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Abstract
Cold atmospheric plasma (CAP) in open air hosts numerous chemical species engaged in
thousands of chemical reactions. Comprehensive diagnosis of its chemical composition is
important across various fields from medicine, where reactive oxygen and nitrogen play key
roles, to surface modification. In applications, a centimeter-scale helium–air jet operates for
minutes, featuring micrometer-sized streamers and an atmospheric pressure-induced collision
frequency in the hundreds of GHz range. To address this intricate multi-scale issue, we
introduce a machine learning approach: using a physics-informed neural network (PINN) to
tackle the multi-scale complexities inherent in predicting the complete list of species
concentrations, gas temperature, and electron temperature of a CAP jet supplied with a mixture
of helium and air. Experimental measurements of O3, N2O, and NO2 concentrations
downstream of the plasma jet, combined with fundamental physics laws, the conservation of
mass and charge, constrain the PINN, enabling it to predict the concentrations of all species that
are not available from the experiment, along with gas and electron temperatures. The results,
therefore, obey all the physical laws we provided and can have a chemical balance with the
measured concentrations. This methodology holds promise for describing and potentially
regulating complex systems with limited experimental datasets.

Supplementary material for this article is available online

Keywords: physics-informed neural network, multi-scale problem, plasma chemistry,
cold atmospheric plasma, physics-informed data-driven modeling, deep learning,
evolutionary algorithm

1. Introduction

Cold atmospheric plasma (CAP) jet produces a low-
temperature plasma (LTP) at atmospheric pressure, char-
acterized by nonequilibrium between the gas temperature
and the electron temperature [1, 2]. Gas is at a low enough

∗
Authors to whom any correspondence should be addressed.

temperature to avoid any thermal damage to objects in direct
contact with the jet, while the electrons have high enough
energy to cause electron-impact processes. Electron-impact
reactions trigger complex LTP chemistry leading to the pro-
duction of reactive oxygen and nitrogen species (RONS).
Exposure to plasma RONS can lead to outcomes as diverse
as cell apoptosis, improved tissue regeneration, inactivation
of microorganisms, and improved seed germination [1, 3].
Therefore, CAP is a versatile plasma source currently used for
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agricultural, biomedical, and many other applications broadly
based on the interaction of the plasma with a variety of sub-
strates. Understanding the interactions of the CAP plume with
physical and biological substrates starts with the characteriz-
ation of the composition and plasma parameters in the plume.
CAP jet effluent composition depends on the plasma gas, the
surrounding gas composition (e.g. the humidity of the ambient
air or the type and flow of a shielding gas), the type of sub-
strate, etc. A detailed description of kINPen, a well-studied
example of a CAP jet, can be found in a topical review by
Reuter et al [4]. The importance of the understanding and
standardization of jet performance for consistent results in
surface modification and biomedical applications is addressed
in [5, 6].

The plasma parameters of a free CAP jet depend on the
input power, the input gas flow, and composition along with
the nozzle geometry to determine the gas flow field [7].
Several well-developed plasma diagnostics have been used
to quantify the species concentrations in CAP. For example,
laser-induced fluorescence (LIF) provides the concentration of
selected species with a very high resolution of nanoseconds
and millimeters [8]. However, the implementation of LIF is
usually limited to determining the concentrations of one spe-
cies at a time, and an extension of the method to several spe-
cies requires expensive equipment. Imaging optical emission
spectroscopy (OES) can reach millimeter and tens of ns res-
olution under certain circumstances. It is a passive method
that does not disturb the plasma but OES provides information
on the excitation of certain species and under certain condi-
tions, plasma parameters, but it does not yield concentrations
of species in ground states. Fourier-transform infrared absorp-
tion spectroscopy (FTIR-AS) can provide absolute concentra-
tions of ground-state species that have dipole active vibrational
states for solids, liquids, and gases [9]. Many of the species
in air plasmas, such as O3, H2O, CO2, CO, NO2, N2O, NO,
HNO3, HNO2, and N2O5, are detectable using FTIR-AS [10,
11]. The advantage of FTIR in addition to measuring a broad
spectrum with high resolution in a single sweep is low sens-
itivity to plasma emission compared to the direct absorption
techniques. The drawback is that most measurements are con-
ducted ex-situ for atmospheric pressure plasmas often due to a
lack of optical access, such as for dielectric barrier discharge
(DBD), or due to a lack of a well-defined optical path as for
open jets. Ex-situ FTIR-AS analysis of gas composition is used
broadly from studies of plasma jets to the applications of DBD
in plasma agriculture [12, 13], while in-situ studies are rare and
require plasma reactors with optical access [14, 15].

