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Abstract 16 

This study examined the potential health risks posed by the operation of 96 waste-to-energy (WtE) 17 

plants in 30 cities in the Bohai Rim of China. Utilizing a sophisticated simulation approach, the 18 

Weather Research and Forecasting (WRF) model coupled with the California Puff (CALPUFF) model, 19 

we obtained the spatial distribution of pollutants emitted by WtE plants in the atmosphere. Hazard 20 

indices (HI) and carcinogenic risks (CR) were calculated for each plant using the United States 21 

Environmental Protection Agency's recommended methodologies. The results indicated that both HIs 22 

and CRs were generally low, with values below the accepted threshold of 1.0 and 1.0 × 10−6, 23 

respectively. Specifically, the average HI and CR values for the entire study area were 2.95 × 10−3 and 24 

3.43 × 10−7, respectively. However, some variability in these values was observed depending on the 25 

location and type of WtE plant. A thorough analysis of various parameters, such as waste composition, 26 

moisture content, and operating conditions, was conducted to identify the factors that influence the 27 

health risks associated with incineration. The findings suggest that proper waste sorting and 28 

categorization, increased cost of construction, and elevated height of chimneys are effective strategies 29 

for reducing the health risks associated with incineration. Overall, this study provides valuable insights 30 

into the potential health risks associated with WtE plants in the Bohai Rim region of China. The 31 

findings can serve as useful guidelines for law enforcement wings and industry professionals seeking 32 

to minimize the risks associated with municipal solid waste (MSW) management and promote 33 

sustainable development. 34 

Keywords: Incineration; WRF/CALPUFF; Health risk assessment; Ridge regression model; MSW 35 

classification  36 
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1. Introduction 37 

China's rapid economic growth and accelerated urbanization have led to a significant increase in 38 

municipal solid waste (MSW), posing a growing challenge to human health. To address this issue, the 39 

Chinese government has actively promoted waste-to-energy (WtE) plants due to their benefits, 40 

including land conservation, high efficiency in MSW reduction, and lower greenhouse gas emissions1-41 

4. As a result, the number of WtE plants doubled between 2017 and 2021, with a total capacity of 180.2 42 

million tons in 20215, 6. Currently, incineration accounts for 72.54% of MSW disposal in China, with 43 

a growth rate of 25.92%6, 7. This highlights the increasing importance of WtE plants in China's waste 44 

management strategy. 45 

However, the operation of WtE plants generates a substantial amount of air pollutants, including sulfur 46 

dioxide (SO2), nitrogen oxides (NOx), heavy metals, polycyclic aromatic hydrocarbons (PAHs), 47 

polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans (PCDD/Fs). Exposure to these 48 

pollutants via inhalation can result in a wide range of adverse health effects, such as respiratory 49 

problems, cardiovascular disease, and even cancer8-17. For instance, studies have linked exposure to 50 

PAHs and PCDD/Fs, which are byproducts of incomplete combustion, to immune system suppression, 51 

thyroid disruption, and other serious health issues16-21. Considering the potential health risks associated 52 

with WtE plant emissions, it is essential to identify and implement effective measures to mitigate these 53 

risks. 54 

Many studies have expressed concerns about the health impacts of incineration. To better understand 55 

these risks, researchers first need to establish an emission inventory to measure the amounts of air 56 

pollutants released by WtE plants. This involves collecting data on Emission Factors (EFs) to 57 

accurately represent local emissions22, 23. In China, numerous field tests were conducted to determine 58 

EFs for various WtE plants. Using this data, Fu et al.24 developed an emission inventory for MSW 59 

incineration in China spanning from 2006 to 2017, providing a comprehensive view of the 60 

characteristic emissions of WtE plants. Subsequently, researchers employed air diffusion models like 61 
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WRF/CALPUFF14, 25, 26 and Gaussian Plume Model8, 15 to estimate the spatial distribution of WtE 62 

plants' air pollutants. WRF is a mesoscale numerical weather prediction system used for atmospheric 63 

research, which can provide real meteorological field data across scales from tens of meters to 64 

thousands of kilometers27. CALPUFF is an accurate 3D unsteady lagrangian diffusion model system 65 

for simulating pollutant diffusion and conversion28. Compared with the traditional Gaussian Model, 66 

CALPUFF performs much better in complex terrain and various wind conditions (strong wind, 67 

stagnation, inversion, recirculation, etc.)14, 25, 26. Finally, Health Risk Assessment (HRA) models, 68 

developed by the US Environmental Protection Agency (USEPA), were utilized to evaluate the health 69 

effects of these pollutants9, 29-32. For instance, Zhou et al.8 established an emission inventory for WtE 70 

plants in China in 2015 based on literary investigations, then used Gaussian Plume Models to calculate 71 

Hazard Indices (HI) and Carcinogenic Risks (CR) across different regions. By taking these steps, 72 

scientists could better understand the potential health consequences of WtE plant emissions. 73 

However, in previous studies, the emission inventories obtained by field tests were limited by the 74 

workload, which can only reflect the real pollution emission situation of a few waste-to-energy (WtE) 75 

plants during the sampling period. In addition, the emission inventories based on literature 76 

investigation can not distinguish the difference in emission factors among WtE plants. There was a 77 

significant gap in systematic and comprehensive real-time pollutant measurement of WtE plants, 78 

which can accurately reflect real-time pollutant emissions from all WtE plants. At the same time, the 79 

application of air diffusion models necessitated extensive hardware facilities and meteorological data. 80 

