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A B S T R A C T

The spatial disparity of air pollutants is one of the key influential factors for environmental inequality. We
quantitatively evaluated the evolution of PM2.5 spatial disparity in China during 2013–2020, and investigated the
associations between PM2.5 spatial disparity and economic indicators. Differences in PM2.5 between more- and
less-polluted cities declined over time, suggesting decreased absolute disparity. However, the more polluted cities
in 2013 remained so in 2017 and 2020, and vice versa, indicating persistent relative disparity. PM2.5 pollution
levels increased with higher GDP per capita in less-developed areas of China, but such negative effects weakened
over time, while economic development tended to promote cleaner air in developed areas of China. Therefore,
policies to improve air quality and promote economic development simultaneously are needed in China to reduce
the disparity of air pollution and promote all people to enjoy environmental equality.
1. Introduction

Fair treatment is one of the two components of environmental justice,
which means no group of people should bear a disproportionate share of
the negative environmental consequences [1]. Besides demographic
characteristics, the spatial disparity of hazardous environmental factors
contributes to exposure inequity among population. Fine particulate
matter (particles of aerodynamic diameter �2.5 μm [PM2.5]) is respon-
sible for about 4.14 million deaths worldwide and is the fourth leading
risk factor for death globally, according to estimates from the Global
Burden of Disease (GBD) 2019 [2]. However, the global disease burden of
PM2.5 is unevenly distributed due to large inter- and intra-country vari-
ations in PM2.5. For example, with rapid economic growth and urbani-
zation, PM2.5 concentrations in China and India are higher than in
well-developed European and American countries [3]. In particular,
China has suffered from severe PM2.5 pollution, and the PM2.5 concen-
trations show significant spatial variation within the country [4,5]. The
spatial variation of PM2.5 concentrations, which may be caused by
regional differences in economic activity, emission sources, population
density, and geophysical conditions, leads to disparity in the risk of
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exposure to PM2.5 pollution [6]. To improve air quality and protect public
health, China launched a series of clean air policies, including the Action
Plan of Air Pollution Prevention and Control (APPC–AP) in 2013 and
Three-year (2018–2020) Action Plan for Cleaner Air in 2017. By virtue of
these policies, PM2.5 concentrations have dropped significantly in China
since 2013 [7,8]. However, few studies have evaluated temporal trends
of the spatial disparity of PM2.5 concentrations in China.

The spatial disparity of PM2.5 concentrations may change over time
due to clean air policies. For example, the gap between more- and less-
polluted areas in the USA decreased from 1981 to 2016 with decreased
absolute spatial disparity of PM2.5, but the more- and less-polluted areas
in 1981 remained so in 2016, as well as the relative disparity persisted
[6]. Previous studies on air quality in China mainly focused on temporal
trends in the reduction of PM2.5 concentrations, nationwide or in city
clusters [9–12]. For example, Xue et al. explored the trends in eight major
city clusters and found that PM2.5 in these regions decreased by
0.269–1.604 μg/m3 per year from 2006 to 2017 [9]. Zhao et al. inves-
tigated the reduction of PM2.5 in 269 Chinese cities from 2015 to 2016;
most cities in eastern China saw a decrease in PM2.5 concentration [4].
However, few studies have compared changes in spatial disparity of
t 2023
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PM2.5 concentrations in China in the past few years, which would provide
insight into environmental disparities and inform future clean air
policies.

Air pollution levels can be influenced by economic development [1,
13]. Individuals and communities of low socioeconomic status tend to be
exposed to higher air pollution levels [1,14,15]. However, few studies
have investigated associations between PM2.5 spatial disparity and so-
cioeconomic factors in China and yielded inconclusive results [5,16–18].
For example, Guo et al. reported that people living in areas with high
residential property prices were exposed to high PM2.5 levels in Shenz-
hen, China [17]. Huang et al. reported that poor and less-educated res-
idents were exposed to a disproportionally high share of the pollution
occurring in 2014 in Beijing, China [18]. Uneven geographic distribu-
tions of air quality measurements, as well as the low spatial resolution of
economic data, hinder understanding of their relationship. With the
development of modeling methodologies [19–22], estimates of air pol-
lutants and economic data at high resolution, with full spatial coverage,
will enable a nationwide analysis of the effect of economic development
on the spatial disparity of PM2.5 pollution.