These diagnostic methods cannot offer a complete picture
of the required species concentrations. Therefore, they may
not provide sufficient information for understanding biochem-
ical reactions or quantifying the effective dose of CAP therapy
and its associated side effects [16–18]. Kinetic simulations can
often give access to the parameters that are not measurable
in experiments. However, the inelastic collisions in chemical
interactions are microscopic and occur on a nanosecond scale

in a simulation, while the gas flows are macroscopic on a mil-
lisecond time scale for flow rates of meters per second in a
centimeter-size CAP. A CAP axial streamer propagation and
DBD contains multiple filaments developed between the plate
electrodes [19–22]. On the other hand, the streamer propaga-
tion time is 1 µs corresponding to the time it takes the pulse
of high electron temperature region to sweep along the plasma
plume; while the remaining 10–100 µs in the discharge period
correspond to the electron energy dissipation stage [23, 24].
Therefore, the simulation of CAP also requires a fine time step
length to describe the streamer pulse smoothly while complet-
ing the discharge period and repeating thousands of the dis-
charge period for several milliseconds. A simulation covering
several discharge periods was completed overcoming such a
multi-scale problem by keeping the simulation running up to
the 30th discharge period, with a nano or even pico-second
time step for plasma chemistry and amicrosecond time step for
the macroscopic fluid dynamics [25]. This work gave highly
informative results such as the accumulation of species when
the discharge frequency is high, and the gas flow rate is low
[25]. However, it is not clear if the simulation reached the
steady state since experimentally CAP jets have been observed
to take seconds and orders of magnitude more individual dis-
charge events to reach the steady state [26]. The steady-state
concentrations are important in real-world applications, but it
takes several seconds or even minutes with thousands of dis-
charge periods for the CAP jet to reach its steady state [27].
This means a significant time cost to simulate the entire time
needed to reach the steady state numerically unachievable.

Machine learning (ML) techniques with neural networks
can help to solve such a problem. Recently, an ML analysis
was developed that used the data from OES to generate com-
putationally the concentrations of the relevant species in CAP
in real time [28]. This ML method relied on a 0D chemical
simulation to acquire the error of each iteration to update the
neural network weights during the training. This means that
the output concentrations correspond to the plasma plume and
are consistent with the plasma optical emission spectrum [29,
30]. Also, ML methods, especially those using neural net-
works, can control and automatically optimize the plasma gen-
erator performance [31–33]. In the last decade a new tech-
nique namely ‘physics-informed data-driven modeling’ was
developed especially the one using a physics-informed neural
network (PINN) [34]. PINN is a deep neural network that con-
tains multiple hidden layers, and the fitting capability of a fully
connected neural network is proportional to its number of lay-
ers, in other words, how deep it is. Therefore, to solve phys-
ics problems, PINN with multiple layers is designed to mimic
highly non-linear partial differential equation systems [35],
and even the notoriously complicated ones, such as the fluid
dynamics systems with the Navier–Stokes equations [36, 37].
The advantage of PINN is to handle multi-physics problems in
complex geometry without meshing and reduce the computa-
tional cost [38]. Currently, PINN has been developed to solve
physical problems not only with the constraints of physical
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laws but also with the users feeding experimental data [38–
40]. This enables the PINNs to give more realistic results and
mimic the actual engineering systems because pure constraints
of physical laws cannot fully represent unexpected flaws and
disturbances in real hardware.

The goal of this work is to predict the overall gas output
composition of the CAP jet using a PINN, therefore, provid-
ing information about the chemical composition associated
with plasma exposure. We hypothesize that a scheme based
on ML using PINN will be able to predict the species con-
centrations in the jet effluent based on quantitative analysis of
operando and in situ FTIR measurements. In addition to the
concentrations, the ML model will return reasonable values
for the electron temperature and density. This approach is par-
ticularly useful when experimental data is difficult or expens-
ive to obtain and traditional simulation-based methods are too
computationally intensive.

2. Methods

2.1. The main concept of using PINN to solve a multi-scale
plasma chemistry

The idea of this work is to skip the time-consuming simulation
and let the artificial neural network guess the parameters of
CAP at the steady state condition, including the electron tem-
perature and the species concentrations of all the species (as
defined below). Several constraints are established to quantify
the error of the neural network output. These constraints are:

(1) All possible chemical reactions should occur among these
species, but the concentrations should not change over
time because the entire system is in a steady state with
a chemical balance. The concentration of species should
agree with the experimentally measured (FTIR) concen-
trations.

(2) All the concentrations predicted by PINN must agree with
conservation laws: conservation of chemical elements and
charge.

(3) If multiple solutions (combinations of species concentra-
tion) exist to meet all of the above constraints, the one with
the highest total entropy should be the most stable state
while others are metastable states.