Data collection and simulation often result in complex work and delayed feedback. Few studies have 81 

focused on a fast and efficient method for health risk assessment of incineration. In addition, existing 82 

health risk assessments of WtE plants were usually derived from the calculations of pollutant emission 83 

inventories, meteorological data, and the HRA model. Few studies explored the direct response 84 

relationship between health risk determinants and health risk, making it challenging to explore specific 85 

measures for reducing WtE plants' health risks. 86 
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As one of the most important economic and population centers of China, the Bohai Rim, encompassing 87 

5 provinces/municipalities (Beijing, Tianjin, Hebei, Shandong, and Liaoning), exhibits high MSW 88 

production per capita and a large quantity of MSW incinerated per capita. Specifically, the MSW 89 

production per capita and quantity of MSW incinerated per capita in the Bohai Rim were 18.52 t/pop 90 

and 13.50 t/pop, representing 5.22% and 5.85% of China6. Besides, the population density in the Bohai 91 

Rim was 3.3 times that of China14. Therefore, the Bohai Rim was selected as the research area in this 92 

study. 93 

In addition, in order to reflect the pollutant emission levels of WtE plants more accurately and 94 

realistically, the EFs in this study were calculated using systematic, actual measured pollutant 95 

concentration data extracted from China's Continuous Emission Monitoring Systems (CEMS) 96 

network14. This dataset, established by the Ministry of Ecology and Environment of China (MEE), 97 

provided nationwide, detailed, real-time pollutant emissions and other operation information from WtE 98 

plants since January 2020.  99 

In order to address the knowledge gaps related to the health impacts of WtE plants, this study primarily 100 

investigated 96 WtE plants in the Bohai Rim and set the following research objectives: 1) An emission 101 

inventory was established for 2020 based on detailed operation information and pollutant 102 

concentrations from CEMS networks.2) The WRF/CALPUFF model was used to simulate the 103 

diffusion and deposition of air pollutants emitted by WtE plants, and the population-weighted HI and 104 

CR were calculated by the HRA model.3) Ridge regression analysis was used to examine the 105 

relationships between health risk determinants and the HI and CR, considering factors such as the 106 

quantity of MSW components incinerated, the technological level of the WtE plants, and atmospheric 107 

conditions. 4) The study explored feasible methods for reducing the health risks associated with WtE 108 

plants and provided specific recommendations for future MSW management and health risk 109 

assessment initiatives. 110 
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2. Material and methods 111 

2.1 Study area 112 

The Bohai Rim was selected as the research area, encompassing 44 cities across 5 113 

provinces/municipalities (Tianjin, Hebei, Beijing, Shandong, and Liaoning), of which 30 cities had 114 

established WtE plants, as shown in Figure 1. The Bohai Rim had 96 WtE plants operating normally 115 

in 2020, collectively boasting a capacity of 9.98×104 t/d. In the Bohai Rim, moving grates and 116 

circulating fluidized beds were the dominant types of WtE incinerators, accounting for 93.4% and 6.6% 117 

of the total capacity, respectively. Compared to circulating fluidized bed incinerators, moving grate 118 

incinerators have demonstrated better performance in terms of durability and fly ash yield, making 119 

them more widely adopted at present. 120 

  121 

Figure 1. The location of 96 WtE plants in the Bohai Rim in 2020. The base map was the 30' × 30' grid population 122 

density map, which was provided by Center for International Earth Science Information Network.  123 

 124 

2.2 Emission Inventory 125 

The emission inventory of WtE plants in 30 cities in the Bohai Rim included crucial information 126 

including WtE plants' locations, incinerator types, treatment capacities, and EFs for pollutants, such 127 

as SO2, NOX, cadmium + thallium (Cd + Tl), mercury (Hg), PCDD/Fs and chromium + cobalt + 128 

nickel + antimony + arsenic + lead + copper + manganese (Cr + Co + Ni + Sb + As + Pb + Cu + 129 

Mn). These data were obtained from continuous emission monitoring system (CEMS) networks 130 

developed by MEE. These networks provided daily real-time pollutant concentrations and detailed 131 

operation information of all the WtE plants in China, as seen in Supplementary Information (SI) 132 

Table S1. The pollutant emissions were calculated by Equations 1–314, 15: 133 

𝐸𝐹𝑖,𝑝 =
1

365
∑ 𝐶𝑖,𝑝,𝑡

365
𝑡=1 × 4500 × 1 × 10−3                                       (1) 134 

𝑀𝑝,𝐼 = 𝑁𝑝,𝐼 × 𝑇                                                                     (2) 135 

𝐸𝑖,𝑝 = 𝐸𝐹𝑖,𝑝 × 𝑀𝑝,𝐼 × 1 × 10−6                                                           (3) 136 
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where: 𝐸𝑖,𝑝 was pollutant i's emission from plant p in 2020 (t/a); 𝐸𝐹𝑖,𝑝 was pollutant i's EF of plant 137 

p in 2020 (g/t); 𝑀𝑝,𝐼 was WtE plant p's MSW disposal quantity in 2020 (t/a); 𝐶𝑖,𝑝,𝑡 was pollutant i's 138 

concentration of plant p in the t day of 2020, 1 ≤ t ≤ 365 (mg/m3); 𝑁𝑝,𝐼 was WtE plant p's capacity 139 

