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A B S T R A C T   

Urban distribution centers (UDCs) are opening at unprecedented rates to meet rising home delivery demand. The 
trend has raised concerns over the equity and environmental justice implications of ecommerce’s negative ex-
ternalities. However, little research exists connecting UDC location to the concentration of urban freight-derived 
air pollution among marginalized populations. Using spatial data of Amazon UDCs in metropolitan Seattle, this 
study quantifies the socio-spatial distribution of home delivery-related commercial vehicle kilometers traveled 
(VKT), corresponding air pollution, and explanatory factors. Results reveal that racial and income factors are 
relevant to criteria air pollutant exposure caused by home deliveries, due to tracts with majority people of color 
being closer in proximity to UDCs and highways. Tracts with majority people of color face the highest median 
concentration of delivery vehicle activity and emissions despite ordering less packages than white populations. 
While both cargo van and heavy-duty truck emissions disproportionately affect people of color, the socio-spatial 
distribution of truck emissions shows higher sensitivity to fluctuations in utilization. Prioritizing environmental 
mitigation of freight activity further up the urban distribution chain in proximity to UDCs, therefore, would have 
an outsized impact in minimizing disparities in ecommerce’s negative externalities.   

1. Introduction 

A visible consequence of the decades-long surge in home delivery 
demand has been the proliferation of urban distribution centers (UDCs). 
In 2018, warehouses and distribution centers surpassed office spaces as 
the dominant commercial and industrial land use in both number of 
buildings (1 million) and floorspace (roughly 1.7 billion square meters), 
following a nearly 100% growth trajectory since 2003 (U.S. Energy In-
formation Administration, 2021). In 2020, real estate developers fore-
casted an additional 9.3 million square meters of warehousing space 
needed to meet home delivery demand by 2025 (Thomas, 2020). 

For people living, working, and going to school near these facilities, 
there is concern about exposure to freight vehicle-related air pollution, 
noise, traffic, and collisions. Mounting pressure from environmental 
advocacy groups have pushed municipalities to adopt moratoriums on 
new warehousing developments (Victoria, 2022) and several major 
metropolitan and state authorities have introduced new regulations for 
mitigating UDC-derived emissions. In 2021, the South Coast Air Quality 
Management District, a state-led regulatory board managing air pollu-
tion in Los Angeles and surrounding counties, adopted the Warehouse 
Indirect Source Rule (ISR), which requires warehouse operators report 
truck traffic impacts and establishes a point-or-fee based system for large 

warehousing facilities to offset freight-generated emissions (South 
Coast, 2021). New York state has introduced similar legislation (NY 
State Assembly Bill A9799, 2022). 

Despite growing political demands for an accounting of ecommerce’s 
negative externalities, there is limited evidence to suggest how UDC- 
derived traffic distributes throughout the urban freight network. From 
an environmental justice (EJ) perspective, it is important to analyze the 
interplay between urban logistics land use and freight flows, given that 
marginalized (i.e., people of color and lower income) populations 
disproportionately live near UDCs (Waddell et al., 2021) and highway 
corridors that respectively generate and channel freight trips (Bullard 
et al., 2004; G. M. Rowangould, 2013). Therefore, this paper analyzes 
the socio-spatial distribution of pollutant emissions from delivery trips 
between UDCs and home consumers in Washington state’s Seattle 
Metropolitan Statistical Area (MSA) and explanatory factors. This paper 
subsequently addresses two interrelated hypothesis.  

- H1: Marginalized populations disproportionately reside near UDCs 
and associated activity.  

- H2: Proximity to UDC activity influences unequal exposure to e- 
commerce related air pollution. 

The theoretical background (Section 2) discusses how despite a 
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growing body of research supporting H1 (although in different 
geographic contexts than Seattle and for different distribution chains 
than home delivery), research linking UDC localization, urban freight 
systems, and EJ is limited. The methodology (Section 3) uses a binary 
logit model to assign delivery trips across three distribution segments: 
line-haul for trucks, cargo vans, and an approximated traveling sales-
person distance (cargo van only). In the results (Section 4), the study 
uses summary statistics, OLS regression, and nonparametric, one-way 
ANOVA to test the hypotheses. This study also tests operational sensi-
tives between van- and truck-based emissions with implications for how 
improving vehicle load utilization could impact equity outcomes. 
Finally, the discussion (Section 5) explores land use and transportation 
policy priorities that could equitably mitigate home delivery-based 
vehicle kilometers traveled (VKT) and air pollution. The conclusion 
identifies research gaps and future directions (Section 6). 

2. Theoretical background 

2.1. Forming H1: warehouse geography and environmental justice 

Research on logistics land use has conventionally focused on the 
spatial reordering of warehousing within metropolitan areas since the 
late 20th century. To limit supply chain uncertainties and leverage 
economies of scale, distribution centers expanded floorspace (Andreoli 
et al., 2010) and migrated from the urban core to the cheaper, better 
networked land in the suburban periphery (Bowen, 2008; McKinnon, 
2009). Conversely, more recent work suggests demand for faster home 
deliveries pushed logistics providers to locate some ecommerce-related 
UDCs closer to urban consumers (Fried and Goodchild, 2023). Large 
bodies of research explore the geographic and economic nuances of 
warehouse localization (Aljohani & Thompson, 2016; Giuliano & Kang, 
2018; Kang, 2020), including discussions on how local land use char-
acteristics and regulations influence siting decisions (Cidell, 2011; 
Dablanc et al., 2014). However, discussions around warehouse geogra-
phy rarely refer to EJ literature, which studies the disproportionate 
siting of environmentally hazardous land uses and its distinct 
socio-political history in the U.S. 

U.S. cities in the early 20th century adopted comprehensive zoning 
ordinances to curb the looming shadows of ever-growing skyscrapers 
and increasingly noxious land uses (Shertzer et al., 2022). Zoning pol-
icies had (and continue to have) a major impact on the development of 
today’s cities. Racial discrimination was often inherent in these early 
zoning policies. Policymakers, lenders and developers introduced 
mechanisms to protect homeowner property values from “black and 
ethnic encroachment,” such as racial covenants and later “red-lining” 
(Aaronson et al., 2021; Sood et al., 2019). Zoning measures also had the 

effect of shielding white homeowners from environmentally hazardous 
land use siting (Shertzer et al., 2016; Taylor, 2014), which dispropor-
tionately localized industrial facilities near marginalized populations, 
improved firms’ access to low-skilled labor markets, and offered “path of 
least resistance” development opportunities, i.e., opening facilities in 
politically marginalized communities where organizational opposition 
and social capital is institutionally dampened (Bullard & Wright, 1987; 
Cole & Foster, 2001). 

EJ literature refers to this hypothesis as “disparate siting,” where 
depressed land values draw in industrial firms, creating a concentration 
of environmentally hazardous land uses in proximity to marginalized 
populations (Maantay, 2001; Wilson et al., 2008). The counter hy-
pothesis is “post-siting demographic shift,” which suggests land values 
drop after industrial placement attracts low-income movers (Been & 
Gupta, 1997). In other words, did neighborhood marginalization pre-
cede industrial siting, or vice-versa? 

