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Abstract
Objectives: Artificial intelligence (AI) holds great promise for transforming the healthcare industry. However, despite its potential, AI is yet to see
widespread deployment in clinical settings in significant part due to the lack of publicly available clinical data and the lack of transparency in the
published AI algorithms. There are few clinical data repositories publicly accessible to researchers to train and test AI algorithms, and even fewer
that contain specialized data from the perioperative setting. To address this gap, we present and release the Medical Informatics Operating
Room Vitals and Events Repository (MOVER).

Materials and Methods: This first release of MOVER includes adult patients who underwent surgery at the University of California, Irvine Medi-
cal Center from 2015 to 2022. Data for patients who underwent surgery were captured from 2 different sources: High-fidelity physiological wave-
forms from all of the operating rooms were captured in real time and matched with electronic medical record data.

Results: MOVER includes data from 58 799 unique patients and 83 468 surgeries. MOVER is available for download at https://doi.org/10.24432/
C5VS5G, it can be downloaded by anyone who signs a data usage agreement (DUA), to restrict traffic to legitimate researchers.

Discussion: To the best of our knowledge MOVER is the only freely available public data repository that contains electronic health record and
high-fidelity physiological waveforms data for patients undergoing surgery.

Conclusion: MOVER is freely available to all researchers who sign a DUA, and we hope that it will accelerate the integration of AI into healthcare
settings, ultimately leading to improved patient outcomes.

Lay Summary
Despite many publications showing artificial intelligence algorithms to be successful in retrospective healthcare studies, there is a very limited
amount of freely and publicly available medical data for researchers to work with, to develop and benchmark predictive and other methods in a
reproducible manner. This is even more significant in the perioperative setting for patients undergoing surgery and anesthesia. In this article, we
present and release a new repository we have constructed called MOVER: Medical Informatics Operating Room Vitals and Events Repository.
This repository contains data (electronic medical record data and high-fidelity physiological waveforms data obtained from the bedside physiologi-
cal monitors) associated with hospital visits for patients undergoing surgery and anesthesia. MOVER is freely available for download for all
researchers who sign a data usage agreement: https://doi.org/10.24432/C5VS5G. MOVER is intended to advance a wide variety of healthcare
research and serve as a resource to evaluate new clinical decision support and monitoring algorithms.
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Background and significance

In 2009, the Health Information Technology for Economic
and Clinical Health (HITECH) Act was enacted to promote
the adoption of healthcare information technology in hospi-
tals. This act includes incentives for using electronic health
record (EHR) systems.1 The passage of the HITECH Act has
resulted in widespread hospital EHR adoption with 80.5% of
hospitals in the United States using an EHR system, as of

2015.2 The increased adoption of EHR systems and subse-
quent rise in digitally available healthcare data has resulted in
a newfound ability to perform predictive modeling on health-
care data using artificial intelligence (AI), primarily in the
form of machine learning. Applications of AI in a healthcare
setting include providing more accurate diagnoses, recom-
mending treatment plans, predicting patient outcomes, track-
ing patient engagement and adherence, reducing the burden
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of administrative tasks, among others.3–16 Despite many pub-
lications showing AI algorithms to be very successful in retro-
spective healthcare studies, there is a very limited amount of
freely and publicly available medical data for researchers to
work with, to develop and benchmark predictive and other
methods in a reproducible manner.8

In addition, it is important to note that the benefits of open-
source data extend beyond AI alone. Various research meth-
ods, including statistical analyses, epidemiological investiga-
tions, and other data-driven approaches, can greatly benefit
from access to freely and publicly available medical data.

Therefore, we present and release a new repository we have
constructed over the years called MOVER. This repository
contains data associated with hospital visits for patients
undergoing surgery at the University of California, Irvine
(UCI) Medical Center. The data included in MOVER was col-
lected over 7 years and contains comprehensive EHR and
high-fidelity physiological waveforms for patients who under-
went surgery at UCI.8 These records include general informa-
tion about each patient and their medical history, and specific
information regarding the surgical procedure being performed
including medicines used, lines or drains used, and postopera-
tive complications. The repository includes 58 799 unique
patients with data from 83 468 surgeries. MOVER is freely
available for download for all researchers who sign a data
usage agreement (DUA) and is intended to advance a wide
variety of healthcare research and serve as a resource to evalu-
ate new clinical decision support and monitoring algorithms.