Therefore, in this study, we aimed to evaluate temporal trends of the
spatial disparity in PM2.5 concentrations from 2013 to 2020, and their
associations with socioeconomic factors in China based on full-coverage,
high-resolution PM2.5 estimates. First, we compared changes in PM2.5
concentrations between more- and less-polluted regions at the city level
to explore temporal trends of absolute and relative PM2.5 spatial dis-
parities. Second, we investigated the association between PM2.5 spatial
disparities and socioeconomic factors.

2. Methods

2.1. PM2.5 predictions

PM2.5 concentrations were predicted by random forest models at the
daily scale and 1-km spatial resolution from 2013 to 2019 in Mainland
China with full spatiotemporal coverage, as reported previously [23],
and PM2.5 concentrations in 2020 were predicted using the same meth-
odology. Ground PM2.5 measurements, Multi-Angle Implementation of
Atmospheric Correction aerosol optical depth (MAIAC AOD), MERRA–2
simulated PM2.5 concentrations, meteorological parameters, land-use
data, and population density were used to develop the models. Given the
high missing rate of AOD, a gap-filling method was applied to generate
full-coverage PM2.5 concentrations and reduce bias in exposure assess-
ment following previous studies [24,25]. The overall 10-fold cross--
validation R2 and root-mean-square error (RMSE, defined as the standard
deviation of model residuals) values of random forest model-predicted
PM2.5 and measurements from 2013 to 2020 were 0.85 and 15.29 μg/m3;
and the slope and intercept were 1.09 and �4.50 μg/m3, respectively.
The annual mean PM2.5 concentration for each grid cell at 1 km � 1 km
resolution was averaged from daily PM2.5 concentrations. The APPC-AP
was launched in 2013 and ended in 2017, and the Three-year Action Plan
for Cleaner Air was implemented between 2018 and 2020. Therefore, we
used 2013, 2017, and 2020 as the time points to analyze changes in PM2.5
disparity.
2.2. Socioeconomic data

Several socioeconomic factors, including race, gross domestic product
(GDP), household income, and tertiary industry, have been used to assess
the effect of economic development and human activities on air pollut-
ants [4,5,26–28]. In this study, considering the data availability, we used
urban/rural classification and GDP data to indicate urbanization and
economic development. Land-cover classification data for urban and
rural regions, classified based on impervious surfaces with a 30-m reso-
lution, were downloaded from http://data.ess.tsinghua.edu.cn to reflect
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urbanization development [29,30]. GDP data for 2010, 2015, and 2019
at 1-km resolution were downloaded from the Resource and Environ-
mental Science Data Registration and Publication System (https:
//www.resdc.cn/DOI/) [22] and linearly interpolated to 2013, 2017,
and 2020, to directly reflect economic development. Urban/rural and
GDP data were matched or integrated into the 1-km grid cells. The
disposable income per capita of cities was collected from the website of
the statistics bureau of each city if the data were available. The expected
targeted PM2.5 reduction in the province in 2017, which was set in 2014,
was collected from the official websites of provincial governments to
represent the stringency of local policies, which was utilized in the pre-
vious study [31]. The total coal consumption at the city level was
collected from China Energy Statistical Yearbook and Chinese Urban
Statistical Yearbook to reflect the coal burning levels.
2.3. Temporal trends of PM2.5 spatial disparities

Changes in PM2.5 concentrations in 2013, 2017, and 2020 between
more- and less-polluted regions were compared at the city level to explore
the temporal trends of PM2.5 spatial disparities. Considering the popula-
tion exposure distributions, population-weighted PM2.5 concentrations at
the city level in 2013, 2017, and 2020 were calculated as follows:

PMPOPi ¼
�X

PM2:5ij �POPij

�. X
POPij (1)

where i denotes city i; j denotes grid cell j spatially joint with city i;
PMPOPi represents the population-weighted PM2.5 concentration in city i;
PM2.5ij and POPij represent the annual mean PM2.5 concentration and the
population at grid cell j within city i, respectively. Population density
data at 1-km resolution were obtained from LandScan Global Population
Database [32].

