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Abstract
The  rice  reference  genome  (Oryza  sativa ssp. japonica cv.  Nipponbare)  has  been  an  important  resource  in  plant  science.  We  now  report  an

improved  and  haplotype  resolved  genome  sequence  based  upon  more  accurate  sequencing  technology.  This  improved  assembly  includes

regions missing in earlier genome sequences and the annotation of more than 3,000 new genes due to greater sequence accuracy. This phased

genome will be a useful resource for rice research.
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 Introduction

Nipponbare  is  a  japonica  rice  cultivar  that  has  been  widely
used  as  the  standard  reference  genotype  for  rice[1].  The  rice
(Nipponbare) genome was one of the first crop genomes to be
sequenced more  than 20  years  ago[2].  The  1st sequence of  the
rice  genome  was  completed  in  2002  and  was  a  major  mile-
stone  in  the  field  of  plant  genomics  by  the  International  Rice
Genome  Sequencing  Project,  2005[3].  These  international
collaborative efforts provided the first genome of a crop plant.
The  Nipponbare  genome  assembly  contained  gaps,  primarily
due to repetitive DNA sequences. In 2005, these gaps were esti-
mated to be approximately 18.1 Mb in total,  with the majority
originating  from  centromeres  and  telomere  regions.  Sequenc-
ing technological advancements and ongoing research efforts,
have improved the rice  genome sequence over  time[4,5].  Thor-
ough efforts were made to improve the quality of the Nippon-
bare  reference  genome  assembly  in  2013,  resulting  in  greatly
enhanced  accuracy  of  cDNA  sequences  and  gene  annotation,
while it  remained incomplete[5].  In the human genome, recent
significant  strides  have  been  made  in  assembling  and  charac-
terization the previously unexplored 8% of the human genome,
especially including telomere sequences[6].

Reference genome assemblies often contain gaps, especially
regions with repetitive sequences, termed the 'dark side' of the
genome[7,8].  New  sequence  technology  allows  improved
assembly  quality,  with  less  gaps,  leading  to  a  more  complete
and  accurate  representation  of  the  genome.  The  achievement
of  a  higher  quality  and  more  complete  reference  genome  will
provide new insights  into genomics  and breeding,  supporting
pan-genome  studies  and  genome  wide  association  studies[9].
Recently many other Oryza genomes have been sequenced and
assembled,  including  indica  and  wild  rice  species[9−11] Most
recently the Nipponbare genome sequence gaps and telomere
sequence were addressed[12,13]. Despite these advancements, a
fully  haplotype  resolved  assembly  has  not  been  reported.  In
this  study,  we have used PacBio HiFi  reads to  produce a  more

accurate  genome  sequence  assembly.  The  novel  genome
assembly is not only almost 11.3 Mb longer than the IRGSP-1.0
reference  but  also  exhibits  improvements  in  all  chromosomes
(Fig.  1),  including the addition of  telomeric regions in all  chro-
mosomes (T2T),  with  the  addition  of  fully  resolved haplotypes
(haplotype  1  and  haplotype  2,  telomere-to-telomere-T2T)
(Tables 1, 2 & Supplemental Tables S1−S10).

Comparative analysis of annotations of the new genome (UQ
Nipponbare)  and  the  IRGSP-1.0  reference  revealed  the  pre-
sence of 3,050 additional genes, for which more than 95% had
supporting transcript evidence (Supplemental Fig. S1).

These  findings  underscore  the  potential  of  new  sequencing
technologies  to  significantly  augment  reference  genomes,
potentially  leading  to  more  comprehensive  genetic  informa-
tion.  These  results  also  suggest  that  applying  advanced
sequencing  technologies  to  other  established  genomes  may
yield  similar  benefits,  potentially  enhancing  our  knowledge  of
these species. This study highlights the continuous evolution of
genomics  and  underscore  the  importance  of  staying  at  the
forefront of sequencing technologies for the accurate represen-
tation of complex genomes.