(t/d);  4500 was the theoretical flue gas rate (m3/t); T was WtE plants' operation days per year (d/a), 140 

T was 330 d/a for moving gate incinerators and 300 d/a for circulating fluidized bed incinerators.  141 

In addition, Oracle Crystal Ball was applied to calculate the uncertainty of 𝐸𝐹𝑖,𝑝 and 𝐸𝑖,𝑝 of 96 142 

WtE plants in the Bohai Rim. It was assumed that 𝑁𝑝,𝐼 satisfied a normal distribution with a coefficient 143 

of variation (CV) of 10%8. Other parameters' distributions came from data fitting, the detailed 144 

information is shown in Table S2. Emission inventories' uncertainties were obtained through a 10000 145 

Monte Carlo sampling process, as shown in Figure S1. 146 

2.3 Health risk assessment 147 

In this study, WRF was used to simulate the real meteorological field in the research area based 148 

on NCEP/NCAR reanalysis data, and the results were then used as the input meteorological field for 149 

CALPUFF. CALPUFF was applied to obtain the spatial distribution grid of air pollutants emitted by 150 

WtE plants in the atmosphere. Because the WRF/CALPUFF model required high computing 151 

conditions, January and July 2020 were chosen as the cold and warm periods of the year to run the 152 

model, respectively. The detailed settings of WRF and CALPUFF are shown in Text S1, Tables S3 153 

and S4. The characteristics of the modeling result are shown in Table S5. 154 

The HRA model was used to calculate the health risks of the WtE plants in the Bohai Rim and in 30 155 

individual cities, based on each pollutant's inhalation exposure concentration output by 156 

WRF/CALPUFF. In order to reflect the impact of WtE plants' location on human health risks within 157 

the respective cities, we took into account the effects of spatial distribution of population when 158 

calculating HI and CR for each city. In this study, the research area was divided into 4 km × 4 km grids 159 

by CALPUFF (as shown in Text S1), and population-weighted HI and CR were used to indicate the 160 

non-carcinogenic risk and carcinogenic risk in the Bohai Rim and in each city, which were calculated 161 
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by population-weighted average of HI and CR for all grids in the Bohai Rim as well as in each city, as 162 

shown in Equations 4–5: 163 

HI =  
∑ [∑ (𝐶𝑖,𝑚,𝑛 × 10−3/𝑅𝑓𝐶𝑖𝑖 ) × 𝑃𝑚,𝑛]𝑚

∑ 𝑃𝑚,𝑛𝑚
                                                    (4) 164 

CR =  
∑ [∑ (𝐶𝑖,𝑚,𝑛 × SF𝑖𝑖 ) × 𝑃𝑚,𝑛]𝑚

∑ 𝑃𝑚,𝑛𝑚
                                                              (5) 165 

where: n was the cities' code; m was the grid code in city n; 𝐶𝑖,𝑚,𝑛  was concentration of air 166 

pollutant i in grid m of city n generated from WRF/CALPUFF (μg/m3), 𝑅𝑓𝐶 was inhalation chronic 167 

reference concentration (mg/m3), 𝑃𝑚,𝑛  was the population in grid m of city n from Center for 168 

International Earth Science Information Network 169 

(https://sedac.uservoice.com/knowledgebase/topics/110829-gpwv4), SF𝑖  was inhalation slope factor 170 

of pollutant i (μg/m3)-1.  171 

The RfC and SF values were listed in Table S6. 172 

2.4 Ridge regression model 173 

The Ridge regression model was used to analyze the correlation between carcinogenic risk and 174 

non-carcinogenic risk of incineration and MSW components, the quantity of MSW incinerated, unit 175 

construction cost of WtE plants, and atmospheric diffusion conditions through SPSS 22.0 software.  176 

Unit construction cost (yuan·d/t) was the investment quota of unit capacity, which reflects the 177 

technical level of local WtE plants to some extent. The dependent variables of Ridge regression model 178 

were the logarithms of CR and HI of incineration in each city in the Bohai Rim. The independent 179 

variables of Ridge regression model, which affected the health risks of local MSW incineration, were 180 

the logarithms of wind speed (m/s), temperature (K), rainfall (mm/month), the unit construction cost 181 

(yuan·d/t), and the annual quantity of 6 MSW components incinerated, such as paper (t/a), wood and 182 

straw (t/a), food waste (t/a), plastic and rubber (t/a), textile (t/a) and dust (t/a), in each city in the Bohai 183 

Rim. 184 

Compared with multiple linear regression, Ridge regression analysis improved the least square 185 
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method by giving up its unbias, and found the model equation with more realistic regression 186 

coefficients at the cost of losing some information. As the result, Ridge regression analysis can avoid 187 

the insignificance of parametric regression coefficients due to the presence of multicollinearity in the 188 

independent variables in the regression equation33, 34.  189 

Ridge regression analysis was used to explore the determinants of health risks of incineration and 190 

their correlations. The basic form of Ridge regression model was shown as Equations 6–7: 191 