To assess changes in the absolute disparity of PM2.5 pollution, the
differences between the 99th–1st percentiles (P99–P1), 95th–5th per-
centiles (P95–P5), and 90th–10th percentiles (P90–P10) of PM2.5 con-
centrations at the city level were calculated for each year from 2013 to
2020.

Additionally, changes in the relative disparities of PM2.5 concentra-
tions were explored. First, cities were ranked from lowest to highest
according to their corresponding population-weighted PM2.5 concentra-
tions in 2013, 2017, and 2020. The ranks of the cities in 2013 and 2017,
2017 and 2020, and 2013 and 2020 were compared using linear
regression to assess changes in the relative disparities of PM2.5 pollution
[6,33]. Second, a quantitative analysis of PM2.5 relative disparity was
conducted based on the Gini coefficient. The Gini coefficient was
developed to measure the inequality of population wealth distribution
[34]. It was subsequently used to examine disparities in the distributions
of environmental pollutants [35–37]. The geographic distribution of
PM2.5 concentrations among cities in 2013, 2017, and 2020 was explored
using the Gini coefficient. The cities were ranked from lowest to highest
in terms of their population-weighted PM2.5 concentrations, and the Gini
coefficient was calculated as follows:

G¼ 1�
X

ðXkþ1 �XkÞðYkþ1 þYkÞ (2)

where G is the Gini coefficient; k represents the kth city ranking by PM2.5
concentration; Xk denotes the cumulative proportion of cities with fewer
ranks than city k; and Yk denotes the cumulative proportion of PM2.5
concentrations in cities with fewer ranks than city k; when k is equal to 1,
(Xk, Yk) is (0, 0). The Gini coefficient ranges from 0 to 1, with 1 repre-
senting complete disparity and 0 represents complete parity. We plotted
Lorenz curves to visualize the Gini coefficients, with the cumulative
proportion of cities as the x-axis, and the cumulative proportion of the
population-weighted PM2.5 concentrations of corresponding cities as the
y-axis. A diagonal Lorenz curve indicates complete parity.
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Finally, the concentrations and percentages of PM2.5 reductions at the
city level from 2013 to 2020 were compared to help understand changes
in the absolute and relative disparities of PM2.5 pollution.

2.4. Associations between PM2.5 spatial disparity and socioeconomic
factors

To assess the associations between PM2.5 spatial disparity and so-
cioeconomic factors, the differences in PM2.5 concentrations were
compared between urban and rural areas.

Next, the associations between PM2.5 spatial disparity and GDP per
capita were assessed. Grossman and Krueger introduced the Environ-
mental Kuznets Curve (EKC) to assess the association between economic
development and environmental quality [38]. The EKC assumption is
that in the early stage of economic development, environmental degra-
dation increases in parallel with economic growth but decreases (while
environmental quality increases) with economic growth after a certain
point. Whether the EKC assumption is applicable to the relationship
between PM2.5 concentration and GDP per capita was tested. GDP and
population values in grid cells inside the city boundary were summed and
assigned to the corresponding city, and GDP per capita was calculated by
dividing the GDP by the population values at the city level. The EKC
model was established using the following formula:

PMi;t ¼ α0 þ β1 � SESi;t þ β2 � ðSESi;tÞ2 þ εi;t (3)

where i represents the city i; t denotes the year (2013, 2017, or 2020);
PMi,t is the mean PM2.5 concentration for city i in year t; SESi,t denotes the
value of GDP per capita for city i in year t; (SESi,t)2 denotes the squared
value of GDP per capita for city i in year t; α0 is the intercept term; β1 and
β2 are the coefficient estimates of regressors; and εi,t denotes the error
term. According to Eq. 3, the relationship between PM2.5 level and GDP
per capita can be explained as follows.