Environmental and transport justice literature has not been without 
its empirical criticisms when testing these or similar hypotheses 
(Noonan, 2008), as biases emerge in the selection of spatial units (Baden 
et al., 2007), population segmentation (D. Rowangould et al., 2016), and 
equity indicators (Bills & Walker, 2017). However, when accounting for 
distance-based proximity, longitudinal studies seemingly provide robust 
evidence for the disparate siting hypothesis (Mohai & Saha, 2007, 2015; 
Pastor et al., 2001). 

The findings implicate a long history of institutional decision making 
that placed polluting land uses in proximity to pre-established, 
marginalized populations or communities that were already demo-
graphically transitioning. While racially discriminatory practices are 
illegal today, path dependency entrenched many of these development 
patterns into the modern day. Twinam (2018) explores zoning impacts 
on contemporary land use in Seattle since the implementation of the 
city’s first zoning ordinances in 1923–2015 and finds strong evidence for 
institutional hysteresis. 

In that vein, Yuan (2018a, 2018b) observed disparate warehouse 
siting patterns in greater Los Angeles. The two studies found general 
warehouse localization and tracts with majority people of color (POC) 
significantly correlated. Additionally, the longitudinal effect was 
one-way, i.e., warehouses moved into neighborhoods with greater POC 
concentrations, not the other way around, confirming the disparate 
siting hypothesis. The author also observes new warehousing develop-
ment undergoes limited or ad hoc environmental scrutiny by permitting 
municipalities, often economically opportunistic suburbs, due to the 
indirect nature of their environmental impact compared to more visibly 
noxious land uses (Yuan, 2019). 

The author’s conclusions provide an impetus for quantitatively 
analyzing the distributive impacts of ecommerce UDC localization. 
Therefore, this study’s first hypothesis (H1) posits that the closer in proximity 
one lives to systems further up the delivery chain the more likely they would 
belong to a marginalized population. 

2.2. Forming H2: urban freight and air pollution 

However, confirming disparate UDC siting alone may not be enough 
to understand the socio-spatial dynamics of urban freight’s negative 
externalities. Urban freight’s “nuisances” are widely discussed (Browne 
et al., 2012), including evidence of its disparate impacts (Karner et al., 
2009; Schneller et al., 2022; Schweitzer & Valenzuela, 2004). Logistics 
land uses, including UDCs, represent important nodes for freight trip 
generation (Holguín-Veras et al., 2021), serving as a vector for freight 
traffic-related externalities. For instance, Schweitzer (2006) analyzes 
hazmat transport spill data in metro Los Angeles and finds proximity to 
intermodal and transhipment depots increases incidence likelihood, 
which also clusters predominately in Hispanic neighborhoods. More-
over, considering diesel exhaust from commercial vehicles constitutes a 
major fraction of urban mobility-source air pollution (Kozawa et al., 
2009; Minet et al., 2020), UDC localization would have important 

Acronyms and abbreviations 

UDC Urban distribution center 
EJ Environmental justice 
MSA Metropolitan Statistical Area 
LMDS Last-mile delivery station 
SC Sortation center 
VKT Vehicle kilometers traveled 
TSP Traveling salesperson problem 
POC Populations of color 
highW High income, white majority 
highNW High income, non-white majority 
midW Mid income, white majority 
midNW Mid income, non-white majority 
lowW Low income, white majority 
lowNW Low income non-white majority  
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implications for traffic pollutant-related respiratory and heart disease 
morbidity and social costs (Boogaard et al., 2022). 

Research on the pollution effects of urban freight has been wide-
spread, though not without its limitations. Diesel exhaust as a result of 
freight movement is a primary factor in regional air quality (Steiner 
et al., 2016), contributing significantly to both to the population expo-
sure to health-adverse Nitrogen Oxides (NOx) in the atmosphere, black 
carbon, and fine particulate matter (PM 2.5 mm and 10 mm). In the U.S., 
freight movements are responsible for half of NOx emissions from mo-
bile sources and 27% of total NOx emissions, despite constituting 
roughly 10% of total surface VKT (FHWA, 2020). NOx and PM 2.5 
particles are among the pollutants the World Health Organization 
(WHO) have linked to growing rates of respiratory disease, heart dis-
ease, and stroke. WHO estimates that 7 million deaths occur prema-
turely each year as a result of air pollution (WHO, 2021), and is 
projected to cost 1% of global GDP in medical bills, sick days, and 
reduced agricultural output by 2060 (OECD, 2016). Urban freight in 
particular is a cause for concern due to the emission rates of the 
top-selling vehicles used for home deliveries (AIR Index, 2019) and 
routes that circulate through communities and residential areas in the 
last-mile (Aljohani & Thompson, 2020). 

Given the frequent use of highways by heavy duty vehicles, some 
studies have estimated traffic emissions along travel corridors (Minet 
et al., 2020). Others evaluate urban form, looking at distance traveled by 
freight vehicles as a function of proximity to urban centers or 
service-area distance (Allen et al., 2012; Wygonik & Goodchild, 2018). 
Jaller and Pahwa (2020) use an econometric approach to evaluate 
emission trade-offs between in-person and online shopping behaviors, 
concluding emissions are more sensitive to delivery’s operational 
characteristics than consumer substitution of one shopping behavior 
over another. 

Researchers have also studied transportation-related air pollution 
and how it relates to equity from the standpoint of general vehicle 
emissions and by vehicle category (The Union of Concerned Scientists, 
2019). Racial and income disparities in NOx exposure due to diesel 
emissions from freight trips are significant, based on satellite measures 
of pollution (Demetillo et al., 2021). Building emissions inventories has 
also allowed for estimating the total amount of freight-derived NOx or 
PM 2.5, and identifies that Black and Hispanic communities experience 
disproportionate levels of these pollutants as a result (Lathwal et al., 
2022). Diesel engine emission controls could reduce some of these dis-
parities given the higher proportion of freight trips that pass through 
marginalized communities (Patterson & Harley, 2021). 

However, these studies do not account for the location of warehouses 
from which these freight trips originate and how they might contribute 
to freight activity within and between neighborhoods. Research has 
focused on the impacts and distributions of diesel emissions across 
communities, but with a lesser emphasis on a) home delivery and 
ecommerce’s specific contribution to emissions and b) how disparate 
warehouse siting may contribute to these inequities. Moreover, the 
impacts of upstream, “middle-mile” delivery flows near and between 
logistics facilities is under-researched compared to consumer-side, last- 
mile delivery (Tejada & Conway, 2022). By way of proximity to logistics 
facilities and infrastructure, this study additionally tests whether marginal-
ized populations are more subject to ecommerce-derived emissions (H2) than 
not marginalized populations. 

3. Methodology 

To test these hypotheses, this study creates a survey-based delivery 
assignment model using binary logit regression and network analysis. 
Results are then analyzed to explore the relationships between freight 
activity, UDC proximity, network geometries, demand, income, and 
race. Additionally, the study quantifies and tests significance for how 
emissions distribute across income-race groupings using nonparametric, 
one-way ANOVA tests. Finally, the study tests the sensitivity of load 

factor assumptions, with implications for how fluctuating fleet quanti-
ties of cargo vans and trucks affect equity outcomes. Fig. 1 overviews the 
operational scope of the paper, which analyzes three delivery segments 
within Seattle MSA: truck-based line-haul between UDCs, van-based 
line-haul between UDCs and neighborhood centers (Census tracts), 
and van-based, intra-neighborhood traveling salesperson (TSP) circu-
lation. Table 1 overviews the data and methodological approaches and 
assumptions described in this section. 