Ln(y) = a0 + ∑ 𝑎𝑖ln(ni)
𝑚
𝑖=1                                              (6) 192 

𝑎𝑖 = (Ln(ni)
𝑇Ln(ni) + K𝐼𝑃)−1ln(ni)

𝑇Ln(y)                               (7) 193 

𝑛𝑖 was the ith input variable. 𝑎𝑖 was the regression coefficient, which can reflect the contribution 194 

of each independent variable to the dependent variable. 𝐼𝑃 was the identity matrix of the same order as 195 

Ln(ni)
𝑇Ln(ni). K was a constant between 0 and 1, representing the artificial introduction error in the 196 

regression equation. The adjusted R2 and regression equations were obtained by using stepwise 197 

backward elimination to remove independent variables that were not considered important. 198 

In the analysis, the value of K should meet four conditions: (1) the ridge trace remains basically 199 

stable; (2) no unreasonable value for all regression coefficients; (3) all regression coefficients no longer 200 

have positive and negative fluctuations, and exhibit reasonable signs; (4) the sum of residual squares 201 

of ridge regression does not increase significantly compared to multiple linear regression. 202 

In the regression model, the annual MSW disposal quantity of WtE plants in 30 cities can be 203 

calculated by the sum of all local WtE plants' 𝑀𝑝,𝐼 (annual MSW disposal quantity of WtE plant p), 204 

which was calculated by Eq. 3. Table S7 lists the MSW disposal quantity of each city. 205 

Through the review of 43 literature sources, we obtained 71 sets of data on the composition of 206 

MSW in different cities, and calculated the average values to represent the typical composition of 207 

MSW in each city, as displayed in Figure S235-71. For the 12 cities where MSW component data could 208 

not be retrieved (Binzhou, Cangzhou, Chengde, Dezhou, Dongying, Hengshui, Jining, Rizhao, Weihai, 209 

and Xingtai), we utilized the average value of the MSW component data from adjacent cities to 210 
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represent the typical composition of MSW in those cities. 211 

The meteorological data for the 30 cities in the Bohai Rim were obtained from the Natural 212 

Environment Research Council (NERC) National Centre for Atmospheric Science of the United 213 

Kingdom (NCAS), which provided high-resolution grid data for wind speed, temperature, and rainfall 214 

in each of the 30 cities during January 2020 and July 2020. Using ArcGIS 10.5 software, we derived 215 

the wind speed, temperature, and rainfall data for each city in the Bohai Rim, as presented in Table S8. 216 

 217 

3 Results and discussion 218 

3.1 Health  risks of WtE plants in the Bohai Rim 219 

The HI of incineration in the Bohai Rim in January and July were 4.07 × 10-3 and 1.82 × 10-3, 220 

respectively, both of which were below the acceptable threshold (HI < 1). Similarly, the CR of 221 

incineration in the Bohai Rim in January and July were 4.72 × 10-7 and 2.13 × 10-7, both of which were 222 

also below the acceptable threshold (CR < 1 × 10-6). Notably, the health risks associated with WtE 223 

plants in the Bohai Rim were lower in July compared to January, suggesting that meteorological factors 224 

played a significant role in affecting the health risks of MSW incineration in the region. Specifically, 225 

the lower temperatures and slower wind speeds in January in the Bohai Rim hindered atmospheric 226 

circulation and the diffusion of pollutants, whereas the "semi-enclosed" topography and the intensified 227 

winter "downdraft" in the region further impeded the movement of air pollutants14, 72, 73. 228 

The order of pollutants' contribution to incineration's HI in the Bohai Rim was PCDD/Fs 229 

(35.45%) > SO2 (25.58%) > NO2 (22.83%) > Cr + Co + Ni + Sb + As + Pb + Cu + Mn (13.88%) > Cd 230 

+ Tl (1.78%) > Hg (0.48%), while the order of pollutants' contribution to incineration's CR in the Bohai 231 

Rim was Cr + Co + Ni + Sb + As + Pb + Cu + Mn (71.6%) > PCDD/Fs (27.8%) > Cd + Tl (0.60%). 232 

At the city level, due to the difference of MSW components, MSW disposal capacity, WtE plants' 233 

unit construction cost and meteorological conditions, the HI and CR of incineration varied widely 234 

among cities, as shown in Table 1. In January, the HI of the 30 cities varied from 7.29 × 10-4 to 1.40×10-235 

2, while the CR of the 30 cities varied from 1.19 × 10-7 to 9.81 × 10-7. In July, the HI of the 30 cities 236 
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varied from 6.64 × 10-4 to 8.68 × 10-3, while the CR of the 30 cities varied from 6.22 × 10-8 to 5.74 × 237 

