establishing relationships
among the ASPs, system wavefront, and compensation

distance. Nevertheless, the measurement of the
compensation distance does not satisfy the test
requirements in various test scenarios. The aplanat

approach requires the propagation of the ASUT over long
The laser differential confocal technology
system is complex, where the ASUT and PC must be fixed
and propagated. Implementing these conditions in tests for
optical elements with a long R or large diameter is typically
difficult. Therefore, a compensation distance measurement
method that can satisfy different application scenarios is
urgently required.

For interferometry systems, the setup is complicated and
the measurement range is relatively small. Furthermore,
interferometry cannot correctly retrieve the wavefront
when the ASUT presents a height discontinuity greater
than one-quarter of the light wavelength between two

distances.



Hao et al. Light: Advanced Manufacturing (2023)4:19

adjacent pixels. Additionally, the 2m phase ambiguity
appears in an unwrapped operation'”. These conditions
limit the applicability of interferometric methods.

Geometrical methods

Geometrical methods are cost effective and have been
widely used to test the surface form of optical elements™ *,
such as via the Hartmann test. Unlike interferometric
methods, a geometric optics approach measures the slope
from transverse aberrations at some observation planes
near the focal plane instead of the optical path difference”,
thus avoiding the 2n phase ambiguity problem. Thus, this
method has a wide measurement range.
Null screen method

Diaz-Uribe et al. (2000)" proposed a null-screen method
for testing fast-aspheric convex surfaces. Fig. 7 shows the
mechanism of this method, which uses a cylindrical screen
with a set of stripes, dots, drops, or grids. An image is
reflected by a perfect surface and a perfect image is created
when the drop-null screen is adopted, as shown in Fig. 8a.
Each screen is specifically designed to accommodate the
ASUT. If the ideal form of the surface to be evaluated is
known, then the observed image shown in Fig. 8b indicates
the departure from a perfect array if the surface is not ideal.
As shown in Fig. 8c, the differences between the
theoretical and experimental arrays can be attributed to
surface imperfections and can provide relevant information
regarding the form of the surface to be analyzed'. As
shown in Fig. 9, this method is simpler than other null-test
methods in terms of structure because it does not require
any additional optical elements with a specific design to
correct the aberrations of the system under test. Slight
deviations can be quantified in an image of the grid by
measuring the x- and y-coordinates at each crossing point.
Additionally, alignment can be performed easily because
the setup is entirely along the local axes of each segment
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and the grid or other designed patterns allow the screen to
be positioned easily.

This method was further developed and can be applied
quantitatively to test convex and concave aspheric surface
forms” . Similar to the Hartmann test, this method
involves a quantitative evaluation of the null-screen
method via a numerical integration process, such as
trapezoidal integration'’, and accumulates errors along the
integration path. Furthermore, it can be used to
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Fig. 9 Layout of null screen method (Reprinted from Ref. 10,
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qualitatively test large surface departures by visually
examining the grid image at the CCD, which is practical
during the preliminary manufacturing step. Hence, the
ASPs can be fitted when the surface form has been
measured.

In addition to the direct fitting approach, the null screen
method allows ASPs to be measured directly using novel
algorithms. Aguirre-Aguirre et al.(2017)" proposed a
randomised algorithm to recover the R, K, and surface
forms of their ASUT. In this approach, instead of
performing integration and polynomial fitting, a direct and
random process was used to determine the surface form.
The process involved proposing a new test surface, where
the R and K values of the surface are selected randomly,
and the null screen was compared with the initially
designed one. For the ASUT, R and K, which yielded a null
screen that was the most similar to the reference null
screen, were specified with the final values. Integration
errors were avoided and thus the total error was reduced
significantly. The relative accuracies of R and K were 0.4%
and 0.5%, respectively.

Aguirre-Aguirre et al. (2018)" extended the method
above to calculate a null screen to test fast convex/concave
odd aspheric surfaces with high-order coefficients. This
approach can extract the target parameters via a simple
procedure; hence, a null-screen test can be conducted
without unmounting the optical system from the polishing
machine to test the form of the surfaces in the early stages
of polishing, which demonstrates the efficiency of this
method. The percentage error of this method was shown to
be less than 1.3% for the recovery of high-order
coefficients 4;.