3.1. Data sources and case study description 

This study presents a case study exploring Amazon’s logistical land 
use and operational configuration in metro Seattle. MWPVL Interna-
tional, a logistics consulting firm, provided proprietary data on Amazon 
UDCs (2021). MWPVL International collects monthly data on over 1199 
active Amazon facilities in the U.S. (as of February 2022) since the 
construction of the first UDC in 1997. The dataset collects information 
on UDC location and some financial and operational characteristics, 
including estimates of average daily packages shipped. Although not the 
only ecommerce player, Amazon’s position as the largest online retailer 
in Western markets presents a microcosm of logistical strategies that 
have transformed the last-mile delivery space (PYMNTS, 2022). Ama-
zon’s logistical land use and operations are representative of the whole 
U.S. ecommerce ecosystem. 

This study evaluates currently operational UDCs in the U.S. Census 
Bureau-defined Seattle MSA, which comprises three counties (King, 
Peirce, and Snohomish) and several of the state’s largest cities (e.g., 
Seattle, Tacoma, Bellevue, and Everett). Seattle MSA’s population is 
roughly 3.8 million people, with roughly a fifth of the population living 
in Seattle. 

Since this study is concerned with the UDC-to-consumer component 
of the ecommerce supply chain, the methodology selects UDCs that 
specifically serve a last-mile distribution function. These include last- 
mile delivery stations (LMDS): medium-sized facilities that serve inbound 
trucks and outbound cargo vans adapted for dense urban street net-
works. LMDS have separate facilities for smaller parcels and heavier 
bulk items (e.g., furniture and large appliances); however, this study 
analyzes only small parcel facilities. 

Further up the logistics chain are sortation centers (SC): large-sized, 
cross-docking facilities that serve in-bound trucks on one side and 
outbound on the other, that usually sort parcels bound for LMDS. 
Therefore, this study analyzes the VKT and pollutant emissions of in-
bound and outbound flows for LMDS, assuming all LMDS receive their 
parcels from the regional SC. In the Seattle MSA, there are 10 LMDS 
constituting over 298,000 square meters in ground floorspace and 
shipping approximately 378,400 daily parcels. In three instances, two 
LMDS located near each other, i.e., shared a Census tract. Amazon oc-
casionally co-locates multiple LMDS to manage spillover and peak hol-
iday demands while still servicing the same delivery area. This study 
merges co-located facilities into a singular origin point with a combined 
package output. As a result, this study analyzes seven LMDS origin 
points (see Fig. 2 and Table 2). Meanwhile, there is one roughly 30,000 
square meter SC, which this study assumes distributes the sum of daily 
parcels shipped by LMDS throughout the entire Seattle MSA. 

Socio-demographic information at the Census-tract level was gath-
ered from the U.S. Census Bureau 5-year American Community Survey 
(ACS) for 2019 (US Census Bureau, 2020). This study is concerned with 
environmental justice implications across income and race. Seattle 
MSA’s mean household income is $90,074 (standard deviation = $37, 
185). Approximately, 70% of individuals in the Seattle MSA identified as 
white. While future studies can provide needed nuance to racial and 
ethnic classifications, for now this study defines “people of color” (POC) 
as non-white and non-Hispanic, as designated by the Census. To un-
derstand differences in the probabilities of receiving a package across 
different incomes and races, this study conducts a binary logit regression 
model using a household travel survey and synthesized population 
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generated by the Puget Sound Regional Council (PSRC), the region’s 
metropolitan planning organization. PSRC conducted the survey be-
tween April and July in 2017 and again in 2019. 

3.2. Binary logit-based delivery assignment 

The study utilizes PSRC survey data to construct a delivery assign-
ment model that estimates probable demand for packages given tract- 
level demographic and geographic variables. PSRC’s survey asks re-
spondents the number of online-ordered packages received on a given 
weekday. Filtering the appropriate counties and missing responses, the 
survey found 1929 of 2532 respondents, roughly 76%, did not receive a 
package, with the remainder (603 respondents) receiving one or more. 
To build the initial model, this study controls for seven demographic 
variables (income, race, education level, household size, age, renter 
status, and children status), one transportation-related variable (number 
of daily trips), and one geographic dummy variable (did the respondent 
live in Seattle or a surrounding municipality) (see Table 3). 

The selected variables are based on several past studies. Figliozzi and 

Unnikrishnan (2021) analyzed Portland, Oregon household travel sur-
vey data and found ecommerce subscriptions and delivery frequency 
across low-income, racial minority households as well as households 
with low education attainment, limited access to vehicles, smartphones, 
and internet subscriptions was lower. Spurlock et al. (2020) estimated 
shopping trip replacement with home delivery and found that 
high-income households with children are more likely to place orders 
online. Finally, Butrina (2018) used the same PSRC data (from 2015) 
and found income, household size and age (between 25 and 54 
years-old) to be significant, positive predictors of receiving a package. In 
addition to applying the age groupings from Butrina (2018), this study 
creates three custom income groupings. PSRC categorizes respondent 
incomes into ten groupings at varying intervals ranging from “under 
$10,000” to “$250,000 or more.” The model reclassifies income into low 
(<$50,000), middle (≥$50,000 and <$150,000) and high (≥$150,000), 
which most closely resembles one standard deviation below and above 
the mean household income in the Census data. 

Table 4 presents the final, best-fitting model (Model 3) validated 
using a step-wise approach and interaction testing. Age, household size, 

Fig. 1. Ecommerce last-mile supply chain, including hypothetical assumptions.  

Table 1 
Overview of delivery phases, data inputs, and method descriptions for hypothesis testing.  

Delivery phase Data inputs Method desc. and assumptions H1 testing H2 testing 

1. Truck line- 
haul  

- MWPVL Amazon UDCs  
- OSM road network 

Assign truck trips from SC to LMDS via network. Assumes fixed 
truck load factors.  

- Summary 
statistics  

- OLS 
regression  

- Kruskal–Wallis one-way 
ANOVA  

- Sensitivity analysis of truck 
and van load utilization 

2. Cargo van 
line-haul  

- MWPVL Amazon UDCs  
- OSM road network  
- PSRC travel survey data (2019)  
- U.S. Census Bureau 5-year ACS 

survey data (2019) (census tract) 

Assign van trips from UDCs to closest tract centroid, using 
population- and logit-based weights. Assumes fixed package 
volumes and van load factors. 

3. Cargo van 
TSP  

- U.S. Census Bureau 5-year ACS 
survey data (2019) (census tract)  

- Washington land use data 

Estimate intra-neighborhood (tract) VKT using approximated TSP 
equation. Assumes fixed order volumes and van load factors. 