Materials and methods

This study was approved by the Institutional Review Boards
at the UCI Medical Center and on the main UCI campus.
Requirement for individual patient consent was waived
because we removed or deidentified all protected health infor-
mation (PHI) in a Health Insurance Portability and Account-
ability Act (HIPAA) compliant manner.

Patient population

This first release of MOVER includes adult patients who
underwent surgery at the UCI Medical Center from 2015 to
2022. The UCI Medical Center is the only level I trauma cen-
ter in Orange County, California, a burn treatment center,
and a National Cancer Institute-designated comprehensive
cancer center. In addition, the UCI Douglas Hospital has
some of the most technologically advanced surgical suites
including state-of-the-art endovascular hybrid suites and
intraoperative computed tomography and magnetic reso-
nance imaging suites.

Data acquisition and electronic health records

The data acquisition process did not interfere with the clinical
care of patients or methods of monitoring. Data for patients
who underwent surgery were captured from 2 different sour-
ces. First, high-fidelity waveforms (EKG, pulse oximetry, and
arterial line, if present) from all of the operating rooms (ORs)
were captured in real-time using Bernoulli Health’s hardware
and software platform (Bernoulli, Cardiopulmonary Corp.,
New Haven, CT, USA). All of the waveforms were saved to a
server on the medical center’s network organized by source
location (OR) and date/time. Subsequently, the medical cen-
ter’s informatics team delivered a data extract from the hospi-
tal EHR system from 2015 to 2022. For the years 2015-2017,

the EHR system used was the Surgical Information Systems
(SIS, Alpharetta, GASIS) and from 2017 to 2022 the EPIC
EHR system was used (EPIC, Verona, WI, USA). For this rea-
son, MOVER includes 2 datasets: the first contains 2 years of
data from the SIS EHR system (SIS dataset) and the second
contains 5 years of data from the EPIC EHR system (EPIC
dataset).

Without question, the most challenging part of building a
repository like this is getting the source waveforms out of the
system. For the most part, EHR data are available. Each anes-
thesia workstation manufacturer has their own interface for
the acquisition of waveforms that must be custom integrated
into a data capture apparatus.

Repository development and curation
Data processing
Developing MOVER involved significant data postprocessing
and organization. Following delivery of the data extract, the
start and end time of each case were used to extract the
appropriate waveform data for that case (based on location
and date/time) and link it to the case. The EHR data for both
datasets was then restructured and organized into logical
tables (comma separated value [csv] files) for simplicity and
to help facilitate data analyses. The SIS dataset has a single
identifier representing each surgery, surgeries are not linked
to patients and therefore it is not possible to track patients
temporally across surgeries using this dataset. The raw EHR
data for the EPIC dataset contained several redundant identi-
fiers for patients and patient visits that differed between
tables. To simplify this, the number of patient/event identifiers
in the data were reduced to just 2: the patient identifier and
the patient visit identifier. This identification system allows
patients to be tracked over time if they have multiple
surgeries.

Deidentification and HIPAA compliance
Under HIPAA Privacy Rule, all patient identifiers were
removed or deidentified. For deidentification, all patient iden-
tifiers and patient visit identifiers were encoded via 1-way
hash functions. Additionally, PHI was removed from free text
using regular expressions and manually reviewed to ensure
that all PHI was removed. Patient ages were capped at 90, so
any patient with a recorded age of more than 90 years old
was set to 90 years old. Ages were capped to protect patient
anonymity because extreme ages are considered identifying.
Finally, dates were shifted by a random number of days. The
number of days by which to shift the data is linked to each
patient to ensure that the data for a single patient is internally
consistent. For example, if a patient had 2 surgeries 2 months
apart in the raw data, then the deidentified data would also
reflect the surgeries as being 2 months apart. It is important
to note that this temporal consistency can only be observed
for a single patient and not across distinct patients. For exam-
ple, in the deidentified data 2 patients who are listed as having
surgery on the same day in reality did not necessarily have
surgery on the same day or even in the same year.