Nodal bench

Diaz-Uribe and Cornejo-Rodriguez'”'” proposed the
geometric method in the 1980s to measure the R and K of
quadratic aspheric surfaces. The setup of this method,
which comprises a goniometric table and a lens holder with
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a micrometric screw, is shown in Fig. 10. In this method,
the longitudinal aberrations of the normals to the surface
and their corresponding angles are obtained on the nodal
bench to calculate R and K. The measurement principle is
simple and easy to implement. This method is applicable
even when the centre of the surface cannot be used but fails
when the surface is extremely close to a spherical surface.
The accuracy of this method barely satisfies the current test
requirements but can be improved using precise auxiliary
instruments.
Ray-tracing method

Wang'" proposed a ray-tracing method to measure the R
of aspheric surfaces. The principle of this method is
illustrated in Fig. 1. In this method, spot-array rays
generated by a laser and grating are projected onto the
ASUT, and the positions and directions of the incident and
reflected rays are recorded using two shifting receiving
planes. A ray tracing method provides the equations for
each ray and the coordinates of its intersection point with
the surface under testing. Subsequently, measurements can
be performed by applying a surface-fitting algorithm to
determine the aspheric vertex locations and an optimisation
algorithm to calculate the symmetry axis and curvature
centre. This method involves a simple structure and can be
used to test the R values of most aspheric surfaces. The
relative measurement accuracy R exceeds 0.5%.

In general, the geometrical method is simple in terms of
structure and has a large measurement range. A numerical
integration process can be applied to this method to obtain

Surface

Lens holder

Longitudinal
displacement

! Rotation axis
|

Micrometric
screw

] .
[ ] Goniometer
]

Fig. 10 Layout of nodal bench (Reprinted with permission from Ref.
108 (© Optica Publishing Group)
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the surface form, and then the ASPs can be fitted. In
addition to direct fitting, various algorithms and devices
have been proposed to obtain the ASPs directly. A
modified method based on a randomised algorithm that
avoids integration errors and low spatial resolution
problems can yield high performance. The highest relative
accuracies of R, K, and 4; reached 0.4%, 0.5%, and 1.3%,
respectively, when an odd aspheric surface was used as the
ASUT.

Center-of-curvature-based methods

A widely used radius measurement method for spherical
optical elements is based on the centre of curvature of a
spherical This method
interferograms at two positions: the cat’s eye and confocal
positions'"' ", The distance between the two positions is R.
It is considered one of the most accurate methods for
measuring R. In fact, this method can be extended to the
measurement of ASPs by determining the centre of
curvature or the focal point of the aspheric surface. An
aspheric surface has features that are similar to those of a
spherical surface. For example, the paraboloid can focus
parallel light on its focal point without aberration; the
hyperboloid comprises a pair of conjugate focal points,
where the spherical wave emitted from one focal point
converges to the other, and the compensator or CGH can
yield the confocal position in the measurement of high-
order aspheric surfaces. The positioning approaches used in
this method are based on two physical principles:
interferometry and laser differential confocal techniques. In
particular, the ASPs are derived from the system wavefront
obtained using the interferometer described in the previous

surface. identifies two null

section, whereas an interferometer is utilised to determine
the position of the centre of curvature or the focal point.

Interferometry

Pi'"* proposed a method for measuring R and K based on
the wavefront aberration characteristics of an ASUT. The
test setup is shown in Fig. 12. A convergent beam emitted
by the transmission sphere of the interferometer yields a
focus point at the cat’s eye position. An arbitrary region of
a conic surface is aligned to the interferometer with the
surface normal to the centre of the beam, coinciding with
the interferometer optical axis. Fig. 12 shows that the three
confocal positions can be identified the
corresponding characteristic interferograms, where the
focus corresponds to the centre of the sagittal, medial, and
tangential radii of curvature (Ry, Ry, and Rg, respectively)
of the test region. The interferometer measures the optical
path difference W between the test region on the surface
and a spherical reference wavefront whose radius of
curvature is equal to Ry, Ry, or Rg. The Seidel aberration
coefficient is fitted from # and combined with the distance
between the three specific positions and the cat’s eye
position to calculate R and K. This method does not require
knowledge regarding the position of the test region and can
therefore be used on mirrors without fiducial markings,
including those that are already mounted on a telescope.

Li and Chen et al. (2015)""*""° used a null interferometry
system to measure the R and K values of aspheric surfaces.
As shown in Fig. 13, this method uses a portable laser
tracker to measure the compensation distance and then
determines R via ray tracing. K is calculated via a linear
approximation between R and K when the axial deviation

using
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of the aspheric surface from the confocal position is slight.
Experimental results of an asphere with R ~2 m show that
the repeatability of R and K were +0.039 mm and +2.05 x
107, respectively.