PacBio  HiFi  reads  and  Hi-C  reads  were  used  to  generate  a
contig assembly with Hifiasm[14] producing a haplotype phased
assembly.  The  contig  level  assembly  produced  single  contigs
for  nine  chromosomes,  while  the  remaining  three  chromo-
somes were each covered by two contigs each. Hi-C data were
employed  to  hierarchically  cluster  the  assembled  contigs  into
12  pseudo-chromosomes,  by  using  the  YaHS  scaffolding
tool[15].  The T2T assembly had a single scaffold for  each of  the
12 pseudo-chromosomes and was larger in size than the corre-
sponding IRGSP.10 genome (Fig. 1). The results of BUSCO analy-
sis  showed  that  the  collapsed  assembly  covered  99.3%  of  the
universal  single  copy  genes  with  an  N50  of  30.7  Mb  (Supple-
mental  Tables  S1−S3).  The  UQ  Nipponbare  collapsed  genome
assembly  is  larger  in  size  compared  to  the  IRGSP.1.0  Nippon-
bare  reference  genome  assembly.  In Fig.  2,  additional
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non-aligning  regions  of  each  chromosome  in  the  UQ  Nippon-
bare collapsed assembly are highlighted, along with the struc-
tural  variants  in  the  comparison  of  the  previously  published
IRGSP1.0 Nipponbare reference genome assembly.

For  the  two  phased  haplotypes  (T2T)  of  UQ  Nipponbare;
haplotype  1  covered  98.9%  of  the  single  copy  orthologs  with
an  N50  of  30.6  Mb,  whilst  haplotype  2  covered  94.9%  single
copy  orthologs  with  an  N50  of  29.3  Mb  (Supplemental  Tables
S4−S9 & Supplemental Figs S2 & S3). The haplotype 1 chromo-
somes were larger than the haplotype 2 chromosomes (Fig. 3).
This  first  haplotype  resolved  Nipponbare  genome  incorpo-
rated 3,050 new genes compared to IRGSP-1.0, and is expected
to  be  a  valuable  and  significant  resource  for  rice  researchers,
and  these  additional  genes  had  a  wide  range  of  functions
(Supplemental Table S11). Of these additional genes, 58 genes

fell in new regions that were missing in the IRGSP genome, but
most  genes  were  in  regions  that  were  not  new  due  to  the
improved accuracy of sequencing.

 Methods

 DNA extraction and sequencing
The  CTAB  method[19] was  used  to  extract  DNA  from  young

leaves  of  a  rice  (Oryza  sativa cv  Nipponbare)  plant  grown  in  a
glasshouse at the University of Queensland (Australia). The high
quality  DNA  extracted  was  sequenced  using  a  PacBio  (Pacific
Biosciences) Sequel II platform to produce HiFi sequences.

 Genome assembly
Approximately  54.9  Gb  of  HiFi  reads  were  obtained.  HiC

reads  (59.6  Gb)  were  downloaded  from  the  NCBI  Sequence
Read  Archive  database  (SRR6470741). De  novo haplotype-
resolved assembly of these reads was performed using hifiasm
with parameters '--write-ec --write-paf -l0'[14]. The contig assem-
blies  were  scaffolded  using  the  YaHS  tool[15].  QUAST  and
BUSCO were used to evaluate the quality and completeness of
a genome assembly[16,17]. A telomere identification toolkit (tidk)
was  used  to  search  for  tandem  repeats  of  the  telomeric
sequence  'TTAGGG'  and  'TAAACCC'  and  the  exact  location  in
the  Nipponbare  collapse,  haplotype-1  and  haplotype-2
assembly (https://github.com/tolkit/telomeric-identifier).
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Fig. 1    Comparison of the UQ Nipponbare genome with previously published reference genome assembly IRGSP.1.0 Nipponbare. (a), (b) For
UQ Nipponbare all the chromosome sizes are larger and most include telomeres as compared to IRGSP.1.0 Nipponbare. (c) Whole genome dot
plot of UQ Nipponbare genome vs IRGSP.1.0 Nipponbare.

Table  1.    Statistics  for  the  UQ Nipponbare  haplotype resolved genome
assembly.

UQ_Nip-collapsed UQ_Nip-Hap1 UQ_Nip-Hap2

Total assembly size 381,317,026 379,234,557 348,265,595
Complete BUSCOs (%) 99.30% 98.90% 94.90%
Total scaffold number 12 12 12
Scaffold N50 30,712,252 30,691,512 29,307,860
Scaffold L50 6 6 6
Largest scaffold 43,960,277 43,881,444 37,312,016
GC content (%) 44 44 43
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 Genome annotation
Repetitive  DNA  sequences  were  obtained  from  a  Oryza