(1) If β1 and β2 ¼ 0, there is no relationship between PM2.5 and GDP
per capita.

(2) If β1 > 0, β2 ¼ 0, there is a positive monotonic relationship be-
tween PM2.5 and GDP per capita.

(3) If β1 < 0, β2 ¼ 0, there is a negative monotonic relationship be-
tween PM2.5 and GDP per capita.

(4) If β1 > 0, β2 < 0, there is an inversed U-shaped relationship be-
tween PM2.5 and GDP per capita.

(5) If β1 < 0, β2 > 0, there is a U-shaped relationship between PM2.5
and GDP per capita.

To further examine the correlation between PM2.5 concentrations,
GDP levels, targeted PM2.5 reduction, and coal burning, the Spearman
correlation coefficients were calculated.

2.5. Sensitivity analysis

We conducted several sensitivity analyses to validate our findings. For
exploring PM2.5 disparity, we used population-weighted PM2.5 pre-
dictions at the provincial level, arithmetic averaging of PM2.5 pre-
dictions, and averaged PM2.5 measurements at the city level from
national monitoring stations to present the PM2.5 pollution levels to
evaluate the changes in absolute and relative disparity of PM2.5. For
exploring the association between PM2.5 pollution levels and economic
development, we tested the association between PM2.5 concentrations
and GDP per capita at the provincial level; we used disposable income per
capita to represent the economic development instead; meanwhile, we
tested the association between PM2.5 concentrations and GDP per capita
in 2010, 2015, and 2019 without interpolation of GDP data.
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3. Results

3.1. Temporal trends of PM2.5 spatial disparity in China in 2013–2020

PM2.5 concentrations have decreased markedly in China since 2013.
Fig. 1a and b shows the spatial distributions of predicted annual mean
PM2.5 concentrations in 2013 and PM2.5 reductions from 2013 to 2020,
respectively, at 1 km � 1 km spatial resolution. The annual mean PM2.5
concentration decreased from 55.71 � 17.92 μg/m3 in 2013 to
39.75� 17.68 μg/m3 in 2017, and then to 28.74� 15.10 μg/m3 in 2020,
according to the high-resolution predictions. Areas with high levels of
PM2.5 pollution decreased, and areas with middle levels of PM2.5 pollu-
tion increased (Fig. 1c). The percentages of grid cells with PM2.5 con-
centrations higher than the interim target 1 (35 μg/m3) recommended by
the WHO [39] decreased from 90.39% in 2013 to 47.30% in 2017, and
then to 23.17% in 2020. The percentages of grid cells with PM2.5 con-
centrations between 10 μg/m3 (recommended by WHO in 2005 [40])
and 35 μg/m3 increased from 9.61% in 2013 to 52.70% in 2017, and then
to 75.57% in 2020. During 2013–2020, none of the grid cells with PM2.5
concentrations reached the air quality guidelines (5 μg/m3) recom-
mended by WHO in 2021 [39].

The gap in PM2.5 concentrations between more- and less-polluted
areas narrowed, suggesting a decline in the absolute disparity in PM2.5
pollution. Fig. 1d shows the difference of the P99–P1, P95–P5, and
P90–P10 of PM2.5 concentrations at the city level from 2013 to 2020. The
difference of P99–P1 of PM2.5 concentrations decreased from 76.63 μg/
m3 in 2013 to 49.43 μg/m3 in 2017, and to 45.48 μg/m3 in 2020. The
difference in the P95–P5 and P90–P10 of the PM2.5 concentrations at the
city level showed similar trends, and the difference of P95–P5 decreased
from 64.51 μg/m3 in 2013 to 33.95 μg/m3 in 2020, while that of
P90–P10 decreased from 46.21 μg/m3 in 2013 to 28.53 μg/m3 in 2020.