10-7. Shenyang and Beijing were the two cities with the highest health risk. Due to the more dense and 238 

larger incineration capacity, the HI in Shenyang and Beijing were 343.80% (January)–477.09% (July) 239 

and 159.90% (January)–202.97% (July) of the average HI in the Bohai Rim, while the CR in Shenyang 240 

and Beijing were 207.84% (January)–269.48% (July) and 158.69% (January)–351.64% (July) of the 241 

average CR in the Bohai Rim. 242 

Table 1 HI and CR of 30 cities in the Bohai Rim 243 

 HI CR  HI CR 

 January  July 

Baoding 0.004759 7.31 × 10-7  0.001573 2.56 × 10-7 

Beijing 0.006508 7.49 × 10-7  0.003694 4.79 × 10-7 

Binzhou 0.003022 3.92 × 10-7  0.001657 2.21 × 10-7 

Cangzhou 0.003585 5.09 × 10-7  0.001256 1.88 × 10-7 

Chengde 0.000729 1.19 × 10-7  0.001019 1.97 × 10-7 

Dalian 0.002831 2.55 × 10-7  0.001048 1.36 × 10-7 

Dezhou 0.003564 4.29 × 10-7  0.001874 1.80 × 10-7 

Dongying 0.002793 3.85 × 10-7  0.001398 2.18 × 10-7 

Handan 0.002667 3.70 × 10-7  0.000664 7.48 × 10-8 

Heze 0.004179 4.34 × 10-7  0.001224 1.02 × 10-7 

Hengshui 0.003679 4.72 × 10-7  0.001269 1.32 × 10-7 

Jinan 0.005971 5.98 × 10-7  0.002113 2.04 × 10-7 

Jining 0.004439 4.89 × 10-7  0.001321 1.32 × 10-7 

Langfang 0.004850 6.13 × 10-7  0.002185 2.80 × 10-7 

Liaocheng 0.004084 4.56 × 10-7  0.001888 1.75 × 10-7 

Linyi 0.003300 3.59 × 10-7  0.001325 9.00 × 10-8 

Qinhuangdao 0.002028 3.70 × 10-7  0.001052 2.56 × 10-7 

Qingdao 0.002829 3.51 × 10-7  0.001059 1.33 × 10-7 

Rizhao 0.003465 4.18 × 10-7  0.001177 1.28 × 10-7 

Shenyang 0.013952 9.81 × 10-7  0.008683 5.74 × 10-7 

Shijiazhuang 0.004239 6.68 × 10-7  0.001943 2.54 × 10-7 

Taian 0.004289 4.67 × 10-7  0.001683 1.54 × 10-7 

Tangshan 0.002536 3.35 × 10-7  0.001664 2.20 × 10-7 

Tianjin 0.005141 6.02 × 10-7  0.002005 2.87 × 10-7 

Weihai 0.001753 2.22 × 10-7  0.000993 1.26 × 10-7 

Xingtai 0.003527 4.85 × 10-7  0.000992 1.18 × 10-7 

Yantai 0.001803 2.41 × 10-7  0.001030 1.37 × 10-7 

Zaozhuang 0.003162 3.38 × 10-7  0.000786 6.22 × 10-8 

Zibo 0.003480 4.40 × 10-7  0.001217 1.83 × 10-7 

Weifang 0.003100 4.10 × 10-7  0.001042 1.48 × 10-7 

 244 

3.2 Contributions of different MSW components on incineration health risks. 245 
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The average combustible and non-combustible components of MSW in Bohai Rim were 94.62% 246 

and 10.63%, respectively. Among the combustible MSW, the content of food waste was the highest in 247 

the Bohai Rim, accounting for 39.08% to 69.07%. It was followed by dust, plastic and rubber, paper, 248 

textile, and wood and straw, accounting for 1.24%–36.41%, 4.80%–19.82%, 3.80%–14.74%, 0.88%–249 

5.90%, and 0.70%–5.57%, respectively (as shown in table S2). Food waste was widely distributed 250 

among MSW components in the Bohai Rim, and its high water content contributed to the relatively 251 

high water content of MSW in the Bohai Rim. 252 

The contribution of each MSW component to Cd + Tl, Hg, SO2, NOx, and Cr + Co + Ni + Sb + 253 

As + Pb + Cu + Mn was calculated as a percentage of its input quantity with respect to the total input 254 

quantity. The quantity of each MSW component incinerated in the Bohai Rim was determined from 255 

MSW composition and MSW disposal quantity of incineration (see Table S7). The concentration of 256 

pollutants in each MSW component in this study was calculated through the average of 49 sets of 257 

sampled data from 11 literature, as shown in Table S9. The contribution of each MSW component to 258 

PCDD/Fs was calculated as a percentage of its pollutant production with respect to the total pollutant 259 

production. Additionally, Thomas et al.74 provided a method to calculate the EFs of PCDD/Fs through 260 

the contents of chlorine (Cl), Cu, and sulfur (S) in each MSW component.  261 

As a result, the concentration of pollutants significantly varied in MSW components. Food waste, 262 

accounting for the largest portion (55.1%) of the total MSW, contained high levels of heavy metals. It 263 

had the highest concentrations of Cu and Pb, making it the primary source of heavy metal emissions 264 

from WtE plants. Moreover, food waste had the highest concentrations of S and nitrogen (N) among 265 

all MSW components, accounting for up to 0.49% and 3.86%, respectively, making it a critical raw 266 

material for the formation of NOx and SO2 during the incineration process.  267 

Because Cu on fly ash surfaces can catalyze PCDD/Fs formation74, 75 and S had been identified 268 

as an inhibitor of PCDD/Fs formation74, 76-78, dust with high Cu concentration and the lowest S content 269 

can lead to the formation of a large number of PCDD/Fs in the combustion process. Although food 270 
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waste contained more copper and Cl than dust, it had a high content of S, so the contribution of food 271 

waste to the formation of PCDD/Fs was less than that of dust. Plastic and rubber had the highest 272 

concentration of Cl, accounting for 6.58%, which was mainly due to the high Cl content of PVC 273 

components in plastic and rubber. Therefore, plastic and rubber contained large amounts of Cl, which 274 

was considered to be a Cl source for the formation of PCDD/Fs79, 80. As a result, plastic and rubber, 275 

which accounted for 13.27% of MSW incinerated, contributed 22.40% to the PCDD/Fs emitted by 276 