The error is used to update the network weights and to train
the network until the error is converged to an acceptable low
value. The initial guess of a neural network with its initial
weights is usually inaccurate, but after the training, the guess-
work is expected to be accurate and to agree with the experi-
mental observations and with the other constraints. Therefore,
this provides a method to determine the species concentrations
in the CAP jet effluent.

2.2. The experimental setup

The first step is to experimentally collect the physical informa-
tion on the CAP jet system, including electrical characteristics

and FTIR absorption spectra. We attach a helium–air plasma
jet to an FTIR gas cell positioned in the FTIR sample compart-
ment as shown in figure 1. The details of the plasma jet gener-
ator design can be found in multiple previous publications [26,
27, 41]. The plasma jet nozzle is 4 mm in diameter with a pair
of electrodes installed to create streamer propagation along the
helium–air flow field. The pin electrode is in the nozzle and
5 cm upstream from the lower ring electrode which is 0.5 cm
wide and located 0.5 cm above the nozzle exit. The voltage
applied between the electrodes is sinusoidal, 12.5 kHz with an
amplitude of 8 kV, 9.5 kV, 11 kV, or 12.5 kV. The gas is a mix-
ture of helium and air at a combined flow rate of 3 LPM with
the helium–air ratio selected from 80%, 85%, 90%, and 95%.
Therefore, FTIR spectra are collected for 20 experimental con-
ditions. The FTIR spectrometer is Jasco 6800. A 10 cm optical
path, flow-through gas cell with KBr windows confines the jet
effluent to a fixed path length but does not prevent the gas flow.
Therefore a steady state species concentration is established
in the cell at each experimental condition. FTIR spectra allow
the detection of multiple species, including CO2, CO, H2O,
N2O, NO2, and O3, to name the species corresponding to the
strongest peaks. Three gaseous species are selected for train-
ing the PINN from the measured output from the jet: N2O, O3,
and NO2, because the concentrations of these species are least
dependent on the environmental conditions of the measure-
ments and depend only on the jet effluent. FTIR results provide
absolute concentrations of these species under 20 conditions.

Therefore, each species has a 2D result: one dimension for
the Helium–air ratio, and the other for the discharge voltage.
In the view of ML, these are 20 pieces of data for the train-
ing. However, 20 pieces of data are insufficient. Therefore,
a data set preparation procedure is applied, which contains
the following steps: (1) applying a 2D linear interpolation
on both dimensions to make fine data. (2) saving the max-
imum and the minimum concentration for each species; (3)
applying a moving average with an averaging width at two
data points in both dimensions for each matrix to smooth the
curvature; (4) scaling the resulting matrices with the max-
imum and minimum concentration values saved in step (2)
to recover the absolute value loss during the moving aver-
age. The resulting data contains 19 discharge voltage values
between 8 kV and 12.5 kV and 21 helium–air ratio values
between 80% and 95%, resulting in a data space containing
304 pieces of data, each data piece is a 1D array of six concen-
tration values of six species (concentration constraints) under
one of the 304 conditions. The 304 data are then randomly
shuffled and 54 data (about 17.76%) are saved as the validation
data set, 50 data (about 16.45%) are saved as the testing data
set, and 200 data (about 65.79%) will be used as the training
data set.

2.3. The architecture of the neural network

Next, as shown in figure 2, an artificial neural network is
designed to map the experimental information space and the
species concentration space that is the concentrations of all the
species under all the possible conditions. Such a mathematical
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Figure 1. The schematic of FTIR measurement of species concentrations. This is the experiment providing the raw FTIR results for the data
set preparation.

mapping between the two vector spaces is thus a data-driven
modeled PINN that can solve the multi-scale problem: output
the desired species concentration list in a steady-state CAP jet,
when inputting the CAP jet setup.

The PINN is a fully connected network containing five hid-
den layers between the input and output layers. The activation
function for all the neurons is Leaky ReLU with the leak con-
stant set to 0.01 for negative inputs. The neural number in each
layer is 6, 50, 200, 300, 300, 200, and 149. The input layer is a
1D array randomly selected from the data set which is a work-
ing condition as a specific pair of discharge voltage and the
helium–air ratio. These two values are represented by the first
two neurons. The next three neuron values are the three spe-
cies concentrations as the concentration constraints. The last
neuron is a dummy which is always −10. The dummy neuron
must be added to improve the neural network performance as
a negative value source. Also, since the input values are not
on the same scale, the discharge voltage is around 10 kV, the
helium–air ratio is less than 1, and the species concentrations
can vary from 0.1 ppm to hundreds of ppm, these numbers
are multiplied by scaling constants before the input as shown
in purple text in figure 2. The scaling constants will ensure
that all the input neurons can have equal initial effects on the
next layer and thus increase the training speed of the network,
although the entire algorithm still works without the scaling
constants.