In the aforementioned interferometric methods, ASPs
are fitted using the system wavefront obtained from the
interferometer. The interferometer used in this method
provides only the criterion for confocal positioning. This
method is similar to the conventional interferometry for
measuring the radius of a spherical mirror. The mechanical
exterior cylindrical surface and backplane of the
compensator are set as the reference surfaces and processed
with high precision when the laser tracker is used to
measure the compensation distance. In addition, a
centration test device is required to align the compensator
to ensure correspondence between the reference surface
and main optical axis.

Laser confocal differential technique

Yang (2014)'" proposed a laser differential confocal
measurement method for measuring the R value of a
paraboloid. The test setup is illustrated in Fig. 14. In this

method, an autocollimation R measurement light path is
constructed by placing a flat mirror as a reflector on the
incident light path. Positions A and B with axial
coordinates z, and zg correspond to the test paraboloidal
focus and vertex, respectively. The distance between
positions A and B determines R = 2(z5 — zg). This method
can precisely determine positions A and B using null points
Q4 and Qg derived from the corresponding differential
confocal response curves I, and Iy, respectively. Its
uncertainty in measuring R is less than 0.001%.

This method is highly accurate, efficient, and insensitive
to environmental disturbance'®'”. Furthermore, it can be
applied to measure the R of other aspheric surfaces via an
appropriate compensation technology. However, this
method cannot measure the K and A4,; values of aspheric
surfaces. By default, the ASUT presents an error in only R,
not in K. The errors in K affect the measurement accuracy
of R.

In general, the center-of-curvature-based method has a
significant advantage in measuring R but can only be
applied in the test of conic surfaces. R can be measured
accurately by identifying specific axial positions using
interferometry or laser confocal differential techniques.
The achievable maximum relative accuracy of R is 0.001%.

Discussion

This review summarises measurement techniques for
ASPs, which can be classified into two categories: general
fitting and center-of-curvature-based methods. The general
fitting method is the most typically used method for ASP
measurements and can be classified into three types: direct
fitting, interferometric, and geometric. The capabilities of
these techniques are listed in Table 3.

The directly
compared with the three other sub-methods of the general

center-of-curvature-based method is
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Table 3 Overview of different measurement techniques for ASPs

Capabilities
Method/Technique
Convex Concave R K Ay
Direct fitting
method o O O O O
Non-null interferometry
with aplanat * o o o *
Interferometric -
General fitting method Non-Null interferometry
method with laser differential @) O O O O
confocal technique
Nodal bench O @) @) @) x
Geometrical method Ray-tracing x O O x x
Null screen O O O O O
Interferometry x O O O x
Center-of-curvature-based method Laser differential confocal 5 5

technique

fitting method to facilitate discussion. Owing to the gradual
maturity of aspheric surface measurement methods, the
direct fitting method has been widely used for aspheric
surface parameter measurements because of its high
accuracy and versatility. The fitting algorithm and
polynomials are closely related in the direct fitting method,
where the fitting algorithm primarily focuses on efficiency
and robustness. The non-orthogonality of the power series
in the general expression results in ill-conditioning
problems in the fitting method. Orthogonal polynomials are
generated using the Gram—Schmidt process to solve this
problem.

Fig. 15 shows that the other three methods offer different
advantages in terms of test accuracy, versatility, and cost
control. In particular, Fig. 15 only summarises the extreme
cases when the accuracy of the corresponding method is
the highest and does not represent the performance of all

the cases using this method. The interferometric method
obtains the ASPs by establishing relationships among the
ASPs, system wavefront, and compensation distance. The
test results indicate good traceability. Using different
compensators, method
comprehensively measure various convex oOr concave
aspheric surfaces with high accuracy. Nevertheless, the
measurement of the compensation distance using this
method does not satisfy the test requirements in various
test the high
interferometric method, the test setup is complicated, and
the measurement range is relatively small. The test setup of
the geometrical method is simple, and the testing cost is
relatively low. The accuracy of the nodal bench and ray-
tracing methods is insufficient and has not been
investigated further. The null-screen method measures
ASPs through a surface slope and has a sizeable

the interferometric can

scenarios. Despite accuracy of the
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Fig. 15 Characteristics of measurement techniques for ASPs

measurement range. However, data obtained using this
method lack traceability. The accuracy of this method
depends on the calibration accuracy. The center-of-
curvature-based method can achieve high accuracy when
measuring R. However, it features low versatility and
cannot be applied for testing high-order coefficients.

Over the recent decades, intensive efforts have been
extended to obtain highly accurate measurements. In fact,
different efficient approaches have been devised for
different ASUTs in various test scenarios. However, the
development of advanced optics has presented new
challenges. Complex boundary conditions impose strict
requirements on optical shop testing. Hence, a test method
that comprehensively considers high accuracy, low cost,
and versatility should be devised.
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