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Abstract
Nondestructive and noninvasive neutron assays are essential applications of neutron techniques. Neutron resonance 
transmission analysis (NRTA) is a powerful nondestructive method for investigating the elemental composition of an object. 
The back-streaming neutron line (Back-n) is a newly built time-of-flight facility at the China Spallation Neutron Source 
(CSNS) that provides neutrons in the eV to 300 MeV range. A feasibility study of the NRTA method for nuclide identification 
was conducted at the CSNS Back-n via two test experiments. The results demonstrate that it is feasible to identify different 
elements and isotopes in samples using the NRTA method at Back-n. This study reveals its potential future applications.

Keywords CSNS · White neutron beam · NRTA  · Nuclide identification · Nondestructive method

1 Introduction

Neutrons are unique probes for analyzing the interior proper-
ties of materials in a nondestructive manner owing to their 
strong penetration power. Various neutron techniques based 
on the interactions between neutrons and materials have 
been successfully developed and applied in different fields. 
Neutron resonance analysis (NRA) is a technique that uses 

neutron resonance absorption to identify and quantify ele-
ments and isotopes in a sample [1–3]. Its basic principle 
is that the absorption of neutrons by nuclei as a function 
of neutron energy shows specific resonance peaks and dips 
based on which elemental composition of the material can 
be determined [4]. Neutron resonance transmission analysis 
(NRTA) is an NRA method based on the transmission of a 
neutron beam through a sample, in which the resonances are 
observed as dips as a function of neutron energy.

The first demonstration of NRTA as a nondestructive 
method for determining the isotopic abundance of spent 
nuclear fuel pins was by Priesmeyer and Harz [3]. 235,238U 
and 239Pu contents were obtained in their study. Subse-
quently, NRTA for isotopic assay was used as a nondestruc-
tive technique to characterize special nuclear materials 
[5–7]. The results obtained using NRTA were consistent 
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with those obtained using mass spectrometry and neutron 
activation methods [8]. NRTA has also been applied in other 
fields, such as the characterization of reference materials for 
nuclear data measurement [9] and cultural heritage objects 
and artifacts [10]. Moreover, NRTA has also been used with 
neutron imaging, known as neutron resonance transmission 
imaging, at the J-PARC facility [11], ISIS spallation neutron 
source [12], and KURRI-LINAC [13]. The NRTA method 
was investigated extensively by a group from EC-JRC Geel 
at the GELINA facility [14–16], which is a white neutron 
source that provides neutrons from 10 meV to 20 MeV [17]. 
A white neutron beam covering the energy range from eV to 
MeV has significant advantages over thermal neutron beams 
because a broad energy range covers almost all the reso-
nance regions of the elements, whereas the thermal beam is 
mainly used for heavy elements. The back-streaming neutron 
line (Back-n) at China Spallation Neutron Source (CSNS) 
is a newly built white neutron beam covering the range 
from 0.5 eV to 300 MeV [18, 19]. The time-of-flight (TOF) 
technique was used at Back-n to accurately determine the 
neutron energy. The energy resolution at Back-n end station 
2 (ES#2) was lower than ~ 2% for neutrons below 1 MeV. 
Because of these favorable beam properties, Back-n is suit-
able for the study and application of the NRTA technique.

This paper describes the first test experiments using 
the NRTA method at the CSNS Back-n facility. The 
experimental results for two samples containing light or 
medium elements are presented. Data analysis shows that 
element/isotope identification using the NRTA method is 
feasible at Back-n.

2  Experimental setup of NRTA at CSNS 
Back‑n

Located in Dongguan, Guangdong, the multi-disciplinary 
CSNS facility has been operational since 2018. It generates 
neutrons via a spallation reaction by impinging 1.6 GeV 
protons onto a massive tungsten target. The nominal proton 
beam power of CSNS Phase I is 100 kW. In the forthcoming 
CSNS Phase II upgrading project, the beam power will be 
increased to 500 kW, and several more spectrometers [20, 
21] and experimental stations [22] will be built. Although 
most neutron beamlines at CSNS deliver thermal neutrons 
for neutron scattering applications, Back-n beamline delivers 
neutrons within a very broad energy range (from 0.5 eV to 
300 MeV) mainly for nuclear data measurements [19, 23, 
24] and nuclear technology applications [25, 26].