Repository description

The MOVER repository contains 2 datasets: the first contains
2 years of data from the SIS EHR system (SIS dataset) col-
lected from 2015 to 2017 and the second contains 5 years of
data from the EPIC EHR system (EPIC dataset) collected
from 2017 to 2022. The datasets contain comprehensive
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EHR and high-fidelity physiological waveforms of patients
who underwent surgeries (Figure 1).

Table names and field names in the repository have been
kept consistent wherever possible with the source names from
the respective source EHRs. The hope is that this will make
integration with other databases from the same EHRs easier
in the future, reducing the need for manual field mapping
across the datasets. Additionally, while merging the 2 data-
bases into a single unified structure for MOVER would facili-
tate the use of the data, it would also entail loss of some
information to unify the elements that differ between the sets.
Keeping the data close to the original source is the only
“lossless” way to present the data. This means that users will
need to do their own work to unify the data if they wish to
use both sets, but the benefits are that users will have com-
plete control over how they perform that merge and can tailor
the process to their own goals.

SIS dataset
The SIS dataset includes 19 114 patients and is separated into
9 tables: patient information, patient I/O (intake and output),
patient vitals, patient observations, patient medications,
patient laboratory measurements, patient procedure events,
patient ventilator, and patient arterial line (Table 1).

These tables contain patient demographics, information
regarding the surgical procedure and anesthesia, laboratory
data, and administered medications. This dataset is unique
because, in addition to waveforms, it contains high temporal
resolution vital signs including cardiac output, blood pres-
sure, and stroke volume variation.

EPIC dataset
The EPIC dataset is the larger of the 2 datasets, containing 39
685 patients, and is separated into 10 tables: patient informa-
tion, patient history, patient visit, patient medications, patient
LDA (lines, drains, and airway devices), patient laboratory
measurements, patient measurements, patient postoperative
complications, patient procedure events, and patient coding
(Table 2).

Similar to the SIS dataset, the EPIC dataset includes patient
demographics and specific information regarding the surgical
procedure being performed including medicines used, surgical
events, and laboratory data. Although similar, a major differ-
ence between these 2 datasets is that the EPIC dataset contains
outcome information including postoperative complications,
mortality, and if the patient was admitted to the ICU and the
SIS dataset does not. Additionally, the EPIC dataset includes
information about a patient’s medical history prior to surgery
and their American Society of Anesthesiologists (ASA) physi-
cal status, while the SIS dataset does not. The final major dif-
ference is that the EPIC dataset includes billing codes.

Repository distribution and documentation

MOVER is available for download at: https://doi.org/10.
24432/C5VS5G. It can be downloaded by anyone who signs
a DUA, to restrict traffic to legitimate researchers. The web-
site landing page has 3 buttons that lead to corresponding
pages: documentation, data download, and article. The docu-
mentation page outlines the content of each downloadable
table including the meaning of each column, an explanation
of the possible values of each column (where applicable), and
the unit of measurement for each column (where applicable).
On the data download page, users can sign the DUA and
download the SIS and EPIC datasets. The paper page displays
this publication and the citation to use when citing MOVER.

Results

MOVER includes 58 799 unique patients with data from 83
468 surgeries.

SIS dataset

The SIS dataset is the smaller of the 2 datasets with 19 114
patients and surgeries. Table S1 shows summary statistics and
patient demographics for all surgeries in the SIS dataset. The
SIS dataset does not contain outcome information however, it
does include high temporal resolution vital signs which would

Figure 1. Structured overview of the MOVER data repository. ECG, electrocardiogram; EMR, electronic medical record; SIS, surgical information service;

I/O, input/output.
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be invaluable for making real-time predictions to assist
anesthesiologists.

EPIC dataset

The EPIC dataset makes up the majority of the repository,
with 39 685 patients and 64 354 surgeries. Table 3 shows
summary statistics and patient demographics for all surgeries
in the EPIC dataset.

Of the 64 354 surgeries we can see, for instance, that the
average patient age was 55 and that the average length of stay
was 7 days. Additionally, looking at the ASA scores, we see a
diverse distribution of scores with a mode of 3. The ASA score
is a system used to represent a patient’s preanesthesia medical
comorbidities, with a higher score representing a patient in
worse health. Having a diverse distribution of ASA scores in
this dataset shows that patients undergoing surgery are in
varying degrees of health, which makes this dataset more gen-
eralizable than datasets exclusively containing patients in crit-
ical condition.