Emission 
calculations  

- EPA MOVES Convert outputted VKT to NOx and PM2.5 inventories for vans and 
trucks  
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race, income, and both transportation and geographic indicators prove 
positively significant. The authors omit the transportation variable due 
to lack of availability of this indicator at the tract-level. The inclusion of 
the interaction term between race and income shows high-level signif-
icance and a slight improvement of fit compared to the non-interaction 
model. The interaction effect is strong: identifying as mid-income white 
and high-income white influenced the likelihood of receiving a package 
2.4 and 2.7-fold, respectively, compared to other groupings. That said, 
the final model only accounts for 5% of the variance in the binary data, 
suggesting a high degree of latency and standard error, which the in-
clusion of more variables can improve for future model iterations. For 
now, this study inputs the final model coefficients into the tract-based 
delivery assignment function, which includes terms for whether the 
tract’s median age is between 25 and 54 years-old, median household 
size, whether the tract is located in Seattle’s city limits, and the inter-
action of median income and the tract’s majority race (white or non- 

white). 
Package demand (v) in a tract (j) is a function of the output of the 

closest LMDS (i), tract population relative to the population of all tracts 
served by the same LMDS, and probability (Equation 1). The closest 
LMDS is identified using the minimum Euclidean distance to the tract’s 
centroid. Equation 2 converts the logit coefficients to probabilities that 
an individual would receive a package on a given weekday. 

Given the income-race interaction, this study creates six groupings 
that are analyzed for the remainder of the study: high income:non-white 
majority (highNW, n = 2), high:white (highW, n = 36), mid:non-white 
(midNW, n = 67), mid:white (midW, n = 538), low:non-white (lowNW, 

Fig. 2. Regional map of UDC facilities (map tiles by Stamen Design, data by OpenStreetMap).  

Table 2 
Characteristics of Seattle Metro UDCs (++ = co-located UDCs merged into one) 
(Source: MWPVL International).  

UDC type City Ground 
floorspace 
(thou. sq. 
m) 

Inbound 
daily 
packages 
(thou.) 

Outbound 
daily 
packages 
(thou.) 

Tot. daily 
packages 
(thou.) 

LMDS Tukwila 120.0 26.4 26.4 52.8 
LMDS++ Seattle 526.2 59.4 59.4 118.8 
LMDS Renton 138.0 33.0 33.0 66.0 
LMDS Kent 692.0 26.4 26.4 52.8 
LMDS++ Everett 510.2 85.8 85.8 171.6 
LMDS Maple 

Valley 
150.0 44.0 44.0 88.0 

LMDS++ Sumner 606.0 59.4 59.4 118.8 
LMDS Lakewood 470.0 44.0 44.0 88.0 
SC Kent 320.9 – 378.4 378.4  

Table 3 
Distribution of relevant demographic, transportation and geographic variables 
(N = 2532).  

Variable % Relative 
frequency (% non- 
response) 

Variable % Relative 
frequency (% non- 
response) 

Age [25–54 
years] 

62.6 (0.0) Income (12.2) 

Household 
with 
children 

17 (0.0) Low 25.4 

Household size (0.0) Mid 45.2 
1 38.3 High 17.3 
2 41.5 Number of trips 

{mean} 
{4.0} 

3 10.7 Education (0.0) 
4 7.8 Graduate degree 35.5 
5 1.1 Bachelor’s degree 

or vocational 
training 

47.3 

6 0.4 Highschool or less 17.2 
>7 <0.1 Renter 50.0 (2.9) 
Race [white] 71.3 (0.0) Lives in Seattle 56.6 (0.0)  
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n = 19), and low:white (lowW, n = 53). 
Wealthier (to a larger extent) and whiter (to a lesser extent) tracts 

have higher predicted probabilities and, consequently, receive more 
packages (see Fig. 3). The predicted probability of receiving a package in 
a highW tract is 40%, which is approximately two-times higher than the 
probability in a midNW, lowNW, and lowW tract and 50% higher than 
highNW and midW tracts. The lowest probability tracts are lowW and 
lowNW. As a result, when inputting population and closest LMDS output, 
highW tracts receive the most packages on average, roughly 254% higher 
than lowW and 184% higher than lowNW. 

Equation 1: Calculating package demand by tract j from closest 
LMDS 

vj = gj ∗
pj ∗ P(x)

∑
ipj ∗ P(x)

Where: 
v = package demand 
p = population 
g = fixed package output of the closest LMDS to tract j 

Equation 2: General equation for converting binary logit coefficients 
(β) to probability of packages received, P(x), with interaction terms 

P(x)=
eβ0 + βa ∗ xa ∗ βb ∗ xb + βa:b ∗ xa:b…βn ∗ xn

1 + eβ0 + βa ∗ xa + βb ∗ xb + βa:b ∗ xa:b…βn ∗ xn  

3.3. Network analysis and TSP approximation 

The next analysis phase calculates the delivery vehicles’ VKT be-
tween origins and destinations (line-haul) and within destination tracts, 
using an approximated traveling salesperson problem (TSP) distance. To 
calculate line-haul distances, this analysis utilizes QGIS to conduct a 
network analysis using the free-to-use OpenStreetMap Route Service 
(ORS). The ORS tool finds the optimized path between origin and des-
tinations using fastest travel-times. The underlying network uses 
OpenStreetMap data, an open spatial data platform. Total VKT is 
calculated in three segments, which constitute an approximated and 
optimal vehicle routing problem (Daganzo, 2005; Goodchild et al., 
2018). First, is the two-way, line-haul distances between LMDS origins 

Table 4 
Binary logit model output (* = p < 0.1, ** = p < 0.05, *** = p < 0.01).  

Daily package received (binary logit)  

Model 1 Model 2 (w/o interaction) Model 3 (w/interaction)  

Coef. Std. e Coef. Std. e Coef. Std. e 

intercept − 2.73*** 0.25 − 2.58*** 0.20 − 2.05*** 0.24 
age [25–54] 0.28** 0.12 0.25** 0.11 0.27*** 0.11 
children [yes] − 0.21 0.12 - - - - 
hh size 0.25*** 0.08 0.20*** 0.05 0.20*** 0.05 
race [white] 0.27** 0.12 0.31*** 0.12 − 0.43* 0.24 
income [mid] 0.47*** 0.14 0.54*** 0.14 − 0.19 0.25 
income [high] 0.83*** 0.18 1.0*** 0.16 0.35 0.28 
num. trips 0.05*** 0.02 - - - - 
education [graduate degree] 0.09 0.11 - - - - 
education [HS or less] − 0.06 0.16 - - - - 
renter [yes] − 0.12 0.11 - - - - 
lives in Seattle [yes] 0.21* 0.11 0.22** 0.11 0.20* 0.11 
race [white]: 

income [mid] 
- -   1.01*** 0.29 

race [white]: 
income [high] 

- -   0.86*** 0.33  

N 2185  2224  2224  
R2 Tjur 0.05  0.04  0.05  
LL0 − 1389.92  − 1389.92  − 1389.92  
LL − 1161.68  − 1180.49  − 1174  
AIC 2347.35  2374.97  2366.70  

Fig. 3. Tract-level predicted probabilities (with 95% confidence interval) and average packages received (per weekday) by income-race group using Model 3 output 
and normalized by tract population. 
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and their closest tract centroid destinations, which are served by cargo 
vans. Second, is the two-way, line-haul distances between SC origins and 
their LMDS destinations, which are served by Class 8 trucks. The 
network analysis adds a constraint specific to heavy-duty vehicles, 
which are limited by what roads they can legally take. The length of the 
output line segments are summed by their containing tract along with 
the number of vehicles, which is the proportion of the total of 
throughput packages and the vehicle respective load factor (i.e., how 
many packages can fit in a vehicle) (see Equation 3). 