WtE plants. In addition, textiles, with the highest concentrations of As, Ni, Cr, and Co among all MSW 277 

components, accounting for 2.98% of MSW incinerated, contributed 8.32% to the Cr + Co + Ni + Sb 278 

+ As + Pb + Cu + Mn emitted by WtE plants. 279 

The contributions of individual MSW components to the air pollutants emitted by WTE plants 280 

are shown in Figure 2. 281 

 282 

Figure 2 Contributions of MSW components to pollutants emitted by WtE plants in the Bohai Rim. In 2020, a total 283 

of 0.174 t of Cd + Tl, 9.25 t of Cr + Co + Ni + Sb + As + Pb + Cu + Mn, 0.727 t of Hg, 3079.78 t of SO2, 19019.50 t 284 

of NOx and 3.29 g-TEQ of PCDD/Fs were emitted from WtE plants. 285 

 286 

Based on the analysis of the contribution of each pollutant to the health risks of incineration in 287 

the Bohai Rim, the relative contributions of MSW components to incineration's health risks were 288 

calculated and are shown in Figure 3a, b. Food waste was found to be the main contributor to SO2, 289 

NO2, and heavy metals, accounting for 56.91% of the total health risks (HI). Additionally, food waste 290 

was the primary contributor to CR, accounting for 57.83%, due to its high concentration of heavy 291 

metals. Textiles, although only comprising 2.98% of the MSW incinerated, contributed 6.98% of the 292 

incineration CR due to their high heavy metal content.  293 

 294 

Figure 3. Contributions of MSW components to the health risks of incineration in the Bohai Rim. (a) and (b) indicated 295 

the contributions of MSW components to the HI and CR of incineration. The HI of incineration in the Bohai Rim in 296 

January and July was 4.07 × 10−3 and 1.82 × 10−3, respectively. The CR of incineration in the Bohai Rim in January 297 
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and July was 4.72 × 10−7 and 2.13 × 10−7, respectively. The conversion ratio of NO2/NOX is 0.7581. 298 

 299 

3.3 Performance of the Ridge regression model 300 

The ridge trace diagram was obtained through ridge regression analysis, as shown in Figure 3. 301 

When K values were 0.5 and 0.6, the standardized regression coefficient of the independent variable 302 

tended to be stable. 303 

When K value was 0.5 and 0.6, the ridge regression was carried out for ln (HI) and ln (CR), and 304 

the results showed that R2 value was 0.654 and 0.613, respectively, indicating that the independent 305 

variables, such as wind speed (m/s), temperature (K), rainfall (mm/month), unit construction cost 306 

(yuan·year/ton), paper (ton/year), wood and straw (ton/year), textile (ton/year), food waste (ton/year), 307 

dust (ton/year), and plastic  and rubber (ton/year) could explain 65.4% of the variation of HI and 61.3% 308 

of the variation of CR, as seen in Table 2. Through ANOVA test of the ridge regression model, it can 309 

be seen that the P value  of the two regression results was less than 0.05, indicating that the model was 310 

significant. The detailed data of ANOVA test are shown in  Table S10. 311 

Table 2 Ridge regression analysis results 312 

Parameter 
Regression coefficient 

HI CR 

K 0.5 0.6 

Constant 15.274 5.922 

Unit construction cost (yuan·a/t)  -0.127 -0.084 

Wind speed (m/s)  -0.547 -0.286 

Temperature (K)  -0.104 -0.101 

Rainfall (mm/month)  -4.331 -4.089 

Paper (t/a)  0.066 0.045 

Wood and straw (t/a)  0.001 0.004 

Textile (t/a)  0.046 0.026 

Food waste (t/a)  0.114 0.061 

Dust (t/a)  0.108 0.097 

Plastic and rubber (t/a)  0.04 0.027 

R2 0.654 0.613 

Adjusted R2 0.561 0.509 

 313 

The unit construction cost was negatively correlated with HI and CR. This meant that for WtE 314 

plants with the same capacity, the higher the investment, the lower the carcinogenic risk and non-315 
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carcinogenic risks caused by incineration. This was because that the higher investment was conducive 316 

to the implementation of more efficient clean incineration technology. 317 

For meteorological conditions, wind speed, temperature, and rainfall were negatively correlated 318 

with HI and CR. This implies that when the wind speed, temperature, and rainfall increased, the air 319 

pollutants diffused and deposed more rapidly, consequently reducing the non-carcinogenic risk and 320 

carcinogenic risk caused by local WtE plants. In addition, the 𝑎𝑖 of rainfall was much higher than those 321 

of temperature and wind speed, indicating that rainfall had the most efficient impact on health risks 322 

among these meteorological parameters. This was because the CALPUFF model was used to simulate 323 

the diffusion of pollutants emitted by WtE plants in this study, which can reflect the wet deposition of 324 

particulate and non-particulate pollutants, as well as the chemical reactions of NO2 and SO2
82-84. 325 

