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e X-ray free electron lasers and exascale computing provide synergistic
insights into biomolecular dynamics.

e Integrated research infrastructures provide experimental data analysis
and simulations on a minute timescale.
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Abstract

Serial femtosecond X-ray crystallography has emerged as a powerful method
for investigating biomolecular structure and dynamics. With the new gener-
ation of X-ray free electron lasers, which generate ultrabright X-ray pulses
at megahertz repetition rates, we can now rapidly probe ultrafast confor-
mational changes and charge movement in biomolecules. Over the last year
another innovation has been the deployment of Frontier, the world’s first ex-
ascale supercomputer. Synergizing extremely high repetition rate X-ray light
sources and exascale computing has the potential to accelerate discovery in
biomolecular sciences. Here we outline our perspective on each of these re-
markable innovations individually, and the opportunities and challenges in
yoking them within an integrated research infrastructure.
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the high peak brightness of the X-ray pulse also damages the sample shortly
after the diffraction data are obtained, and therefore samples must be con-
tinually replenished in the X-ray interaction region (Fig. 1)[14, 15].
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Figure 1: (a) Schematic illustrating the serial femtosecond X-ray crystallography (SFX)
experiment. The liquid jet replenishes the crystalline sample at the interaction point,
where the sample interacts with the X-ray pulse. Forward scattering data, which encodes
the structural information, is collected by a detector placed closely to the interaction
point. By pumping the sample with an optical laser pulse shortly before the X-ray pulse
arrives, the dynamics of photosensitive systems can be studied. (b) Fixed-target sample
delivery methods bring the crystalline sample into the interaction point using a chip or
other sample holder[16]. (c) Tape-drive systems use piezo-acoustic injectors to deposit
sample droplets on a conveyor belt system, from which X-ray diffraction and emission
data can be collected simultaneously[17]. (d) Automated droplet-on-demand systems are
another piezo-injector-based sample delivery system[18].

At XFELSs, dynamics can be probed by expanding the experimental setup
with a trigger, such as an optical pump laser (Fig. 1a)[19] or chemical pump,
using a mixing device[20]. By varying the time-delay between the trigger and
the X-ray pulse, macromolecular dynamics can be captured with femtosecond
time resolution. Time-resolved methods at the XFEL have greatly increased
our understanding of the ultrafast chemistry occurring within photosensitive
systems (e.g., photoactive yellow protein[21], photosystem I1[22], and the vi-
sual pigment rhodopsin[23]) and have captured the structural changes that
occur in macromolecules upon ligand binding (including e.g., RNA[24, 25]
and proteins that produce or provide resistance to antibiotics[3, 26]). Re-
cently, the application area of time-resolved studies at the XFEL has been
broadened through the development of new triggering methods, such as pho-
tocaged compounds|27], temperature jump excitation[28], and electric field
stimulation[29].
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Figure 2: Resolution ranges achieved by the different diffraction and scattering techniques
used for determining static structures and time-resolved dynamics: fluctuation X-ray scat-
tering (FXS), small/wide-angle X-ray scattering (SAXS/WAXS), single particle imaging
(SPI), cryogenic electron microscopy (cryo-EM), serial femtosecond X-ray crystallography
(SFX), serial synchrotron X-ray crystallography (SSX), and macromolecular X-ray crys-
tallography (MX). Methods that rely on cryogenic cooling of the sample (cryo-EM and
MX) are marked with an ice crystal. Arrows indicate the expected improvement in res-
olution driven by further method development. It should be noted that the resolution
range for SPI is expected to quickly expand in the following years as MHz XFELs become
available.

3. Impact of high-repetition rate X-ray light sources

As discussed above, XFELs are able to capture the ultrafast chemistry
and dynamics occurring within biological systems. However, the impact of
these light sources has been limited due to the ~100 Hz rate at which the
X-ray pulses are delivered at most facilities. Recently, a new generation of
XFELs (the European XFEL and LCLS-IT) has come online, providing X-ray
pulses at a megahertz rate. The European XFEL, in operation since 2017,
recently demonstrated the use of megahertz repetition rates for studying
biological structure and dynamics using time-resolved SFX [44, 45] and SPI
[46]. Meanwhile, LCLS-TI, which announced “first light” in 2023, will be
upgraded to deliver hard X-rays (>5 keV) in the coming years (LCLS-II-
HE)[47], making the facility suitable for structural biology experiments.
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by flops/MW).

To better appreciate the capability of Frontier for biomolecular simula-
tions, consider the simulation of Satellite Tobacco Mosaic Virus (STMV) in
explicit water [50]. As Table 1 shows, the time to solution that required 256

Machine hrs/ns
Ref. 50 (year 2006) 21.6
Workstation (with GPU) 16.8
Frontier 1 GPU 4.32
Frontier 2 GPU 2.40
Frontier 4 GPU 1.20

Table 1: Approximate times to obtain 1 ns of dynamics with a 1 fs timestep for the
STMV model system comprising about 1.07 x 10° atoms. Throughout, we use 7 cores
per GPU. Ref. [50] is the original study of the STMV model using 256 Altix nodes at
the National Center for Supercomputing Applications (NCSA). The desktop workstation
(built year 2022) is equipped with the NVIDIA RTX 6000 GPU. Frontier nodes have the
AMD MI250X GPUs. Simulations were performed with the NAMD(51] (ver. 3.0), with
the runs on Frontier in the so-called GPU-resident mode.

nodes of a supercomputer in year 2006 is now accessible with a single GPU
on a standard workstation. The more capable GPUs in Frontier (or its pre-
decessor, Summit) provide even better performance. Table 1 is meant only
to provide a high-level guideline. The important point is that just a fraction
of one node of Frontier is already a very capable machine for biomolecular
simulations.