This study assumes the standard use of a Class 2500 4-Cylinder Diesel 
Mercedes-Benz Sprinter Van. The cargo van payload capacity is esti-
mated at 1900 kg and assuming an average 60% utilization gives 1140 
kg of available payload (Vega, 2020). This study therefore estimates a 
cargo van capacity of 175 packages per cargo van delivery trip based on 
an average package weight of 6.5 kg, about 70% the maximum weight of 
a “Large standard-size” package (Amazon, n. d.). Using this estimate is 
consistent with key assumptions in the MWVPL dataset. For larger trucks 
with a payload capacity of 20,400 kg, this study assumes the same 6.5 kg 
package weight and 60% estimated utilization, giving an approximate 
2000 packages per truck trip. 

Equation 3: Calculating the line-haul VKT for cargo vans and trucks 

Van line haul VKTj =
∑

i:(i,j)∈C
2∗c

⌈
d(i,j)

/
lvan

⌉
,∀j ∈ tracts  

Truck line haul VKTj =
∑

i:(i,j)∈T
2∗t(i,j)

⌈
o(i,j)

/
ltruck

⌉
,∀j ∈ tracts  

Where. 

C(i,j) = Set of cargo van connections from LMDS i ∈ L thru tract j ∈ T. 
c(i,j) = Route lengths (km) from LMDS i ∈ L thru tract j. 
d(i,j) = Demand of packages from LMDS i thru tract j, (i, j) ∈ tracts. 
lvan = Load factor, number of packages per cargo van (baseline =
175) 
T(i,j) = Set of Class 8 truck connections from the SC to LMDS i thru 
tract j 
t(i,j) = Route lengths (km) from the SC to LMDS i thru tract j,(i, j)∈ T. 
o(i,j) = Demand of outbound packages from the SC to LMDS i thru 
tract j, (i, j)∈ T. 
ltruck = Load factor, number of packages per truck (baseline = 2000) 

The final analytical segment calculates an approximated TSP dis-
tance, or the VKT spent delivering packages within a tract. Daganzo 
(2005) presents an approximation of TSP assuming a square service area 
and, in this study’s case, a Manhattan distance (see Equation 4). Given 
the size of Census tracts in the rural portions of the Seattle MSA, which is 
primarily undeveloped and National Forest land, the geometric tract 
area is subtracted by the area of non-urban and non-rural residential 
land use to remove areas where delivery vans cannot physically drive 
(data from Washington Geospatial Open Data Portal, 2022). 

Equation 4: Approximated TSP calculation for cargo vans 

Van TSP VKTj≅ k ∗
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Nj ∗ Aj

√

Where: 
N = Number of deliveries; vj/packages per delivery (estimated as 

1.44, according to MWPVL International). 
A = Area of urban and rural residential land use 
K = network constant; 0.92 for Manhattan distance. 

3.4. Emission calculations 

Emissions parameters are from the Bureau of Transportation Statis-
tics (U.S. BTS, 2019), calculated using MOVES, the Environmental 
Protection Agency (EPA’s) mobile source emissions modeling systems. 
MOVES provides estimates for total emissions across vehicle types in a 

particular area and time frame (Miller et al., 2003). The vehicles of 
choice for SC-to-LMDS and LMDS-to-tract segments are heavy duty 
tractor trailers (EPA Class HDV8) and heavy duty cargo vans (EPA Class 
HDV2b), respectively. Given that both Amazon’s electric van and truck 
fleet have yet to see widespread implementation, this study assumes all 
trucks and cargo vans are diesel powered. This analysis selects two main 
criteria air pollutants, NOx and PM 2.5, with the following emissions 
coefficients in grams per kilometer: 2.846 NOx, 0.078 p.m. 2.5 for heavy 
duty tractor trailers, 1.309 NOx, 0.059 p.m. 2.5 for cargo vans. The final 
emission rates are calculated by multiplying the coefficients by the total 
cargo van TSP VKT, and the line-haul VKT for both cargo van and Class 8 
trucks for inbound and outbound journeys. 

4. Results 

4.1. H1: do marginalized populations live closer to UDC activity? 

To test the first hypothesis, this study examines observed UDC 
localization relative to income and race (see Fig. 4), using descriptive 
statistics and linear regression. Table 5 highlights the characteristics of 
tract centroids within three, Euclidean kilometers of at least one UDC 
(UDC+) versus those that are not (UDC-). The mean income for UDC+ is 
roughly 22% lower than UDC-, which is significant using a Welch’s 
unequal variance t-test, rejecting the null hypothesis in favor of the 
alternative: there is a difference between the two means. Mean POC 
percentage is also significantly higher in UDC + over UDC-. The POC 
population in UDC+ is 8% higher than the Seattle MSA average. Results 
suggest there is a statistically significant difference in income and race 
between tracts that have a UDC than those that do not. 

Moreover, delivery VKT exhibits a significant, moderately strong 
relationship with continuous distances from a UDC when controlling for 
tract area (R2 = 0.43) (see Fig. 5). The closer a tract is to a UDC, the 
higher the delivery VKT passing through or terminating in that tract. 
Race and income also express non-linear correlations with UDC prox-
imity and VKT. Both POC percentage and income have significant and 
moderate relationships with distance from UDCs, confirming higher 
POC percentages and lower incomes in more proximal tracts. POC per-
centage and income also correlate with delivery VKT density. However, 
the absolute correlation for POC percentage is over twice that of income, 
accounting for almost a third of the variance in VKT. In other words, race 
may have a stronger relational effect in terms of both UDC proximity and 
VKT exposure than socio-economic status alone. 

The study further analyzes the relation between income, race, 
package demand, and the freight network’s geometric properties 
(namely distance from UDC and highway density) by conducting an 
Ordinary Least Squares (OLS) linear regression analysis (see Table 6). 
Since the tracts’ area largely determines the distance traveled between 
origin-destinations, the model tests the log-transformed total VKT den-
sity (per sq. km) and across all three delivery segments, i.e., van thru- 
traffic, TSP, and truck thru-traffic. Across all four models, POC con-
centration is significantly and positively correlated with VKT. However, 
income’s negative relationship with VKT is only significant for trucks. 
Meanwhile, package demand is insignificant when accounting for total 
VKT. However, demand is significantly positive for all van-related VKT 
and negative for truck-related VKT. The finding suggests van traffic is 
likely to be higher in neighborhoods receiving more packages (under-
standably), but lower in neighborhoods experiencing higher truck 
traffic. 

Finally, the geometric variables show significance across the aggre-
gate VKT and all three delivery segments, except for UDC distance and 
TSP VKT (i.e., distance from UDC does not influence the distance trav-
eled within a tract). Both higher highway densities are significantly and 
strongly associated with higher thru van and truck VKT. When con-
trolling for demand and network geometry, the results suggest a strong 
link between VKT and race; whereas, income is only significant when 
accounting for trucks. In other words, results validate that race may 
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have a stronger relational effect in terms of both UDC proximity and VKT 
exposure than income. 