Besides, wet deposition was an important mechanism for removing atmospheric pollutants, especially 326 

for Cu, Mn, Ni, Cr, and Pb, which were major contributors to incineration's health risks 85, 86. 327 

For the MSW components, the quantity of paper, wood and straw, textile, food waste, dust, and 328 

plastic and rubber incinerated was positively correlated with HI, and the regression coefficients were 329 

0.066, 0.001, 0.046, 0.114, 0.108, and 0.04, respectively. This indicated that the order of the influence 330 

degree of MSW components on non-carcinogenic risk caused by incineration was: food waste > dust > 331 

paper > textile > plastic and rubber > wood and straw. 332 

The quantity of paper, wood and straw, textile, food waste, dust, and plastic and rubber incinerated 333 

was positively correlated with CR, and the regression coefficients were 0.045, 0.004, 0.026, 0.061, 334 

0.097, and 0.027, respectively. This indicated that the order of the influence degree of MSW 335 

components on carcinogenic risk caused by incineration was: dust > food waste > paper > plastic and 336 

rubber > textile > wood and straw. Notably, food waste and dust contained more abundant Cl, N, and 337 

S compared to wood and straw, plastic and rubber, paper and textile, and heavy metals (Figure 3). 338 

These components had a great influence on the health risk of MSW incineration. Therefore, reducing 339 

the content of food waste and dust in feedstock can reduce the health risks caused by incineration in 340 
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the Bohai Rim. 341 

Among the six components of MSW in the Bohai Rim, wood and straw have the lowest coefficient. 342 

This is due to two main reasons. First, wood and straw make up a small fraction of the pollutants 343 

emitted by WtE plants in the Bohai Rim, as shown in Figure 3. Second, these components can reduce 344 

the production of fly ash and PCDD/Fs in incinerators87. Following the principles governing the 345 

generation of PCDD/Fs, fundamental elements, including carbon (C), hydrogen (H), and Cl, undergo 346 

synthesis within the temperature range of 200–400℃. Notably, within the incinerator's post-347 

combustion area, the peak formation rate of PCDD/Fs occurs at temperatures between 300 and 325℃88, 348 

89. Studies have shown that the addition of wood and straw to the incineration process can effectively 349 

reduce the weight loss of polyvinyl chloride (PVC) in the temperature range of 200 to 400 degrees 350 

Celsius. This, in turn, leads to a reduction in the production of PCDD/Fs87. Additionally, it is important 351 

to note that fly ash can act as a catalyst for the formation of PCDD/Fs90. In contrast, wood and straw, 352 

which are two of the six combustible components of MSW, have the lowest ash content91. Therefore, 353 

the lower ash content and associated properties of wood and straw make them less likely to pose health 354 

risks when incinerated. 355 

3.4 Implication 356 

Mandatory MSW classification is an effective measure to mitigate the emission factors of 357 

pollutants from WtE plants. By separating food waste, plastics, papers, textiles, and other materials, it 358 

becomes possible to recycle and treat them, using appropriate technologies, such as aerobic 359 

composting and anaerobic fermentation, to reduce the amount of waste sent to incinerators. This 360 

approach can significantly decrease the quantities of heavy metal-containing materials entering 361 

incinerators (e.g., waste batteries and electronic waste), thereby reducing the emissions of heavy metals, 362 

Cl, S, N, and other pollutants into the flue gas. This, in turn, minimizes the health risks associated with 363 

WtE plants92, 93. 364 

Due to the large variation in pollutants' concentration of each MSW component in the Bohai Rim, 365 
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the effects of different MSW components' recovery on HI and CR of WtE plants in the Bohai Rim 366 

were significantly different. When the MSW recovery rate was 0–90%, the possible change of HI and 367 

CR was displayed based on the ridge regression model, as shown in Figure 4a and b. 368 

 369 

Figure 4. The effects of different MSW components' recovery on HI and CR of WtE plants in the Bohai Rim (a) HI, 370 

(b) CR. 371 

 372 

For the non-carcinogenic risk of incineration in the Bohai Rim, when the recovery rate was the 373 

same, food waste, dust, and paper's recovery had the most significant effect on the reduction of HI. 374 

When the recovery rate of food waste, dust, and paper was 40%, the HI was reduced by 5.66%, 5.37%, 375 

and 3.32%, respectively. For the carcinogenic risk of incineration in the Bohai Rim, when the recovery 376 

rate was the same, dust, food waste and paper's recovery had the most significant effect on the reduction 377 

of CR. When the recovery rate of dust, food waste, and paper was 50%, the CR was reduced by 6.50%, 378 

4.14%, and 3.07%, respectively. 379 

Assuming uniform recovery quality, the recovery of textiles from MSW in the Bohai Rim had the 380 

greatest potential to reduce HI and CR associated with incineration. This was followed by paper, dust, 381 

plastic, rubber, food waste, and finally wood and straw, in descending order of their impact on HI and 382 