More- and less-polluted cities in 2013 tended to remain so in 2017
and 2020, indicating the persistence of the relative disparity in PM2.5
pollution over time. Fig. 2 shows the ranks of cities according to PM2.5
concentration in 2013 against 2017 (a), in 2017 against 2020 (b), and in
2013 against 2020 (c). The R2 values in Fig. 2a–c were 0.89, 0.92, and
0.83, respectively, with statistical significance (P < 0.0001). Regression
analysis showed that the relative ranks for air pollution levels remained
stable among cities from 2013 to 2020. Fig. 2d shows Lorenz curves
between the cumulative proportions of cities and the cumulative pro-
portion of population-weighted PM2.5 concentrations thereof in 2013,
2017, and 2020. The Gini coefficient was 0.17 in 2013, 0.17 in 2017, and
0.19 in 2020. In 2013, 2017, and 2020, the PM2.5 concentrations in
60.95%, 56.51%, and 89.35% of all cities were higher than the national
average PM2.5 concentration of that year (2013, 55.71 μg/m3; 2017,
39.75 μg/m3; 2020, 28.74 μg/m3), respectively. The Gini coefficients and
Lorenz curves supported the persistence of the relative disparity in PM2.5
pollution, which tended to increase from 2013 to 2020.

The decline of PM2.5 was proportional at the city level, possibly
explaining the persistence of the relative disparity. Fig. 3a shows that
PM2.5 concentrations in cities with higher pollution levels in 2013
decreased more from 2013 to 2020, respectively, and vice versa for cities
with lower pollution. The values of reductions of PM2.5 concentrations
increased at a rate of 0.0861 μg/m3 per rank (95% confidence interval
[CI]: 0.0803, 0.0918) during 2013–2020. Fig. 3b shows that percentages
of PM2.5 reductions were comparable across cities from 2013 to 2020
with the coefficient not statistically significant.

Results from sensitive analysis based on population-weighted PM2.5
predictions at the provincial level (Figs. S1–S2), arithmetic averaging of
PM2.5 predictions at the city level (Figs. S3–S4), and averaged PM2.5
measurements at the city level (Figs. S5–S6) validated the findings that
the absolute disparity in PM2.5 pollution has decreased, and the relative
disparity has persisted over time.



Fig. 1. The spatial distributions of predicted annual mean PM2.5 concentrations in Mainland China in 2013 (a); the spatial distributions of PM2.5 reductions from 2013
to 2020 (b); percentages of grid cells with PM2.5 concentrations less than 10 μg/m3, between 10 μg/m3 and 35 μg/m3, higher than 35 μg/m3, and the annual mean
PM2.5 concentration for each year from 2013 to 2020 based on PM2.5 predictions in China (c); differences of P99–P1 (blue line), P95–P5 (yellow line), and P90–P10
(red line) of PM2.5 concentrations at the city level during 2013–2020 (d).

Fig. 2. Regressions between the ranks of cities
according to PM2.5 concentration in 2013 against
2017 (a), in 2017 against 2020 (b), and in 2013
against 2020 (c), and Lorenz curves between the
cumulative proportions of cities and the cumula-
tive proportion of the population-weighted PM2.5

concentrations thereof in 2013 (yellow line), 2017
(red line), and 2020 (blue line) (d). The black line
is a 1:1 line in (a–c) and indicates complete parity
in (d).
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Fig. 3. Values (a) and percentages (b) of reductions of the population-weighted
PM2.5 concentrations from 2013 to 2020 at the city level. The columns from left
to right in x-axis are cities ranked according to population-weighted PM2.5

concentrations in 2013 from the lowest (31.04 μg/m3) to the highest
(113.08 μg/m3). * is statistical significance at the 5% level.
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3.2. Associations between PM2.5 disparities and socioeconomic factors