This observation is in-line with Yuan (2018a), who notes income’s 
weaker overall effect as a predictor of warehouse location in comparison 
to majority-POC populations. Interestingly, there is also no significant 
correlation between delivery demand and total VKT, although package 
demand is positively correlated with income. This observation implies 
that warehouse proximity is a stronger determinant of delivery VKT in 
one’s neighborhood rather than how many packages that neighborhood 

receives. This finding may appear obvious: the geometric nature of 
freight consolidation locally concentrates commercial vehicle activity 
near-regardless of where that demand is dispersing further afield. 
However, it does underline an inequity between what populations 
receive ecommerce’s consumer benefit versus those who bear the cost. 
In accordance with H2, the differential distribution of the emission in-
tensity across income-race groupings should, therefore, be detectable. 

Fig. 4. Seattle MSA spatial visualizations: VKT density, demand density, median income, and POC percentage (diamonds = UDC locations).  
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4.2. H2: does proximity to UDCs disproportionately influence air 
pollution exposure? 

Most VKT derives from cargo vans, comprising roughly 98% of all 
kilometers traveled. The vast majority of van-based VKT is line-haul 
kilometers. Despite the emission coefficients for trucks being roughly 
2.1-times higher for NOx and 1.3-times higher for PM 2.5, van-based 
emissions comprise 95% and 97% of the total, respectively. 

Despite attracting the highest demand for packages, highW tracts 
exhibit the lowest levels of exposure to emission concentrations (see 

Fig. 6). On average, total NOx and PM 2.5 emissions for highW tracts 
(mean = 140.8 and 6.3 g/sqkm, respectively) is approximately 97% 
lower than lowNW tracts (mean = 4819.8 and 213.4 g/sqkm, respec-
tively), the highest mean exposure tracts. Meanwhile, midW expresses 
the largest degree of variance from the mean. In fact, midW tracts 
constitute eight of the ten highest emission-concentrated tracts, with the 
remainder belonging to lowNW. Primarily, these tracts are located 
around highways that run through downtown Seattle where housing is 
more expensive. The tract (midW) with the highest emission concen-
tration encompasses a predominately industrially-zoned district (with 

Table 5 
Summary characteristics of a Census tract with at least one UDC (all types) compared to other Seattle metro tracts.   

N Mean income 
(thou. $) 

Mean % POC 
population 

Mean total VKT 
(thou.) (sq. km) 

Mean package 
demand 

Mean highway 
density (sq. km) 

WELCH’S T-TEST (H0: 
+UDC income = -UDC 
income) 

WELCH’S T-TEST, (H0: 
+UDC %POC = -UDC % 
POC) 

Tract w/ 
UDC (+) 

104 71.5 38.0 4.3 459.3 2.1 <0.001*** <0.001*** 

Tract w/o 
UDC (− ) 

609 91.3 29.0 1.4 540.8 0.9  

Fig. 5. Pearson’s correlation matrix between race, income, package demand and freight network geometry (** = r significant at p < 0.05).  
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Table 6 
OLS Linear Regression output testing demand and geometric variables.  

OLS Linear Regression    

Log (Total VKT/sqkm) Log (Cargo van (line-haul) VKT/sqkm) Log (Cargo van (TSP) VKT/sqkm) Log (Class 8 truck (line-haul) VKT/sqkm)  

Coef. Std. e Coef. Std. e Coef. Std. e Coef. Std. e 

intercept 3.75* 1.98 2.83 2.39 − 1.09 0.87 5.69*** 1.40 
Log(%POC) 0.43*** 0.11 0.39*** 0.14 0.53*** 0.05 0.19** 0.08 
Log(income) − 0.01 0.19 − 0.08 0.23 − 0.02 0.08 − 0.33** 0.13 
Log(pkg demand) 0.10 0.14 0.34** 0.16 0.28*** 0.06 − 0.29*** 0.10 
Log(highway length/sqkm) 0.82*** 0.06 0.93*** 0.07 − 0.16*** 0.02 0.56*** 0.04 
Log(km from UDC) − 0.92*** 0.09 − 1.00*** 0.11 − 0.08 0.04 − 0.28*** 0.07  

N 715  715  715  715  
R2 adj 0.39  0.35  0.22  0.31  
LL0 − 1577.22  − 1689.87  − 898.34  − 1288.6  
LL − 1398.50  − 1535.62  − 808.61  − 1151.74  
AIC 2811.10  3085.24  631.22  2317.47  

Fig. 6. Boxplot of the log-transformed VKT, NOX and PM2.5 concentrations by income-race grouping (white dot = mean). NOTE: Due to the low number of observations (n 
= 2), highNW is not included in the visualization. “Line-haul” shortened to “thru” for easier visualization. 

Fig. 7. Daily median VKT, NOX and PM 2.5 totals (top) and concentrations (bottom) by income-race grouping. NOTE: visualization excludes zero values.  
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some low-density housing) in Everett, including two co-located UDCs 
that service the northern MSA. 

Due to these outliers, Fig. 7 visualizes the median emission concen-
trations between income-race groupings, and across all delivery seg-
ments. When assessing median emissions, racial discrepancies become 
more apparent. While cargo van TSP emissions remain relatively 
consistent across groupings, line-haul emissions disproportionately 
impact lowNW tracts. For instance, line-haul cargo van NOx emission 
concentration for lowNW tracts is roughly 246% higher than the second- 
highest grouping, midNW. However, between midW, midNW, and lowW 
the variation is more mild. Conversely, midNW is exposed to 18% more 
truck-related NOx emissions than lowNW. This observation is likely due 
to a higher portion of midNW tracts located near UDCs. Roughly, 33% of 
midNW tracts are within three km of a UDC, compared to 11% of midW 
tracts and 22% of lowNW tracts. Across the board, POC-majority tracts 
are generally more exposed to more emission concentrations than their 
white-majority counterparts. 

To detect significant differences between the groupings, this study 
first conducts a rank-based, non-parametric analysis, Kruskal-Wallis H- 
test, between total VKT, PM2.5 and NOx concentrations, as well as for 
NOX concentrations across the three delivery segments. The results 
confirm a statistically significant difference in medians (p < 0.05), 
justifying post hoc analysis. Fig. 8 presents the results from a Dunn’s test, 
which tests the null hypothesis that there are no significant differences 
between groupings. When evaluating aggregate VKT and emissions, all 
groupings are significant with highW, with lowNW:midW also showing 
significance (p < 0.05). Results confirm that highW tracts are dispro-
portionately exposed to less overall emissions; however, this study 
cannot reject the null hypothesis across most income-race groupings 
when analyzing aggregate VKT and emission concentrations alone. 

However, differences between the groupings emerge when analyzing 
NOx emissions across delivery segments. LowNW shows significant dif-
ferences between all groupings when analyzing line-haul van emissions. 
Meanwhile, testing truck emissions confirm midW is significantly 

different across all groupings, as well as between lowNW and midNW. 
Results statistically validify that lowNW tracts are disproportionately 
exposed to higher cargo van emissions whereas midNW to higher truck 
emissions in comparison to white-majority tracts. 