The top 147 neurons in the output layer are the concentra-
tion values of all the species other than He, N2, and O2, which
are determined by the helium-air ratio, and the three meas-
ured concentrations, N2O, O3, and NO2. The 148th neuron is
the electron temperature and the last one is the gas temperat-
ure under the input working condition. However, the output of
the neural network is purely a mathematical process and the
output layer neurons are all at the same scale rather than the
concentration values and the temperatures with direct physical
meanings and at different scales. For example, one can have an
electron density of about 1012 (cm−3), but the electron temper-
ature is less than 10 (eV). In the view of a neural network, 1012

and 10 are numbers too different to handle. The neural net-
work, therefore, outputs a set of numbers around 0.05 instead
of directly outputting the values at very different scales. These
numbers around 0.05 are translated into the power values of 10
to represent the species’ concentrations using equations 1(a)–
(c). Also, we have equations 1(d) and (e) to translate the last
two neurons into the electron temperature in (eV) and the gas
temperature in (K)

A ′
i = Ai−

∑
i Ai

145
(1a)

A ′ ′
i =

5(A ′
i − 0.02)

0.08− 0.02
+ 9 (1b)
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Figure 2. The fully connected PINN includes five hidden layers. The input layer is data randomly selected from the input space which is the
physics-informed data set. The network is thus a data-driven model to provide the electron temperature and the concentrations of all the
species other than those measured ones.

ni = 10A
′ ′
i
[
cm−3

]
i ⩽ 147 (1c)

Te =max

[
(A ′ ′

148 − 9)
1.5

,
TgkB
e

]
[eV] (1d)

Tg =max(30A ′ ′
149,273+ 20) [K] (1e)

where Ai is the ith neuron value in the output layer, A ′
i is the

first intermediate parameter representing the data distribution
of all the output neurons around their average value, A ′ ′

i is
the second intermediate parameter normalized and shifted to
a range between 9 and 15. The ith species concentration ni
in cm−3 can thus take the A ′ ′

i as a power of 10. The elec-
tron temperature Te is determined by the 148th value of A ′ ′

but no lower than the gas temperature Tg. The gas temperat-
ure is determined by the 149th parameter and is not lower than
293 K. In equation (1d), kB and e are Boltzmann constant and
unit charge respectively.

2.4. The training technique for the neural network

The training flow chart of the neural network is summarized in
figure 3. The training technique is an evolutionary algorithm.
First, a group of data is randomly picked from the training data
set. The total amount of data in the group is a constant, namely
the ‘minibatch size’ Nmb. In this work, Nmb = 50. The mini-
batch loop is thus a loop from nmb = 1 to nmb = Nmb. At the
beginning of each minibatch loop, the nthmb data is selected and

fed to a group of networks. Each group contains X original
versions and additional N− 1 mutated version. A mutated ver-
sion is a network with weights equal to the weights from the
original version adding a set of small random numbers. The
mutation is mathematically defined as

wi,j,k = wi,j,k+ ζ (δ− 0.5)wi,j,k (2a)

λ=

[
ε2 − ε1

max(ε1,ε2)

]
− 0.01 (2b)

χ =

{
0 if λ⩽ 0
1 if λ > 0

(2c)

ζ = ζ − 10−5χ (2d)

where wi,j,k is the weight connecting the ith neuron in the kth
layer and the jth neuron in the (k+1)th layer, ζ is the muta-
tion range which is similar to the learning rate that controls
the speed of the error convergence and stability, δ is a random
number between 0 and 1, ε1 and ε2 are the average error of the
last 2000th to the last 1000th iteration and the last 1000th to
the latest iteration. The mutation range ζ is set to 0.01 initially
and will decrease by 10−5 in each iteration after the 2000th
iteration when the error decrement is slow.

In each training iteration, a total number of X×N networks
are tested by feeding them Nmb number of data. This means
that each network will provide Nmb number of prediction res-
ults and also Nmb number of errors. The user will evaluate the
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Figure 3. Using the evolutionary algorithm to train the PINN using the training data set with a minibatch internal loop.

performance of each network by considering the average error
of each network. At the end of each iteration, the top X best
(that can make lower errors) network versions will be saved as
the original versions for the next iteration, and all other net-
works will be deleted. This is an evolutionary algorithm in
that only the best versions are allowed to generate offspring
in the next iteration. The user will thus see the network evolve
during the training and finally acquire a high-quality neural

network that can make an accurate prediction. Finally, once
the error of the top 1 best version has converged, the entire
training is ended. At this point, a (pre-selected) testing set will
be applied to verify the training quality as shown in figure 4.
When the PINN can always provide a low error, no matter
what data (CAP working condition and the concentration con-
straints from the data sets) is fed, we can consider the PINN
on the concentrations of all other species and the electron