Table 4 characterizes the outcomes available in the EPIC
dataset in MOVER. This characterization is useful to investi-
gators to get an idea of what predictions they can make using
MOVER.

In the EPIC dataset, 45.3% of patients are transferred to
the ICU after surgery and there is a 1.6% mortality rate.
Table 4 also shows the percentages of the 11 classes of post-
operative complications. Each postoperative complication is
assigned to a class and more specific details surrounding the
complication can be found in the associated free text. Investi-
gators would be able to use these outcomes individually for
specific outcome prediction or use them in combination to
understand what factors contribute to a bad outcome of any
kind.

Physiological waveforms

Both the SIS and EPIC datasets contain high-fidelity physio-
logical waveform data for certain patients during surgery.
Typically, the waveforms contain the electrocardiogram, the
arterial waveform, and the pulse oximetry waveform. These

Table 1. Description of the 9 tables included in the SIS dataset.

SIS dataset table Description

Patient information Patient demographic information including age, sex, height, and weight; information regarding the surgery
being performed including: the type of surgery, the start and end time of the surgery

Patient medications Medications which were prescribed to patients including: the dose of the medication, the unit of measure-
ment for the dose, and the time the medication was administered or prescribed

Patient labs Labs ordered for a patient, the corresponding observed measurements, and the time at which each measure-
ment was taken

Patient I/O Patient fluid input and output information including type of fluid, volume of fluid, and time of fluid input
and or output

Patient vitals Vital signs including HR from EKG, HR from pulse oximetry, noninvasive SBP, noninvasive MAP, nonin-
vasive DBP, and SPO2

Patient observations High temporal resolution vital signs including: CO, measurements for the femoral arterial line, measure-
ments from the radial arterial line, SVV, cerebral oximetry, intracranial pressure mean, train of 4, and
several others

Patient ventilator Ventilator information including anesthetic agent, anesthetic agent inspired fraction concentration, respira-
tory tidal volume, respiratory rate, airway positive inspiratory pressure, inspired fraction of nitrous
oxide, and end-tidal fraction of nitrous oxide

Patient arterial line Patient arterial line placement time, location, and laterality
Patient procedure events Preoperative, perioperative, and postoperative procedural events and the corresponding time of the event

I/O, input/output; HR, heart rate; SBP, systolic blood pressure; MAP, mean arterial pressure; DBP, diastolic blood pressure; CO, cardiac output; SVV, stroke
volume variation.

Table 2. Description of the 10 tables included in the EPIC dataset.

EPIC dataset table Description

Patient information Patient demographic information including age, sex, height, and weight; information regarding the surgery
being performed including: the type of surgery, the start and end time of both the surgery and anesthesia,
ASA status, and discharge disposition

Patient history Patient’s health history including all patient diagnoses available in the EHR
Patient visit Diagnosis and diagnosis code for a particular visit
Patient medications Medications which were prescribed to patients including: the dose of the medication, the time the medica-

tion was administered or prescribed, and the medication route
Patient LDA Description of lines, drains, and airway devices used on the patient, the time of placement, the time of

removal, and location of placement
Patient labs Labs ordered for a patient, the corresponding observed measurements, and the reference measurements for

each lab
Patient measurements All preoperative and postoperative patient measurements including: vitals, intake and output, pain levels,

complications, and disposition
Patient postoperative complications The type of complication and a free text note field outlining more specific details
Patient procedure events Preoperative, perioperative, and postoperative procedural events and the corresponding time of the event
Patient coding Patient billing codes

ASA, American Society of Anesthesiologists; EHR, electronic health record; LDA, lines, drains and airway devices.
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waveforms provide real-time information about the patients,
presenting an invaluable resource for a multitude of retrospec-
tive studies.

For instance, utilizing the arterial waveform, it is possible
to compute the mean arterial pressure (MAP) for the entire
duration of the surgical procedure. Plotting these data points
facilitates the visual interpretation of the patient’s hemody-
namic changes during surgery (Figure 2).