Since its inception, the Back-n beam’s time characteristics 
have been a focal point of investigation [27] due to their 
crucial role in determining neutron energy and influencing 
energy resolution. The energy resolution of a TOF facility, 
considering the relativistic effect, is calculated as

where γ is the Lorentz factor, v is the neutron velocity, and 
c is the speed of light. T and L are the neutron flight time 
and flight path length, respectively, and ΔT and ΔL are their 
respective uncertainties. ΔT is mostly from the incident 
proton pulse width, whose full-width at half-maximum was 
60 ns during the measurements in this study. ΔL is caused 
by the neutron moderation and scattering in the spallation 
target before they enter the neutron tube. The moderation 
process has been investigated via Monte Carlos simulations 
[28, 29], and the uncertainties of the moderation distance 
(ΔL) at different energies were obtained. Table 1 lists the 
ΔL values at different energies and the energy resolutions 
calculated using Eq. (1), which indicates that the energy 
resolution is a function of the neutron energy.

In this study, we implemented NRTA measurements 
using a neutron total cross-section spectrometer. This 
spectrometer comprised a multilayer fast fission chamber 
(FIXM) and a sample changer [30]. The FIXM is a neu-
tron detector that uses 235U and 238U samples as neutron 
converters. Figure 1 shows the typical setup for the neu-
tron total cross-section measurements. The samples to be 
measured were placed on a sample changer at end sta-
tion 1 (ES#1), and the detector was set up at ES#2. The 
beam spot at the sample position is typically turned to be 
Φ60 mm, whereas that at the detector position is typically 
configured to be approximately Φ40 mm. This configura-
tion ensures that the neutron beam at ES#2 is entirely cov-
ered by a neutron converter with a diameter of Φ50 mm. 
Total cross-section measurements typically include sam-
ple-out and sample-in measurements. Sample-out meas-
urements involve characterizing a neutron beam without 
any sample in the beam, whereas sample-in measurements 
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Table 1  Energy resolutions of CSNS Back-n at ES#2

En (eV) ΔT (ns) ΔL (cm) ΔEn/En

1 60 12.2 3.14 ×  10−3

10 60 13.6 3.50 ×  10−3

102 60 24.0 6.18 ×  10−3

103 60 20.2 5.25 ×  10−3

104 60 18.0 5.10 ×  10−3

105 60 15.4 7.84 ×  10−3

106 60 8.8 2.15 ×  10−2

107 60 10.0 6.82 ×  10−2
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involve placing the sample in the beam at ES#1. The long 
distance (approximately 20 m) and the collimator between 
the sample and detector minimally suppress the multiscat-
tering neutron background. The transmission spectrum is 
the ratio of the normalized neutron counts of the sample-in 
to the sample-out, from which the total cross section can 
be determined. The neutron total cross sections of natC 
[30], natLi [31], 9Be, 27Al [32], natFe, natPb, natCr, and 209Bi 
[33] have been measured using this setup at Back-n.

The NRTA experiment at Back-n utilized the same 
setup as that used for the total cross-section measurements. 
Photographs of the sample changer and neutron detector 
are shown in Fig. 2. The resonances were observed as 
absorption dips in the transmission spectrum as a func-
tion of the neutron energy, from which the nuclides in the 
sample could be identified because the resonances of each 
nuclide are as unique as fingerprints. The energy positions 
of the resonance dips in the transmission spectrum provide 
qualitative information about the composition, whereas the 
profiles of the resonance dips present quantitative details 
about the composition. In our first NRTA experiments, we 
resolved the qualitative information about the samples. 
Quantification of the elemental composition is more com-
plicated and will be our subsequent task.

3  Results and discussion

The NRTA method is centered on measuring and analyzing 
neutron transmission spectra. The TOF technique was 
used to determine the neutron energy. Further details of 
the TOF method at Back-n can be found in our previous 
publications [18, 34]. Another crucial aspect of neutron 
energy determination is the double-bunch effect, in which 
two identical proton bunches have well-defined intervals 
(410 ns) in an incident pulse. Double-bunch unfolding is 
necessary for energy regions higher than 10 keV, as the 
410 ns uncertainty is no longer negligible. An unfolding 
code based on Bayes’ theorem was developed to unfold 
the TOF spectrum [35, 36]. The systematic uncertainty 
introduced by the unfolding process can be estimated using 
the unfolding code, which is highly dependent on statistical 
uncertainties. The uncertainty of the unfolding is typically 
1.5–2.5 times that of the statistical uncertainty.