4.2.1. Sensitivity analysis of truck and cargo van utilization 
Since this study makes static assumptions regarding the number vans 

and trucks needed to fulfill average daily delivery demand, a sensitivity 
analysis is conducted to identify the impacts of the model inputs on the 
findings. The number of vehicles needed to fulfill daily deliveries fluc-
tuate based on several factors (e.g., holiday shopping demand or 
changing the volume of packages that can fit on a vehicle), thus affecting 
the distribution of emissions across the study’s race-income groupings. 

Therefore, the analysis looks at a variety of different combinations of 
load factors for both cargo vans and Class 8 trucks to account for varying 
package sizes, demand, weights, utilization, and etc. For cargo vans, 
load factors can range from 60 packages (34% of the baseline, 175) up to 
350 (200%). Class 8 truck load factors range from 500 (25% of the 
baseline, 2000) up to 4000 (200%). The sensitivity analysis recalculates 
NOx density in each tract using varying load factor combinations. The 
analysis tests the output using Kruskal-Wallis-H tests to check for sta-
tistically significant differences in medians (p < 0.05) between income- 
race groupings. 

Initial iterations of the sensitivity analysis revealed that every com-
bination of load factor levels showed significant difference in exposure 
levels. This is consistent with expectations illustrated in Fig. 9: highW 
tracts have relatively low emission levels for cargo vans and zero truck 
emissions. Therefore, fleet volume fluctuation is comparatively less 
impactful for this group. The subsequent analysis excludes highW tracts, 
comparing only middle and low-income tracts against each other. 
Generally, the emission imbalance between income-race groupings re-
mains across most load factor combinations. However, higher truck load 
factors paired with lower cargo van load factors show no significant 
differences between income-race groupings, resolving unequal emission 

Fig. 8. Post-hoc Dunn test results of daily VKT, PM 2.5 and NOx emissions by income-race grouping; total sqkm/day (upper) and NOx emissions normalized by tract 
area (lower). 
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distribution. This combination is unlikely to occur naturally from daily 
fluctuations, since the circumstances that would lead to a higher load 
factor in trucks would likely affect vans in the same direction, not the 
opposite. Rather, the results demonstrate the disproportionate emission 
distribution of trucks versus van emissions. 

The primary takeaways from this analysis are two-fold. First, the 
significance of this study’s results are not highly sensitive to the as-
sumptions the model makes regarding vehicle utilization, especially for 
cargo vans. That is, results are not sensitive to daily fluctuations in fleet 
volume and composition. Second, the number of trucks, in relation to 
cargo vans, affects observed discrepancies in emission exposure between 
race, low and middle income groupings. While introducing mechanisms 
that reduce environmental costs of cargo vans would have major bene-
fits across race and middle/low-incomes, those that mitigate line-haul 
truck externalities would have an outsized impact for marginalized 
populations. 

5. Discussion 

5.1. Summary of results 

This study explored ecommerce-related UDC localization and air 
pollution impacts through a lens of environmental justice. This study 
found a significant correlation between distance from UDCs, delivery 
VKT, and higher POC concentrations. When considering both trucks and 
vans, the relationship between delivery VKT and other network prop-
erties, including UDC proximity and highway density, appeared stronger 
than demand for packages. 

When evaluating VKT and emissions across race and income, the 
discrepancy is more apparent. Both low-income and middle-income 
POC-majority populations were disproportionately exposed to 
ecommerce-related pollution. Some of this disparity can be attributed to 
Class 8 truck emissions, despite accounting for a much smaller fraction 
of overall emissions compared to cargo vans. Moreover, while the 
findings show that ecommerce activity negatively affected racially 
marginalized populations more than white populations, it did not permit 
the authors to conclude the relational effect between income and 

exposure to urban freight’s negative, environmental externalities. 
In fact, the findings are in-line with Yuan (2018a) and several other 

environmental justice researchers (e.g., Pastor et al., 2001) that find 
mixed relational effects between income, race and industrial siting. As 
stated by these authors, the racial make-up of a neighborhood can be a 
stronger determining factor for disparate industrial siting than its 
socio-economic status. In addition to a history of locked-in, racialized 
urban development practices (Pulido, 2017), there are likely reasons 
contextual to the warehousing sector and urban geography as well. For 
instance, low-income, POC-majority tracts in Seattle MSA have the 
highest population density across all groupings (3346 people per 
square-km), roughly 53% higher than middle-income POC-majority and 
74% higher than middle-income, white-majorty tracts. High population 
densities could reflect spatial constraints that are unattractive to UDC 
operators’ expansive floorspace needs, deterring urban siting in favor of 
larger, industrially zoned parcels in lower density suburbs where me-
dian incomes are higher. 

5.2. Implications for land use and transportation policy 

Research on equity in urban freight planning is nascent (Fried et al., 
2023). Urban freight experts have proposed a plethora of solutions 
including off-hour delivery (Holguín-Veras et al., 2018), microhubs and 
cargo bikes (Katsela et al., 2022), parcel lockers (Urban Freight Lab, 
2018), and dynamic curbside/loading zone management (Pérez et al., 
2021), among other solutions. However, cities and companies have 
mostly implemented these solutions to reduce delivery times and/or 
VKT in dense urban centers, not in urban industrial zones or the sub-
urban periphery where freight activity is more intensive and dispro-
portionately impacting POC populations. In other words, mainstream 
“sustainable urban freight” strategies may benefit wealthier, more 
frequent online shoppers from white-majority neighborhoods rather 
than the populations disproportionately impacted by the delivery trips 
these shoppers induce. 

Commercial vehicle electrification is also a crucial step to elimi-
nating localized tailpipe pollution with major delivery companies 
focusing on electrifying cargo vans and some box trucks (Domonoske, 
2021). While the market penetration of heavy-duty commercial vehicles 
is substantially lower compared to light-duty vehicles (IEA, 2021, p. 
101), several states (including Washington) have adopted California’s 
Advanced Clean Truck (ACT) policy, which sets sales mandates for 
commercial vehicles Class 2 through 8 (Bliss, 2022). Although important 
for air pollution reduction, electrification is not a panacea. Electrifying 
delivery trucks and vans would do little to mitigate other traffic-related 
externalities including crashes, congestion, infrastructure damage, and 
non-exhaust pollution. 

Therefore, when considering urban freight strategies, additional 
emphasis should be placed on environmental mitigations further up the 
urban distribution chain. In addition to the vehicle-based air quality 
regulations around UDCs described in the introduction, consideration 
should be given to UDC’s public health impacts. Given that municipal 
land use regulation (or lack thereof) is a strong determinant in a firm’s 
decision to locate a UDC (Yuan, 2019), local governments should care-
fully assess industrial land use and permitting to better understand 
UDCs’ localized health cost and economic benefit. Researchers have 
suggested several land use solutions that intend to steer UDC develop-
ment to environmental and operationally efficient outcomes, such as 
logistics parks in the suburbs or multi-use, landscape-integrated logistics 
“hotels” in urban centers (Raimbault et al., 2018). Additional design 
implementations at the UDC can mitigate negative externalities for 
surrounding communities, such as nature-based buffers or “complete 
streets” road design that improve safe interactions between commercial 
vehicles and vulnerable road users (Conway et al., 2013; Pitera et al., 
2017). 

Logistics land use and transportation solutions such as these require 
a considerable degree of public support and cross-sector collaboration. 