6



J. Phys. D: Appl. Phys. 57 (2024) 015203 L Lin et al

Figure 4. Using the ‘Testing Data Set’ to verify the training error.

temperature are an accurate solution of the problem that can
output all the species with no significant variation over time
(steady state) in the CAP plume. The results will be discussed
in the next chapter. TheMATLAB codes of this work are avail-
able at https://mpnl.seas.gwu.edu/open-codes/.

2.5. The loss function of the training

To quantify the error of each prediction of each version of the
network after an input is fed, a loss function must be defined
as the rule for error evaluation. The loss function of this work
is designed as

Jtotal = J+
WS∑
i Sini

+WoJo (3)

where Jtotal is the total error value of each network output (a
1D matrix of species concentrations and temperatures), WS =
10−7 as the weight to balance the priority of ML to handle
the entropy along with the chemical imbalance error J, Si is
the entropy value of the ith species in (JK−1 cm−3), ni is the
concentration of the ith species, Jo is the penalty for other bad
behaviors ofML such as the violation of conservation of chem-
ical element (mass) and the conservation of charge.

The first term on the right-hand side of equation (3) is the
error of species concentration variations at steady state. This is

to test if a PINN prediction together with the experimentally
observed species concentrations can achieve a chemical bal-
ance. To do so, an output along with the experimental results
will be sent to a 0D chemical simulation.

The simulation is designed to solve a set of rate equations:

∂ni
∂t

=
∑
p

(
kp
∏
q

n∆p,q

)
(4)

where ni is the concentration of the ith species, t is the time,
kp is the rate coefficient of the pth chemical reaction, and n∆p,q
is the concentration of the qth reactant in the pth reaction with
a reaction order ∆. The simulation will run for 100 ns with
dt= 10 ns. The kinetic scheme of all the chemical reactions
and their rate coefficients can be found in the supplemental
information. The simulation will thus provide the temporal
development of all the species concentrations. An error evalu-
ation process will check each temporally resolved species con-
centration acquired from the simulation for each X×N predic-
tion. The first part is defined as

J=
∑
i

ni (t)
−1

[max(ni)−min(ni)] (5)

where J is the error value of the chemical unbalance, ni (t)
is the average value of the ith temporally resolved species
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concentration, and t is the time. The value J represents the
scale of the variation of a species concatenation max(ni)−
min(ni) compared with its average. A balanced chemical sys-
tem should have all the concentrations of species at a steady
state, in other words, all the species concentrations should have
a small variation that max(ni)−min(ni) compared with its
average. Once the minibatch loop is finished, the top X ver-
sions with the lowest total error values are collected, and they
will be the X original versions to make the mutation.

However, a chemical system usually has multiple steady
states or even an infinite number of steady states. The existing
state of CAP is merely one of all the possible steady states.
Therefore, the algorithm must ensure that the PINN can give a
real steady state. In reality, this depends on the 2nd law of ther-
modynamics. A system without external interferences always
trends to increase its total entropy. Therefore, unless the CAP
users try to decrease the entropy in the CAP plume, the actual
steady state of the CAP must have the highest entropy com-
pared with other possible steady states. The mathematically
possible solutions with lower entropy are merely metastable
states.

In equation (3), the entropy of formation for most of
the ions and molecules can be found in the NIST database.
However, the entropy of free electrons, excited species, and
photons are not in the database and must be computed. For
example, let us consider the reaction A∗ → A+ hυ, where h is
the Planck’s constant and υ is the frequency of the photon. The
system loses hυ because of the photon leaving. Therefore, the
net energy change is:

E=−hυ =−hc
λ

(6)

where c is the light speed and λ is the wavelength of the
photon. Assuming the system is a canonical ensemble, we have
the partition function:

Z= exp

(
− E
kBTe

)
= exp

(
hc

λkBTe

)
. (7)

The temperature used in the thermodynamic beta term
(kBTe)

−1 is electron temperature because we assume that all
the excitations of molecules are due to the electron impacts.
These electron impacts are the energy source to produce
photons. Next, the relationship between entropy and partition
function, yields:

F=−kBTgln(Z) (8a)

Shυ =− ∂F
∂Tg

(8b)

where F is the Helmholtz free energy, and Shυ is the entropy of
the photon. Using the Avogadro number ℵA to convert the unit
from (J K−1 per particle) to (J (K mol)−1), we finally have:

Shν =
ch
λTe

ℵA. (9)

Similarly, one can also derive the entropy of the excited spe-
cies as

SEX =
czEXh
Te

ℵA (10)

where zEX is the energy difference between two energy levels,
the unit is (cm−1), representing the excitation state. For the
electrons, note that their energy source is the electric field, and
their temperature is higher than the gas temperature. This gives
the net energy change, and using the similar derivation above,
we finally have:

Se =
kBTe − kBTg

Te
ℵA (11)

where Se is the entropy of electrons as a function of electron
temperature.