3.1  Experiment using imitated lunar soil

As shown in Fig. 3, an artificially simulated lunar soil sam-
ple was measured to verify the feasibility of the NRTA at 
Back-n. The sample was a cylinder with a diameter of 27 mm 

Fig. 1  Layout for neutron total 
cross-section measurements

Fig. 2  Sample changer at Back-
n ES#1 (left) and detector at 
ES#2 (right)
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and a height of 21 mm, and comprised uniformly distributed 
elements. The details of its composition are listed in Table 2.

Figure 4 compares the measured fission rate spectra of 
the sample-in and the sample-out. The sample-in spectrum 
(the red curve in Fig. 4) was attenuated by the scattering 
and absorption by the sample. Figure 5 shows the transmis-
sion of the neutron beam through the sample, which is the 
ratio of sample-in to sample-out measurements. Resonance 
absorption dips were observed in the transmission spectrum 
and could be used to determine the existing isotopes in the 
sample.

Figure 6 shows the transmission spectra in different 
energy regions to provide clear profiles of the absorption 
dips. All results are presented in 100 bins/decade (bpd), and 
the bin center is adopted as the energy of each bin. The reso-
nances of sodium, aluminum, magnesium, iron, silicon, and 
oxygen were recognized. Table 3 presents a comparison of 
the measured resonance energy values and the correspond-
ing resonance energy values in the ENDF/B-VIII.0 library 
[37]. The differences between the values of the measure-
ments and library, and the energy resolution at each energy 
level are also presented. The differences at most points are 
comparable to the energy resolution, except at 88.11 keV, 
which is assumed to be the overlap of the resonances of 
24Mg and 56Fe at 83.45 and 84.84 keV, respectively. The 
overlap of the two resonances may increase the deviation 
between the measured and evaluated data. The differences 
vary with energy because, as discussed in Sect. 2, the energy 
resolution is a function of the neutron energy. Binning is 
another reason for the differences in the resonance energy 

positions between the measurement and library. The energy 
bin center depends on the bin width, and smaller energy 
binning should provide a more accurate resonance energy; 
however, it increases the statistical uncertainties. This issue 
can be addressed using long beam-time measurements in 
the future. In this study, a 100 bpd was used as the final 
option. In addition, although the unfolding method was 
used in a good order for the region higher than 10 keV, the 
double-bunch commission inevitably introduced systematic 
uncertainties.

Through qualitative analysis, most elements listed in 
Table 2 were identified, except for calcium, potassium, 
and titanium. Their absorption was not evident, probably 

Fig. 3    Photograph of imitated lunar soil sample. (Color figure 
online)

Table 2  Composition of 
imitated lunar soil sample

Composition SiO2 Al2O3 CaO Fe2O3 K2O MgO Na2O TiO2

Mass fraction (%) 49.6 13.8 9.6 14.8 0.48 7.2 2.07 0.922

Fig. 4  Comparison of sample-out and sample-in measurements of 
imitated lunar soil

Fig. 5  Transmission spectrum of imitated lunar soil
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because of the significant statistical fluctuations and their 
low abundance. In the above analysis, we only selected 
apparent dips and did not attempt to determine all the 

resonances of each nuclide. This is feasible for a qualita-
tive study of the sample.

3.2  Experiment using relic obtained from South 
China Sea

The NRTA at Back-n also investigated an underwater relic 
found in the South China Sea. Figure 7 shows a block of 
silicate and calcium carbonate embedded in many copper 
coins. It had an irregular shape, with an approximate size 
of 25 cm × 10 cm × 10 cm. The experimental setup was 
the same as that used to measure the imitated lunar soil. 
However, this object contained nonuniformly distributed 
elements and had an irregular shape. An associated experi-
ment using a CMOS camera was also conducted to capture 
transmission images of the sample using the total transmis-
sion and resonance-selected methods [38].