CR reduction. A textile recovery volume of 1.44 × 106 tons (equivalent to 90% of the textile incinerated 383 

in the Bohai Rim) resulted in a significant reduction of 10.05% in HI and a corresponding decrease of 384 

5.81% in CR. In contrast, a recovery quantity of 2.23 × 107 tons of food waste was required to achieve 385 

similar outcomes.  386 

This phenomenon is primarily caused by the high levels of Cr, As, Ni, and Sb found in textiles91, 387 

94-101, as shown in Table S9. These heavy metals have relatively low reference concentrations (RfCs) 388 

(mg/m3) and high slope factors (SFs) (m3/ug), indicating a relatively high risk to human health, both 389 

in terms of cancer and non-cancer effects. Therefore, textiles have a higher health risk than other 390 

components of MSW.  391 
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In conclusion, the recovery of food waste proves to be the most effective way to mitigate the 392 

health risks associated with incineration. The recovery of textiles is also effective in reducing these 393 

risks. The classification of MSW can change the composition of the feedstock in incinerators, which 394 

can help reduce the negative health effects of pollutants emitted by WtE plants. 395 

In addition to the above, the health risks of incineration (HI and CR) decrease with the increasing 396 

unit construction cost. The upgrade and optimization of clean incineration and ultra-low emission 397 

technologies can significantly reduce the health risks of incineration. For example, upgrading the 398 

"semi-dry + dry" deacidification process and incorporating wet scrubbers in WtE plants can effectively 399 

reduce the concentration of SO2
102. 400 

The ridge regression model revealed a significant impact of the unit construction cost on health 401 

risks, particularly on HI compared to CR, as seen in Figure S3. When the unit construction cost 402 

increases by 60,000 yuan·day/t, the HI decreases by 3.28% and the CR decreases by 2.18%. The 403 

development of more effective technologies for the removal of heavy metals and PCDD/Fs holds 404 

promise in mitigating these risks. On the other hand, reducing investment increases health risks, 405 

especially non-carcinogenic ones. This is because the unit construction cost of incinerators and 406 

purification facilities is limited by economic constraints. 407 

Meteorological conditions also exert a significant impact on the dispersion and deposition of 408 

pollutants. Higher wind speed, rainfall, and temperatures are associated with lower health risks. 409 

Additionally, the height of the chimney affects the landing concentration of pollutants emitted by WtE 410 

plants. The simulation results show that taller chimneys improve pollutant dispersion, dilution, 411 

deposition, transformation, and decomposition, effectively reducing health risks, as seen in Figure S4. 412 

For example, increasing the chimney height from 80 m to 100 m reduces HI and CR by 41.28% and 413 

33.19%, respectively. Further increasing the height to 200 m reduces HI by 21.47% and CR by 15.03%. 414 

Therefore, increasing the chimney height from 80 m to 100 m is an effective measure to mitigate the 415 

health risks associated with WtE plants. 416 
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4 Conclusions 417 

Based on the emission inventory of WtE plants in the Bohai Rim in 2020, this study innovatively 418 

assessed the health risks  from waste incineration by using ridge regression analysis.   The study 419 

examined the correlation between health risks and potential influencing factors, and proposed specific 420 

measures to lessen the risks. 421 

The conclusions are as follows: 422 

(1) Incineration in 30 cities in the Bohai Rim had HI ranging from 7.29 × 10−4 to 1.40 × 10−2 in 423 

July and from 6.64 × 10−4 to 8.68 × 10−3 in January,. The CR ranged from 1.19 × 10−7 to 9.81 × 10−7 424 

in July and from 6.22 × 10−8 to 5.74 × 10−7 in January. Both HI and CR were within acceptable limits 425 

(HI < 1, CR < 1 × 10-6). However, HI and CR differed widely across cities. 426 

(2) Ridge regression models for HI and CR had R2 of 0.654 and 0.613, respectively, and were 427 

significant according to ANOVA tests. The regression coefficients for both models exhibited a 428 

negative relationship with unit construction cost, wind speed, temperature, and rainfall, and a positive 429 

relationship with quantities of various incinerated materials. MSW classification effectively reduced 430 

the health risks of incineration. 431 

(3) When the recovery rate was constant, the recovery of food waste, dust, and paper had the most 432 

significant impact on reducing HI. In addition, dust, food waste, and paper had the most significant 433 

effect on reducing CR. When recovery quality was the same, textile recovery yielded the most 434 

substantial reduction in both HI and CR, followed by paper, dust, plastic and rubber, food waste, and 435 

wood and straw. 436 

(4) Increasing the chimney height of WtE plants was found to accelerate the diffusion, deposition, 437 

transformation, and decomposition of air pollutants emitted by the plants. This led to a significant 438 

reduction in the health risks of incineration in the Bohai Rim, especially when the chimney was 439 

upgraded from the current height of 80 meters to 100 meters. 440 
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Highlights 

 Inhalation health risks from the Bohai Rim's WtE plants were evaluated. 

 Determinants of incineration health risks and their correlations were 

investigated using ridge regression method. 

 Hazard indices (HI) in January and July were 4.07 × 10−3 and 1.82 × 10−3, 

respectively. 

 Cancer risks (CR) in January and July were 4.72 × 10−7 and 2.13 × 10−7, 

respectively. 

 Health risks from WtE plants can be reduced through MSW classification. 
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