In addition, the arterial waveforms and electrocardiograms
can be graphically represented as a snapshot at any given
moment during the surgery. This provides a crucial tool for
probing the precise physiological changes in the patient at
that specific point (Figure 3). Such instantaneous data are not
only vital for retrospective examination but also serve as an

indispensable tool for making real-time predictions, thereby
significantly aiding anesthesiologists in their clinical decision-
making processes.

Comparison with other publicly available clinical

repositories

To the best of our knowledge, MOVER stands out as the only
freely available public data repository that consists of both
EHRs and high-fidelity physiological waveform data for
patients undergoing surgery. While there are other medical
datasets that have been made publicly available, such as
MIMIC-IV, some datasets in the UCI Machine Learning
Repository, and n2c2: National NLP Clinical Challenges.14,15

The MIMIC-IV comprises data from 180 733 unique
patients who stayed in the hospital and 50 920 unique
patients admitted to the ICU (Table 5). While MIMIC-IV con-
tains a larger patient population than MOVER, its primary
focus is on patients in critical condition. On the other hand,
MOVER’s emphasis lies in data recorded during surgical pro-
cedures, encompassing comprehensive details about the pro-
cedure itself, patients’ physiological changes during the
procedure, fluids input-output, as well as anesthesia and ven-
tilator information.

MIMIC-IV focuses on the aspects of hospital and ICU
stays, providing rich information about inpatient care, while
MOVER concentrates on surgical data, offering valuable
insights into procedures and related factors. These 2 datasets
serve different purposes, and their synergy is evident as they
collectively cover various aspects of medical care across differ-
ent scenarios.

The UCI Machine Learning Repository has a very limited
number of small clinical datasets focusing on very specific
health issues, such as diabetes, and does not include complete
EHR data. The n2c2 exclusively contains unstructured text
and therefore can only be used for natural language process-
ing applications. We believe that the publication of MOVER
will help address some of these limitations and complement
these other publicly available datasets.

Discussion

While US hospitals have adopted EHR documentation of
patient care, interoperability of these systems remains an open
issue, leading to challenges in data integration. In the OR set-
ting, besides EHR clinical data, physiological waveforms rep-
resent a large source of information.17–20 Monitors analyze
physiological waveforms to extract and display information
used by clinicians to make decisions but modern science must
transform these monitors into early warning systems and fore-
casting devices, without increasing alarm pollution.19–21

Although anesthesiologists can use available monitoring solu-
tions to rescue unstable patients—decreasing the incidence of
cardiac arrests and mortality22–24—the more proactive
approach would be to enable them to recognize impending
instability during surgery before it happens. This would allow
an even more decisive impact on patients’ outcomes. How-
ever, to achieve this goal, close collaboration between indus-
try, academia, and healthcare is required.25 Especially, in
order to accelerate the discovery of new knowledge and the
creation of new, impactful monitoring devices, EHR and
monitoring data need to be less fragmented and more accessi-
ble to the research community.25,26 In the ICU setting, such

Table 3. Characterization of the EPIC dataset reported as number of

records (%) or mean 6 SD.

Characteristic EPIC dataset

Gender
Female 30 139 (46.8%)
Male 34 214 (53.2%)

Age (years) 55 6 17
ASA rating

1 2960 (4.6%)
2 18 068 (28.1%)
3 29 449 (45.8%)
4 6370 (9.9%)
5 657 (1.0%)
6 41 (0.06%)

Length of stay in the hospital (days) 7 6 14
10 most performed procedures

Catheterization, heart, left, with
intervention if indicated

1521 (2.3%)

Cholecystectomy, laparoscopic 1189 (1.8%)
Laparoscopy, diagnostic 1040 (1.6%)
Laparotomy, exploratory 985 (1.5%)
Dilation and evacuation, uterus 887 (1.4%)
Debridement, with split-thickness

skin graft application
741 (1.2%)

Arthroplasty, knee 680 (1.1%)
Irrigation and debridement,

lower extremity
623 (1.0%)

ORIF, fracture, femur 608 (0.9%)
AV fistulogram, with

angioplasty if indicated
573 (0.9%)

ASA, American Society of Anesthesiologists.