PM2.5 concentrations in urban regions were higher than in rural re-
gions from 2013 to 2020. The annual mean PM2.5 concentrations in
urban and rural regions from 2013 to 2020 are shown in Fig. S7.
Although the PM2.5 concentrations in urban and rural areas decreased
significantly, urban regions had persistently higher PM2.5 concentrations
than rural regions. For example, the annual mean PM2.5 concentrations in
urban and rural areas were 60.45 μg/m3 and 55.89 μg/m3 in 2013, as
well as 32.60 μg/m3 and 28.76 μg/m3 in 2020, respectively.

Fig. 4 shows the curves between PM2.5 concentration and absolute
values of GDP per capita in 2013, 2017, and 2020. PM2.5 concentrations
were positively associated with GDP per capita in areas with lower GDP
levels, whereas the slope of their relationship was flat in economically
well-developed regions. In general, as GDP per capita increased, the
PM2.5 concentration first increased and then plateaued. However, the
curve decreased slightly in economically well-developed regions in 2020.
Overall, there is an inverted U-shaped relationship between PM2.5 and
GDP per capita. Temporally, the positive slopes in the first stages of the
curves in regions with lower socioeconomic status decreased from 2013
to 2020.
Fig. 4. The associations between PM2.5 concentrations and absolute values of
GDP per capita in 2013 (red points), 2017 (green points), and 2020 (blue points)
at the city level.
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The spatial disparities of PM2.5 concentrations were significantly
related to economic indicators. Table 1 shows the simulated PM2.5 con-
centrations and GDP per capita at the city and provincial levels in 2013,
2017, and 2020 under the EKC assumption. The β1 (coefficient of GDP
per capita values) was 1.38, and the β2 (coefficient of the square of GDP
per capita values) was �0.05 in 2020 at the city level. The PM2.5 con-
centrations and GDP per capita values at the city level in 2013 and 2017,
and at the provincial level in 2013, 2017, and 2020 showed similar
patterns, with positive values of β1 and negative values of β2 (Table 1).
According to the EKC hypothesis, a positive value of β1 and a negative
value of β2 indicate an inverted U-shaped curve between PM2.5 concen-
tration and GDP per capita in China.

The directions of β1 and β2 at the provincial level are similar to those
at city levels, but without statistical significance, probably due to the
small amount of data points (Table 1, Fig. S8). Results from sensitive
analysis based on disposable income per capita (Fig. S9), as well as GDP
per capita in 2010, 2015, and 2019 (Fig. S10, Table S1), have validated
the findings that the relationship between PM2.5 pollution and socio-
economic factors tended to be an inverted U-shape in China.

Table S2 shows the Spearman correlation coefficients between PM2.5
concentrations, GDP levels, targeted PM2.5 reduction (indicating strin-
gency of local policies), and coal burning. The correlation coefficients
between PM2.5 and local policies ranged from 0.63 to 0.64, while be-
tween PM2.5 and coal consumption ranged from 0.27 to 0.28. The cor-
relation coefficients between GDP per capita and local policies ranged
from 0.56 to 0.59, while between GDP per capita and coal consumption
ranged from 0.60 to 0.65.

4. Discussion

We quantitatively evaluated temporal trends of the spatial disparity
in PM2.5 concentrations and their associations with socioeconomic fac-
tors in China based on full-coverage, high-resolution PM2.5 predictions
from 2013 to 2020. The gap in PM2.5 concentrations between more- and
less-polluted cities decreased, indicating that the absolute disparity has
decreased over time. However, cities with high PM2.5 pollution levels in
2013 also had high levels in 2017 and 2020, and vice versa, indicating
that the relative disparity persisted. The PM2.5 concentrations in urban
regions were higher than in rural ones from 2013 to 2020. There is a
weak inverted U-shaped relationship between PM2.5 pollution and eco-
nomic development in China.