repeat  database[18] and  used  to  mask  the  genome  with  the
Repeatmasker  soft  masking  option[19].  Protein  sequences  of
Viridiplantae from OrthoDB v.11[20] and RNA-sequencing (RNA-
seq)  reads  from  the  NCBI  Sequence  Read  Archive  database
(SRR23560402,  SRR23560417,  SRR23560416,  SRR23560419,
SRR23560418,  SRR23560409,  SRR23107175,  SRR23107177,
SRR23107178,  SRR8051554,  SRR7974062,  SRR8051550)  were
obtained.  Quality  and  adapter  trimmed  RNA-seq  reads  were
aligned to the masked genomes using HISAT2[21]. Annotation of
protein-coding  genes  in  Nipponbare  was  conducted  using  a
combination  of  homology-based  prediction, de  novo predic-
tion,  and  transcriptome-based  prediction  methods  using

Braker[22].  BUSCO  was  used  to  assess  the  genome  annotation
completeness. The Large Gap Mapping tool (length fraction; 0.9
similarity  fraction;  0.9)  of  CLC  was  used  to  identify  the  new
genes  with  the  comparison  of  IRGSP-1.0  Nipponbare  genes
(CLC  Genomics  Workbench  23.0.05,  QIAGEN,  USA,
www.clcbio.com) and further transcript evidence for these new
genes was estimated (Supplemental Table S12). The functional
annotation  of  the  identified  additional  genes  was  performed
using  OmicsBox  2.2.4[23].  CDS  sequences  were  subjected  to  a
BLASTX  analysis  with  a  specific  e-value  of  1.0E-10  against  the
non-redundant  protein  sequences  database,  utilizing
Viridiplantae  taxonomy.  Subsequently,  the  CDS  sequences
were  processed  through  InterProScan,  and  GO  terms  were
extracted  for  all  matches  acquired via the  BLAST  search,

Table 2.    UQ Nipponbare haplotype resolved genome assembly chromosomes sizes and telomere numbers.

UQ_Nip-Collapsed-Assembly UQ_Nip-Hap1 UQ_Nip-Hap2

Chr Size Telomere Chr Size Telomeres Chr Size Telomeres

OSUQ01 43,960,277 2 OSUQ01-hap1-01 43,881,444 2 OSUQ01-hap2-01 37,312,016 2
OSUQ02 36,506,049 2 OSUQ02-hap1-02 36,408,562 2 OSUQ02-hap2-02 33,128,268 2
OSUQ03 37,404,130 2 OSUQ03-hap1-03 37,357,616 2 OSUQ03-hap2-03 35,934,962 2
OSUQ04 36,083,220 2 OSUQ04-hap1-04 35,866,358 2 OSUQ04-hap2-04 33,298,206 2
OSUQ05 30,417,698 2 OSUQ05-hap1-05 30,178,946 2 OSUQ05-hap2-05 24,819,415 2
OSUQ06 32,132,640 2 OSUQ06-hap1-06 32,049,832 2 OSUQ06-hap2-06 32,067,105 2
OSUQ07 29,813,588 2 OSUQ07-hap1-07 29,708,413 2 OSUQ07-hap2-07 28,849,953 2
OSUQ08 28,607,546 2 OSUQ08-hap1-08 28,566,876 2 OSUQ08-hap2-08 26,254,248 1
OSUQ09 23,461,744 1 OSUQ09-hap1-09 23,221,905 OSUQ09-hap2-09 21,159,188 1
OSUQ10 23,948,751 2 OSUQ10-hap1-10 23,192,984 2 OSUQ10-hap2-10 21,409,976 2
OSUQ11 30,712,252 2 OSUQ11-hap1-11 30,691,512 2 OSUQ11-hap2-11 29,307,860 1
OSUQ12 28,269,131 2 OSUQ12-hap1-12 28,110,109 2 OSUQ12-hap2-12 24,724,398 2

 
Fig.  2    Sequence  collinearity  and  structural  variants,  including  inversions,  translocations,  duplications,  and  non-aligning  regions,  were
analysed between the UQ Nipponbare genome assembly and the IRGSP-1.0-Nipponbare genome assembly. The two assemblies were aligned
using minimap2,  and the resulting BAM file  was indexed with samtools.  Detection of  structural  variations between these two genomes was
performed using SyRI[26−28]. The non-aligning regions of chromosomes 1 and 11 are highlighted in the bottom section of the figure.
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employing Gene Ontology mapping with the Blast2GO annota-
tion  tool.  The  annotations  generated  from  InterProScan  and
Blast2GO were then harmonized by merging the respective GO
terms (Supplemental Table S11).
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