The 3rd term on the right-hand side of equation (3) repres-
ents the error of breaking the conservation laws. Conservation
of chemical elements (equivalent to mass conservation) and
charge conservation are considered in this work. The mathem-
atical expression for Jo is

J0 =
∑
i

∑
j

Ni,j

∣∣n ′
j − nj

∣∣+∑
j

Zjn
′
j (12)

where i is the index of the ith chemical element, j is the index
of the jth chemical species, Ni,j is thus the number of the ith
chemical element in the jth species, n ′

j is the concentration of
jth species provided by the PINN, nj is the concentration of the
jth species in the initial gas supply, and Zj is the charge of the
jth species. For example, if the PINN suggests that the con-
centration of atomic O in the results is higher than the initial
O2 we provided in the air input, or if the resulting composition
is significantly charged, a penalty error value in the loss func-
tion will be added. The weightWo is 1000 for Jo to ensure the
balance among error terms.

3. Results and discussions

Figure 5 shows the results of FTIRmeasurements of three spe-
cies: N2O, NO2, and O3. The original FTIR results are shown
on the left, and the smoothed fine data sets used for ML are
on the right. The measured concentrations vary with the dis-
charge voltage and helium-air ratio as seen in figure 5. The
concentration of N2O is in the range of 1–3 ppm (±15% and
signal/noise ≈5), and roughly proportional to the discharge
voltage as shown in color. However, there is no significant rela-
tion between the NO2 concentration and the discharge voltage,
but it is proportional to the helium–air ratio. The highest meas-
ured NO2 concentration is about 10 ppm (±20% and sig-
nal/noise ≈10) when the helium is 95%, although NO2 con-
centration is expected to decrease when the helium-air ratio
is close to 100% due to the lack of air supply. The FTIR
short cell–MCT detector combination has a detection limit in
the single ppm range making it difficult to identify signific-
ant trends in the N2O and NO2 concentrations. On the other
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Figure 5. The experimental result space and fine data space of N2O, NO2, and O3.

hand, O3 has a clear trend of concentration proportional to the
discharge voltage of the plasma. As mentioned in the previ-
ous section, to increase the data set available for training, the
resulting space is smoothed using a moving average and linear
interpolation that lead to a fine data space shown by the graphs

on the right in figure 5. These smoothed curves enable network
training with more detailed data space and avoid overfitting.
The training results are discussed below.

The total error value (loss function) Jtotal during the train-
ing is shown in black in figure 6(a), where the red curve is the

9
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Figure 6. The training results. (a) The error convergence of the 1st version of the neural network during the training. In each iteration, the
error value (black) shown is the sum of the neural network’s error of the entire minibatch loop including the penalty value (red). (b) The
entropy values (blue) during the training and its moving average (yellow).

value of WoJo which represents the error penalty due to the
violation of physics laws. Note that each of the values shown in
figure 6(a) is a sum of 50 (the minibatch size) cases randomly
selected from the training data set. The training stopped at the
50 000th iteration because the error converged. The total error
is about 1550 (the end of the black curve in figure 6(a)) and
the penalty is about 20 (the end of the red curve in figure 6(a)).
This means that the error of breaking the steady state is about
(1550−50)

50 = 30 for each case. For a better understanding of this
quantity of error, let us assume that each species has its own
error, and all the species contribute to the error equally. This
means that for a total of 154 species, each species concentra-
tion contributes an average error of 30

154 = 0.1948 After 100
time steps of the chemical simulation, each species concen-
tration provided by the PINN has a temporal variation such
that the difference between the maximum and the minimum
is about 19.48% of its average value. However, most of the
steady-state error is due to the species of low concentration
which are thus less important to the system, but making sig-
nificant errors due to the low value of the denominator in
equation (2). After removing the species less than 0.01 (ppm)
from the computation of error, the error of breaking the steady
state will be about 11.89, meaning that the difference between
the maximum and minimum is about 7.72% of its average
value. Since the total entropy of the species of each case is
about 1× 10−6 (J K−1 cm−3) shown in figure 6(b), the penalty
of violation of element conservation is about 50