The absolute disparity of the PM2.5 distribution has decreased in China.
This could be attributed to the more substantial decline of PM2.5 in high-
pollution areas compared to low-pollution areas (as shown in Fig. 3a). This
trend might be a result of the implementation of stringent air pollution
control policies, such as the APPC-AP and Three-year Action Plan for
Cleaner Air, which placed significant emphasis on reducing emissions and
pollutant concentrations in regions across China that experience high
ambient air pollution levels [9,41–43]. The high correlation between local
policies and PM2.5 pollution levels quantificationally supported that areas
with severe PM2.5 pollution adopted more rigorous measures to combat air
pollution. Consequently, the decline in PM2.5 levels in high-pollution areas
Table 1
The regression results between PM2.5 concentrations and GDP per capita at the
city and provincial levels in 2013, 2017, and 2020, respectively.

Variables GDP per capita at the city level GDP per capita at the provincial
level

2013 2017 2020 2013 2017 2020

Intercept 48.79** 32.00** 25.67** 42.04* 32.48** 24.61**
β1 4.04** 2.54** 1.38** 5.09 1.86 1.28
β2 �0.21** �0.11** �0.05** �0.20 �0.05 �0.03

β1 denotes the coefficient of GDP per capita values; β2 denotes the coefficient of
the square of GDP per capita values. ** is statistical significance at the 5% level; *
is statistical significance at the 10% level.
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has been greater than in low-pollution areas, which could explain the
reduction in absolute disparity observed in this study.

The relative disparity of PM2.5 pollution has persisted in China from
2013 to 2020, which meant that cities with high PM2.5 pollution levels in
2013 also had high levels in 2017 and 2020, and vice versa. We found
that although cities with higher PM2.5 levels had higher reductions, all
these cities have comparable reduction proportions in PM2.5 pollution
levels. Therefore, cities with higher PM2.5 levels in 2013 still tended to
have leading PM2.5 pollution levels in 2020. Furthermore, PM2.5 pollu-
tion levels might be attributed to economic activity, emission sources,
population density, and geophysical conditions [6]. Anthropogenic
emissions (e.g., emissions from industry, power plants, traffic, and resi-
dents) would be high to satisfy the needs of economic development and
residential routines in these regions with dense populations and in-
dustries [5,27], leading to the persistence of relative disparity.

PM2.5 concentrations in urban regions were persistently higher than in
rural ones, as reported previously [5,44]. Due to rapid urbanization, the
urban proportion of the Chinese population increased from 54.49% in
2013 to 63.89% in 2020, and the risk of PM2.5 exposure was redistributed
between urban and rural regions [45]. Thus, residents of urban areas are
more likely to be exposed to high PM2.5 levels, likely leading to a higher
disease burden attributable to PM2.5 pollution than in rural areas. The
State of Global Air, focusing on urban air pollution and health, reported
that 15 of the 20 cities with the highest death rates attributable to PM2.5
exposure worldwide are from China, which has highlighted the threats
from air pollution in urban residents in China [46]. Additionally, the State
of Global Air reported that about 68 percent of the world’s population will
live in urban areas by 2050. Therefore, continuous improvement of air
quality in urban regions could decrease spatial disparity of PM2.5 exposure
and benefit more people in the context of urbanization in the future.