Ensemble computing for integrating with experiments

The Summit supercomputer enabled a record-breaking 10° atom simulation
[52]. Preliminary testing shows that with 512 nodes of Frontier, we can cred-
ibly simulate 8 x 10 water molecules (Hagerty and Asthagiri, unpublished).
But what is more interesting is the potential to study thousands of copies of
a small (< 10% atom) system. The latter mode called ensemble computing
not only enables enhanced sampling and scanning in parallel a large range of
conditions of interest but is also of much interest in quantifying uncertainties
[53]. The ensemble-mode will be of high interest in integrating with experi-
ments at XFELs. We briefly review promising methodological developments
that are well suited for ensemble computing.
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a challenge in high-dimensions. An exciting recent development in this re-
gard is machine-guided transition path sampling [68], wherein a neural net-
work is trained to process a large collection of features, perhaps generate
autonomously, to converge on a set of features that help locate the transition
state. The final results can be interpreted using symbolic regression to derive
chemically meaningful models.

Finally, developments in the molecular quasichemical theory (QCT) of
solutions [69] now make it possible to obtain a comprehensive view of the
thermodynamics of biomolecules in solution [70], treating the molecule holis-
tically without relying on additivity assumptions that are often invoked in
interpreting the thermodynamics of biomolecular transformations [71]. The
QCT framework is rigorous, physically transparent, and designed to make
good use of available data, be it from simulations or experiments. As such,
the QCT framework is amenable to ensemble computing and can mesh with
MSM or weighted sampling approaches to predict thermodynamics of con-
formational substates.

5. A vision for building an integrated research infrastructure cou-
pling XFELs and exascale computing

The developments in XFEL and exascale computing are synergistic and
can enable a comprehensive understanding of biomolecular dynamics. Fig-
ure 3 is our vision for integrating these two techniques. While experimental
data is crucial for refining simulation parameters, integrating simulations
into time-resolved data analysis can advance and improve the analysis and
interpretation of experiments. We consider two specific possibilities, one
in steering experiments using information from simulations and another in
learning from experiments to improve simulations.

Simulations to steer the XFEL experiments

Machine learning methods are increasingly capable of characterizing and cali-
brating XFEL hardware [72] by integrating simulation and experimental data
(Fig. 3). We envision that simulations, through providing a detailed kinetic
model, can also predict the time delays at which we might find transition
states and inform us about the triggering time delay (in applying external
stimuli). A step in this direction is the use of a neural network to optimize
experimental design[73]. In a similar vein, simulations could provide rich in-
formation about the macromolecule’s response to varying physical/chemical
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briefly highlight key challenges. While being US-centered, it is informative to
consider the specifications for the plans of the US Department of Energy to
build an integrated research infrastructure between its major experimental
facilities, including XFELs, and the leadership computing facilities (Fig. 4):
the total aggregate and peak compute performance should be on the order of
exascale, filesystems must support high-throughput, concurrent data writing
and reading from many sources at once, centralized data storage facilities
should have capacities up to exabytes and networking bandwidths should be
on the order of terabytes per second. The current standard for the DOE
ESnet transmission rate is about 50 gigabytes per second, illustrating the
importance of effective data compression and motivating the push to higher
bandwidths across the network.

We should note that in addition to these infrastructure challenges, the
many-fold increase in data generation capacity of LCLS-II also calls for algo-
rithmic developments leveraging the state of the art in computer vision and
structure generation from diffraction patterns arising from a large number
of randomly oriented samples. The Exascale Computing Project within the
DOE developed a wide range of such software tools and libraries, including
the exaFEL suite of codes [75]. In addition, artifical intelligence and machine
learning techniques are being developed to enable GPU parallel computing
[76, 77] and tackle data compression[78, 79], so that actionable information
can be extracted quickly and accurately from the deluge of data back to steer
the experiment. Finally, to truly provide scientists with a seamless integra-
tion of data and algorithms which informs them on demand, it will be crucial
to track data and processing workflows through delocalized registries across
all facilities.

6. Conclusions

Being able to obtain time-resolved pictures of molecular transformations
from experiments at the XFEL and simultaneously study the same in com-
puter simulations opens broad possibilities for a deeper understanding of
biomolecular structure, dynamics, and function at ambient temperatures.
Technical challenges to integrate experimental and computational facilities
separated by a continent are being addressed, and those developments will
also favorably impact other areas of science and technology. We are at the
threshold of a new age that fully integrates experiments and computing at a
level that was not previously possible.
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