50 −
10−7

1×10−6 =
0.9 for each case. Therefore, the total violation of the con-
servation law is about J0 = 0.9

W0
= 9× 10−4 (ppm) which is an

acceptable low error value considering that most of the species
in the jet effluent have concentrations of around 1 ppm, such
as H2O2 and OH that are important for cancer therapy [42].
The final weight matrices are also tested using the testing data
set as discussed previously (figure 4). The average total error
is about 2955, close to the value of 1550 at the end of training.
This means that the training is not overfitting. In other words,

Figure 7. The PINN predicted concentrations of hydrogen species.
The bar plots are the average values of all the cases with the
variation of discharge voltage and the helium–air ratio and the error
bars indicate the distribution of concentrations of these variations.

the ML is not limited by the training set and it can perform
well even when the input data is not contained in the training
set, as indicated by the testing set results.

Figures 7–11 show the maps of all the species concen-
trations provided by the PINN for the first iteration and the
final iteration. These figures allow us to visualize what the
PINN did to match the species concentrations to achieve a
steady state within the limits of constraints. The bar value
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Figure 8. The PINN predicted concentrations of electron and
helium species. The bar plots are the average values of all the cases
with the variation of discharge voltage and the helium–air ratio and
the error bars indicate the distribution of concentrations of these
variations.

of each species is the average concentration of all the dis-
charge voltage and helium–air ratio conditions, while the error
bars in these figures indicate the variation among these con-
ditions. The concentrations of hydrogen-related species are
summarized in figure 7. First, in figure 7, the PINN suggests a
high concentration of HNO3. This is not surprising under such
high discharge voltage setups, and HNO3 has a long lifetime
to survive downstream of the plume [43]. Usually, in the gas
phase, there are NxOy that react with H2O directly to produce
nitric acid but mostly that happens in the liquid phase, not in
the gas phase. PINN also suggests another major conversion
of the H2O (the source of the H) is OH and HO2. These signi-
ficant species agree with the common sense in the last decade
of CAP studies [44–47]. However, the first iteration (the one
without training) suggests roughly uniform concentrations as
shown in orange bars in figure 7. This means that such a con-
centration combination cannot reach a low error as suggested
in figure 6(a). After the training, the blue bars are the con-
centration combination found by the ML to make the chem-
ical system obey the constraints listed at the beginning of the
Method section. Similarly, the concentrations of the electron
and helium species are summarized in figure 8. The PINN sug-
gests relatively high concentrations of both helium metastable
states: He(21S) and He(23S). It is not surprising that the meta-
stable state with a long lifetime can have high concentrations
downstream in the plume. PINN model discovered this fea-
ture by itself. The PINN also suggests that the electron dens-
ity is about 1012 cm−3 downstream of the plume, where the
plume should have a slightly higher electron density as meas-
ured using Rayleigh microwave scattering [22, 27, 41].

Figure 9 summarizes the concentrations of RONS other
than the OH family. While the values of NO2, N2O, and O3

are given by the FTIR, PINN suggests a high concentration of

Figure 9. The PINN predicted concentrations of RONS. The bar
plots are the average values of all the cases with the variation of
discharge voltage and the helium–air ratio and the error bars
indicate the distribution of concentrations of these variations.

O, NO, and N2(B) are mostly above around 1012 cm−3 which
agrees with other experimental observations and is common
for pulsed plasma oxidation [48–51]. The N2(B) series are
the results of the second positive system emissions which
provide the most significant OES peaks such as the well-
known 337.13 nm and 357.69 nm [28]. N2 is not IR active
and is thus not available from FTIR measurement, but the
concentration of N2(B) can be quantified using PINN. These
photons can be found in figure 10 where the after-training val-
ues (blue) of them are all higher than the before ones (orange).
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Figure 10. The PINN predicted concentrations of photons. The bar plots are the average values of all the cases with the variation of
discharge voltage and the helium-air ratio and the error bars indicate the distribution of concentrations of these variations.

In figure 10, we summarized the photon numbers, and all
the wavelengths are at very low concentrations. The highest
peak is the 193.09 nm UV at about 1011 cm−3 (0.01 ppm).
This agrees with the common sense that the downstream area
below the plume is invisible to the naked eye. Figure 11
summarizes the PINN’s suggestions of carbon series species.
There are some atomic carbons dissociated from the CO2 in
the air, but the amounts are much lower than CO and CO2

because the dissociation requires high electron energy. There

are about 400 ppm of CO2 and 0.1 ppm of CO in the ambient
air, and these are the carbon sources of the low-temperature
atmospheric plasma. In this work, there is a small amount of
CO2 entered into the plasma jet system, providing the carbon
element.