Table 4. Characterization of the EPIC dataset outcomes reported as

number of records (%).

Outcome EPIC dataset

Transfer to the intensive care unit 29 131 (45.3%)
Death 1023 (1.6%)
Postoperative complications

Other 1093 (1.7%)
Cardiovascular 861 (1.3%)
Respiratory 735 (1.1%)
Airway 373 (0.6%)
Metabolic 154 (0.2%)
Neurological 147 (0.2%)
Administrative 118 (0.2%)
Injury/infection 117 (0.2%)
Medication 94 (0.1%)
Regional 60 (0.1%)
Chronic pain 32 (0.05%)
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an initiative has been developed and has led to the develop-
ment of the Multiparameter Intelligent Monitoring in Inten-
sive Care (MIMIC) database.17,18,27 This database is public
and has been used for the development and validation of sev-
eral new monitoring devices, predictive analytics solutions,
and improvement in our understanding of physiology in the
ICU.28–32 Similarly, the Physionet project offers access to
large collections of physiologic signals and related open-
source softwares15,16,33,34 but none is specifically based in the
surgical setting. For the perioperative setting, the Multicenter
Perioperative Outcome Group (MPOG)35 and the National
Surgical Quality Improvement Program (N-SQIP)36,37

provide high quality perioperative process and outcome meas-
ures but do not provide fused EHR and high-fidelity physio-
logical waveform data that can be used to developed novel
predictive physiological tools. This is a significant gap because
while 5.7 million Americans are admitted to an ICU each
year, more than 50 million undergo surgery annually and the
incidence of postoperative complications remains high and
represents a burden to our society.38–42

The creation and release of the MOVER database is inno-
vative in many ways. First, while the MPOG35 and the N-
SQIP36,37 provide high-quality perioperative process and out-
come measures, they are not publicly available and they do

Figure 2. The raw and denoised MAP run chart during surgery. MAP, mean arterial pressure

Figure 3. A 10-s snapshot of the arterial waveform and ECG during surgery.

Table 5. The comparison of patient demographic information in MOVER and MIMIC-IV.

Data repository MIMIC-IV MIMIC-IV MOVER

Patient type Hospital admissions ICU admissions Surgeries
Number of unique patients 180 733 50 920 58 799
Patient age, mean (SD) 58.8 (19.2) 64.7 (16.9) 55.0 (17.0)
Female administrative gender, % 52.2 44.2 46.8
Length of hospital stay days, mean (SD) 4.5 (6.6) 11.0 (13.3) 7.0 (14.0)
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not provide fused EHR and high-fidelity physiological wave-
form data that can be used to develop novel predictive physio-
logical tools. The MOVER database is the first public
database to offer this capability. Second, while publicly acces-
sible databases including EHR and physiological waveforms
exist in the critical care setting (MIMIC database and Physio-
net), the MOVER database is the first to offer the same access
for a large census of surgical patients. We have developed cat-
alogs and syllabus of perioperative EHR and physiological
waveform data and created the architecture of a scalable and
searchable perioperative database for future sister database
integration. Third, the surgical/OR environment is unique in
the sense that knowledge of the baseline/presurgical stress sta-
tus of essentially all patients before surgery allows normaliza-
tion, calibration, and markedly enhances development of
predictive tools. In addition, the continuous and immediate
presence of dense skilled acute care practitioners in the OR
allows implementation of complex treatment algorithms
much faster than in the ICU. Finally, defined stages (anesthe-
sia induction, tracheal intubation, skin incision, anesthesia
emergence and others), procedures, and stressors (intra-
abdominal air insufflation, prone positioning for back sur-
gery, and other surgery-specific interventions) allow machine
learning approaches to build large common relational data-
base registries.

Conclusion

AI holds great promise for transforming healthcare, but its
widespread deployment in clinical settings has been limited
due to the scarcity of publicly available clinical data and
transparent AI algorithms. Few accessible clinical data reposi-
tories exist for training and testing AI algorithms, especially
in the perioperative setting. To bridge this gap, we introduce
the freely available MOVER. Researchers can access MOVER
after signing a DUA. Our aim is to accelerate the integration
of AI into healthcare, ultimately improving patient outcomes.
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