Figure 8 displays the spectra for both sample-in and sam-
ple-out measurements. The sample-in measurements signifi-
cantly attenuated because of the large sample size. Figure 9 
shows the transmission of the neutron beam through the 
sample, from which the isotopes in the sample is examined. 
Figure 10 shows zoomed-in graphs of the transmission spec-
tra in different energy regions. The resonances of copper, 
calcium, sodium, silicon, and iron were observed. These rec-
ognized isotopes were consistent with our expectations. 63Cu 
and 65Cu originated from the coins in the object. 28Si, 40Ca, 
56Fe, and 16O originated from silicate and calcium carbonate, 

Fig. 6  Expanded transmission spectra of imitated lunar soil in different energy regions

Table 3  Resonance energy of imitated soil sample

Isotope Resonance energy (keV) Difference (%) Energy 
resolution 
(%)Measurement ENDF 

B-VIII.0

23Na 2.85 2.81 1.4 0.63
23Na 1.60 ×  103 1.60 ×  103 0 2.4
27Al 35.08 35.06 0.06 0.59
24 Mg 88.11 83.45 5.58 0.75
24 Mg 254.11 257.19 1.20 1.02
24 Mg 431.55 433.08 0.35 1.29
54Fe 7.67 7.82 1.96 0.80
56Fe 27.86 27.92 0.22 0.56
56Fe 88.11 84.84 3.85 0.75
28Si 55.60 55.80 0.36 0.65
16O 431.55 434.00 0.57 1.29
16O 1.01 ×  103 1.00 ×  103 1.0 2.19
16O 1.30 ×  103 1.31 ×  103 0.77 2.31
16O 1.93 ×  103 1.90 ×  103 1.58 2.63
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which are the main components of the object. The presence 
of 23Na is normal because sodium is abundant in the sea.

We compared the measured resonance energy positions 
with corresponding values in the ENDF/B-VIII.0 
library (Table 4). The energy binning was 100 bpd. The 
differences in the resonance energy positions between 
the measurement and the library were comparable to the 
energy resolution. In addition to the reasons mentioned 
in Sect. 3.1 for such differences, the irregular shape and 
massive volume of the sample could also increase the 
deviation between the measured and library values.

4  Conclusions and prospect

In 2018, CSNS introduced a new white neutron beamline, 
Back-n. Its beam characteristics (high neutron flux, broad 
energy range, and good energy resolution) motivated us to 
launch a feasibility study of NRTA for nuclide identification. 
Experiments on two different samples, an imitated lunar 
soil sample and an underwater relic, were performed for 
the first time at Back-n. The existence of 16O, 28Si, 27Al, 
54,56Fe, 24Mg, and 23Na in the simulated lunar soil sample 
and 63,65Cu, 16O, 28Si, 56Fe, 40Ca, and 23Na in the underwater 
relic were confirmed using the NRTA method. A simple 
qualitative analysis demonstrated that CSNS Back-n could 
identify nuclides using the NRTA method. The beam 
characterization and results of this study demonstrate 
that the CSNS Back-n is a promising platform for nuclide 
identification.

FIXM serves as the primary neutron detector for 
transmission measurements at Back-n. It helps in monitoring 
the flux based on 235U(n, f) and 238U(n, f) reactions. 
However, the resonances of 235U(n, f) cross section below 

Fig. 7  Photographs of underwa-
ter relic found in South China 
Sea. (Color figure online)

Fig. 8  Comparison of sample-out and sample-in measurement results 
of underwater relic

Fig. 9  Transmission spectrum of underwater relic
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the ~ keV region are somewhat intense, which might induce 
fluctuations in the transmission spectrum. Lithium glass 
can be a valuable compensation for the fission chamber 
in the low-energy region because of the large and smooth 
cross section of the 6Li(n, t) reaction [39]. A lithium glass 
monitor is planned for future transmission measurements at 
Back-n, which is characterized by its quick response, high 
efficiency, and smooth transmission spectrum. However, 
because the lithium glass scintillator is sensitive to γ-rays, 

n/γ discrimination [40] and γ-rays background must be 
investigated thoroughly.

In this paper, we present a simple qualitative analysis 
focused on confirming the presence of specific isotopes. 
Accurate quantification analysis for resolving the elemen-
tal abundance in a sample is significantly more compli-
cated. Quantification analysis is feasible by performing 
sophisticated resonance analysis, which must include the 

Fig. 10  Expanded transmission spectra of underwater relic in different energy regions
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experimental effects, resolution function, sample proper-
ties, and detector characteristics. This is the subject of our 
subsequent study.
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