Within the range of our experiments, the discharge voltage
and helium–air ratio only slightly affect the species concen-
trations, electron temperature Te and gas temperature Tg are
shown in figure 12. The value of Te is at about 1.1–1.7 eV
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Figure 11. The PINN predicted concentrations of carbon species. The bar plots are the average values of all the cases with the variation of
discharge voltage and the helium–air ratio and the error bars indicate the distribution of concentrations of these variations.

while the one of Tg is at about 315–340 K. The Tg is about
15–40 K above room temperature, which is higher than expec-
ted in a CAP jet [52]. However, the discharge voltage of this
work, above 8 kV amplitude, is much higher than the usual
setups that are about 4 kV amplitude or 8 kV pk–pk sinus-
oidal leading to 300–330K. Some other works also report such
a relatively high gas temperature [53]. In the visible region
upstream, the thermal energy of high Tg is acquired from the
Te through the momentum transfer during the electron-impact

collisions. The downstream temperature should be lower than
the temperature upstream. The nonmonotonic relation of the
gas temperature versus the discharge voltage and helium–air
ratio can also be found in other publications [54]. Also, more
importantly, the downstream plasma chemistry has no external
energy input; therefore, its chemical reactions should be differ-
ent from the plasma chemistry in the visible plume region. For
example, we should have very low ionization rates but relat-
ively higher recombination rates in the dark downstream. The
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species concentrations we introduced above are thus generated
in the visible region and traveled downstream.

In this work, we have 153 species as mentioned above.
All these species concentrations can have a contour figure to
show their values as functions of the discharge voltage and
He–air ratio, while the bars shown from figures 7–11 are their
average values. However, due to the limit of paper space, we
cannot show all the contour plots but only the most import-
ant ones and those with high concentrations as summarized
in figure 13. The first row of subplots in figure 13 contains
electron, He(23S) and He+. As expected, their concentrations
are proportional to both the discharge voltage and the He–air
ratio. In figure 13, all other species shown in the 2nd, 3rd,
and 4th rows require air to be generated, but they share a
general trend that these species concentrations are also pro-
portional to the He–air ratio. This agrees with many pub-
lications that these species’ concentrations can be increased
when adding air in the helium but will then decrease when
adding too much because the oxygen can decrease the elec-
tron density with the attachment reaction [55–59]. However,
since they need air to be generated, when the helium is
close to 100%, their concentrations should be decreased. It is
also interesting that the concentrations of the short-lifetime
O, NO, and the long-lifetime NO3 have different contour
patterns in figure 13. However, the chemical pathway net-
work is complicated, and investigation of what exact com-
bination of reactions is causing this is beyond this work. We
should leave this topic open and will be studying it in the
future.

It is also interesting to compare the species concentra-
tion results with CAP applications, such as the OH produc-
tion in this work and the CAP-based cancer treatment which
relies on the H2O2 in the liquid cell-culture medium [52]. The
nonmonotonic relations of these RONS production with gas
flow rate and discharge voltage are used in many biomedical,
environmental, and material processing applications [52, 60–
64]. These findings of nonmonotonic relations also agree with
other works, however, this work provides the full picture of all
the species concentrations [53, 65, 66].

4. Conclusions

The physics-informed data-driven model presented here pre-
dicts the full picture of the species concentrations at a loca-
tion the downstream of CAP plume based on a limited experi-
mental data set. The method makes the PINN guesswork agree
with the concentrations of N2O, NO2, and O3, measured by
FTIR-AS, obey conservation laws, and the chemical balance
at the steady state of the system. The PINN output included the
electron density, the electron temperature, and the gas temper-
ature in addition to the concentrations of molecular and atomic
species and their electronically excited states. The training was
validated using a part of the data set of the three species con-
centrations mentioned above but the PINN prediction results
were compared to literature instead. Since these parameters are
experimentally available from OES and other measurements,
in the future experimental data should be used to validate

this model. Finally, FTIR data could provide concentrations
of H2O2, CO2, CO, NHO3, and other species providing better
environmental control and experimental system. Shall we add
all the available parameters into the constraints, or use some of
them to verify the PINN’s prediction? What is the best way of
using the PINN technique? These are open topics that warrant
future studies.

This new approach overcomes the difficulties and the
expense of solving a multiscale problem of plasma chem-
istry while providing a reasonable guess of the concentra-
tions within the given constraints. It helps in situations when
experimental measurements can only provide limited species
information, and simulations suffer high computational costs
when simulating the macroscopic scale with nanosecond time
steps. However, this work addressed the multi-scale problem
with respect to time only, focusing on a single location in
space. In the future work, we expect to use spatially resolved
diagnostics allowing both the spatial and temporal resolution
to cross the scale.
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