We found the relationship between PM2.5 pollution and socioeco-
nomic factors tended to be an inverted U-shape in China, suggesting that
economic development deteriorates air quality at the beginning and
further economic development promotes the improvement of air quality
after reaching a plateau, a phenomenon that is consistent with the
Environmental Kuznets Curve. Our findings were consistent with previ-
ous studies [4,5]. The inverted U-shaped relationship might be explained
by the complicated associations between economic development and
environmental quality. For example, first, in the early stage of economic
growth, governments and residents focus on how to escape poverty and
achieve rapid economic growth; therefore, their environmental aware-
ness is low. Second, limited by low productivity and technological
development, environmental quality is typically sacrificed in exchange
for economic development and improved living standards. Third, when
economic development reaches a certain threshold, environmental
quality can be improved by technological development, enhanced pro-
duction efficiency, use of clean energy, government regulations, public
awareness of environmental protection, and other factors [38]. We found
that targeted PM2.5 reduction was highly related to both local GDP levels
and PM2.5 pollution levels, which indicated that economic development
may facilitate the implementation of stringent policies in areas with se-
vere PM2.5 pollution and therefore contributed to the second stage in the
inverted U-shape in China. Specially, the association between PM2.5
concentration and disposable income per capita exhibited a weaker
inverted U-shape compared to that observed between PM2.5 concentra-
tion and GDP per capita. This difference may be attributed to the limited
number of cities with available income data at the city level included in
the analysis, and the included cities were not consistent in the three
years. Consequently, future validation is needed when the income data
becomes available in more cities.

Temporally,we found that thenegative relationship between economic
development and air quality in less-developed areas has been weakened.
This change is probably attributed to the extension of areas implementing
airquality policies [47].TheAPPC-AP implemented in2013designated the
Beijing–Tianjin–Hebei, the Yangtze River Delta, and the Pearl River Delta
as key regions. Subsequently, the Three-year Action Plan for Cleaner Air
262
implemented in 2018 extended its focus to include the Fen–Wei Plain and
introduced target planning for cities that had not yet met the PM2.5 stan-
dards [5].Therefore,moreareashavebenefited fromthe interventionof air
quality control policies. However, the negative association between air
quality and economic development still exists, suggesting that policies for
economic development and air pollution control need to be considered
simultaneously to improve air quality and minimize spatial disparities,
thereby protecting public health from PM2.5 pollution and preventing
exposure inequalities. Advanced air pollution control in economically
developed regions could provide helpful experiences to improve air quality
in less economically developed regions of China in the next stage.

This study had several limitations. First, high-resolution GDP data
were available only for 2010, 2015, and 2019, and their interpolation to
other years may introduce uncertainty. However, we tested the rela-
tionship between PM2.5 and GDP per capita in 2010, 2015, and 2019. The
results were similar to our main findings. Thus, the conclusion should not
be changed by the interpolation of GDP data. Second, the association
between air quality and economic development established in this study
is assumed to have some uncertainty. On the one hand, we used GDP per
capita and disposable income per capita as indicators of economic
development, which could not provide a comprehensive picture of eco-
nomic development. On the other hand, some influential factors, such as
the natural source of PM2.5 or sandstorm, may affect the association but
was not considered in this study without source appointment to quantify
the contribution of natural source to PM2.5 concentrations. More studies,
including more indicators of economic development and influential
factors, are needed to further validate our findings. Third, the targeted
PM2.5 reduction used in this study at the provincial level was set during
the APPC-AP period. As local policies may have changed during the
period from 2018 to 2020, the targeted PM2.5 reduction used in this study
might not entirely reflect the stringency of local policies. Fourth, the
analysis was based on ambient PM2.5 concentrations, which may not
represent personal exposure to PM2.5 pollution unless indoor exposure
scenarios are considered. Therefore, the results should be explained with
caution when it comes to personal exposure.

5. Conclusion

The gap in PM2.5 concentrations between more- and less-polluted cities
decreased from 2013 to 2020, indicating that absolute disparity has
decreased over time. However, cities with high PM2.5 levels in 2013
retained them in 2017 and 2020, and vice versa for cities with low levels,
indicating that relative disparity has persisted. There is a weak inverted U-
shaped relationship between the spatial disparity of PM2.5 pollution and
economic development in China. The spatial disparity of air pollution
might contribute to exposure inequality; therefore, policies to reduce the
disparity are needed to protect health from the deleterious effects of air
pollution and promote all people to enjoy environmental equality in China.
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