Fig. 9. Sensitivity analysis of NOx emissions per square km using Kruskal- 
Wallis tests by income-race grouping. 
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Larger, regional governmental bodies–such as state, counties, or 
MPOs–could provide guidance to environmentally conscientious UDC 
siting best practices and enable cross-regional coordination. Grassroots 
advocates and civil society also have a role in leading these discussions 
and ensuring urban freight and UDC siting remain pertinent to EJ 
discourse and political action (Schneller et al., 2022). 

6. Conclusion 

This paper is the first empirical effort to visualize and quantify socio- 
spatial inequities embedded in our urban freight system. Namely, the 
study tested two interrelated hypotheses. First, marginalized pop-
ulations were more likely located near intensive freight infrastructure 
and activity, especially upstream in the home delivery chain. Second, 
this proximity consequently created higher exposures to freight-related 
criteria pollutant emissions. The results show marginalized populations 
disproportionately bear ecommerce’s environmental costs unequally in 
metropolitan Seattle despite receiving less home deliveries. While the 
study analyzed Amazon UDC location data, the data present only a 
subset of broader warehousing activity with today’s home delivery 
trends likely exacerbating long observed inequities in the urban freight 
system. This paper’s theoretical review and methodological approach 
also helps highlight some gaps in warehouse geography research. 

Most debates surrounding the impacts of warehousing’s spatial 
reorganization add little to EJ considerations. Case studies suggest lo-
gistics decentralization or “sprawl” contributes to growing regional 
freight emissions (Dablanc & Rakotonarivo, 2010). Conversely, others 
argue logistics sprawl parallels decentralizing freight demand and spurs 
enhanced economies of scale at larger suburban warehouses, therefore, 
optimizing freight network efficiencies (Robichet & Nierat, 2021; Sakai 
et al., 2017). Arguably, compact city planning can reduce freight 
transport distances between distribution hubs and market terminals 
(Rivera-Gonzalez et al., 2023), especially where ecommerce is con-
cerned given the recent trend that has placed some LMDS closer to 
consumers in denser urban areas (Fried et al., 2023). Condensing lo-
gistics facilities nearer to the urban core may trade-off some network 
efficiency improvements with exposing higher densities of people and 
sensitive land uses (e.g., schools and hospitals) to locally intensified 
freight activity. Given broad evidence to disparate siting, including in 
the warehousing sector (Yuan, 2018b), the rapid proliferation of 
ecommerce-UDCs presents fundamental EJ concerns. Recently, “prox-
imity logistics” research offers some guidance to mitigating urban 
freight’s negative externalities among communities living next to UDCs 
(Buldeo Rai et al., 2022). However, none of these studies frame UDC 
siting as a socio-political issue with equity and EJ implications (Fried 
et al., 2023). 

Given this study’s cross-sectional nature, it does not attempt to 
identify causal factors for disparate ecommerce pollution nor prescribe 
specific solutions that best mitigate urban freight’s inequities. It also 
does not validate results against some geographic and social biases, such 
as by testing for the modifiable areal unit problem (MAUP) and/or 
utilizing different equity indicators besides the median-based tests 
employed in this study. 

In addition to addressing these limitations, future studies could also 
introduce additional sensitivity parameters that allow the testing of 
variables beyond load factors, which was tested by this study. Doing so 
could allow researchers to audit sustainable urban freight strategies and 
evaluate what they entail for equity and EJ priorities. For example, using 
a routing API with historical traffic data can assess delivery time- 
window parameters to explore equity implications of off-hour de-
liveries. Finally, future studies should explore atmospheric models for 
air pollution dispersion, such as CMAQ or Polair3D (Minet et al., 2020). 
Following this approach would enable researchers to quantify the dis-
tribution of freight pollution-related morbidity and social costs in a 
dynamic urban environment. 
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Katsela, K., Güneş, Ş., Fried, T., Goodchild, A., & Browne, M. (2022). Defining urban 
freight microhubs: A case study analysis. Sustainability, 14(1). https://doi.org/ 
10.3390/su14010532. Article 1. 

Kozawa, K. H., Fruin, S. A., & Winer, A. M. (2009). Near-road air pollution impacts of 
goods movement in communities adjacent to the Ports of Los Angeles and Long 
Beach. Atmospheric Environment, 43(18), 2960–2970. https://doi.org/10.1016/j. 
atmosenv.2009.02.042 

Lathwal, P., Vaishnav, P., & Morgan, M. G. (2022). Pollution from freight trucks in the 
contiguous United States: Public health damages and implications for environmental 
justice. https://doi.org/10.48550/arXiv.2204.06588. arXiv:2204.06588). arXiv. 

Maantay, J. (2001). Zoning, equity, and public health. American Journal of Public Health, 
91(7), 1033–1041. https://doi.org/10.2105/ajph.91.7.1033 

McKinnon, A. (2009). The present and future land requirements of logistical activities. 
Land Use Policy, 26, S293–S301. https://doi.org/10.1016/j.landusepol.2009.08.014 

Miller, T. L., Davis, W. T., Reed, G. D., Doraiswamy, P., & Fu, J. S. (2003). Characteristics 
and emissions of heavy-duty vehicles in Tennessee under the MOBILES model. 
Transportation Research Record, 1842(1), 99–108. https://doi.org/10.3141/1842-12 

Minet, L., Chowdhury, T., Wang, A., Gai, Y., Posen, I. D., Roorda, M., & Hatzopoulou, M. 
(2020). Quantifying the air quality and health benefits of greening freight 

movements. Environmental Research, 183, Article 109193. https://doi.org/10.1016/ 
j.envres.2020.109193 

Mohai, P., & Saha, R. (2007). Racial inequality in the distribution of hazardous waste: A 
national-level reassessment. Social Problems, 54(3), 343–370. https://doi.org/ 
10.1525/sp.2007.54.3.343 

Mohai, P., & Saha, R. (2015). Which came first, people or pollution? Assessing the 
disparate siting and post-siting demographic change hypotheses of environmental 
injustice. Environmental Research Letters, 10(11), Article 115008. https://doi.org/ 
10.1088/1748-9326/10/11/115008 

MWPVL International. (2021). Amazon distribution network strategy. https://www.mwpvl. 
com/html/amazon_com.html. 

Noonan, D. S. (2008). Evidence of environmental justice: A critical perspective on the 
practice of EJ research and lessons for policy design. Social Science Quarterly, 89(5), 
1153–1174. https://doi.org/10.1111/j.1540-6237.2008.00568.x 

NY State Assembly Bill A9799. (2022). The New York State senate (p. 2022). A9799 http 
s://www.nysenate.gov/legislation/bills/2021/a9799. 

OECD. (2016). The economic consequences of outdoor air pollution. OECD. https://www. 
oecd.org/environment/the-economic-consequences-of-outdoor-air-pollution-9789 
264257474-en.htm.  

Pastor, M., Sadd, J., & Hipp, J. (2001). Which came first? Toxic facilities, minority move- 
in, and environmental justice. Journal of Urban Affairs, 23(1), 1–21. https://doi.org/ 
10.1111/0735-2166.00072 

Patterson, R. F., & Harley, R. A. (2021). Effects of diesel engine emission controls on 
environmental equity and justice. Environmental Justice, 14(5), 360–371. https://doi. 
org/10.1089/env.2020.0078 
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