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Abstract—This paper presents our research in the pre-launch
phase of the Kanyini mission, which aims to implement an
energy-efficient, AI-based system onboard for early fire smoke
detection using hyperspectral imagery. Our approach includes
three key components: developing a diverse hyperspectral train-
ing dataset from VIIRS imagery, groundwork in band selec-
tion and AI model preparation, and developing an emulation
system. We adapted and evaluated our previously developed
lightweight convolutional neural network model, VIB SD, to
meet the computational constraints of satellite deployment. The
emulation system tests various onboard AI tasks and processes.
Our comprehensive experiments demonstrate the feasibility and
benefits of employing onboard AI for fire smoke detection,
significantly improving downlink efficiency, energy consumption,
and detection speed.

Index Terms—AI onboard; fire smoke detection; satellite
emulation

I. INTRODUCTION

With the escalating threat of wildfires due to climate change,
the need for early detection has become paramount in mini-
mizing their destructive impact on society, ecosystems, and
economy [1], [2]. Satellite Remote Sensing has emerged as
a cost-effective and reliable tool for fire detection, benefiting
from the growing deployment of satellites dedicated to Earth
monitoring [3]–[6]. As smoke is usually the first thing you
can see from space before the fire gets hot and big enough
for sensors to detect fire heat, detecting fire smoke becomes
crucial for early warning and timely response to mitigate
potential risks and damages.

However, the prevalence of microsats and nanosats and the
increased spatial and spectral resolution of imagery captured
by modern earth observation sensors have greatly increased
bandwidth usage. This has led to research into optimizing
up/downlink bandwidth resources. For many sensor systems,
only a fraction of the data collected contains critical informa-
tion related to the specific purpose of a mission. To address this
issue, recent advances in low-power computing platforms and
the advent of artificial intelligence (AI) technology have paved
the way for the adoption of edge computing [7]. By leveraging
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hardware accelerators and deploying efficient algorithms like
Convolution Neural Networks (CNNs) onboard, tasks such
as early fire smoke detection can be performed, allowing for
timely alarm generation in the event of bushfires [8]–[10].

The Kanyini satellite mission [11] is a collaborative ef-
fort between the South Australian Government, the SmartSat
Cooperative Research Centre (CRC), and industry partners,
including Inovor Technologies and Myriota. The mission aims
to launch a 6U CubeSat satellite into low Earth orbit to
collect data on bushfire preparedness, response and resilience,
as well as inland and coastal water quality. Equipped with a
hyperspectral imager (HyperScout-2 manufactured by Cosine),
the satellite sensor will capture reflected light from Earth
in different wavelengths to generate detailed surface maps
for various applications, including bushfire monitoring, water
quality assessment, and land management. The anticipated
launch year is 2024, with an estimated cost of $6.5 million.
The collected data will be publicly accessible and utilized
by government agencies, businesses, and researchers. This
mission holds significance for the space industry of South
Australia, being the first state-based satellite in Australia, and
is expected to contribute to the state space sector growth.
Moreover, the acquired data will aid in enhancing bushfire
and water resource management within South Australia.

Our research project, part of the Kanyini mission, aims
to provide a solution for energy-efficient AI-based onboard
processing of hyperspectral imagery for early fire smoke
detection. This work fills the gap of using a small AI model to
detect fire smokes in a cube sat with limited computation and
data down-linking capabilities. To the best of our knowledge,
the work [12], [13] is the only one similar in settings to
ours but it is in the area of cloud detection. Our work is
different in the following aspects: our pre-launch study does
not have available hyperspectral dataset matching the band-
widths of the sensor to be launched; and our work is for newer
generation of VPUs whereby the development environment has
been updated and some functions available in the version used
in [12] are not available in the new version. We report detailed
hardware, software settings, and the performances of not-only
smoke model accuracy, but also results about bands selection,
and downlinking data sizes.

This project consists of two phases: pre-launch and post-
launch. The pre-launch phase focuses on evaluating the feasi-
bility and benefits of onboard smoke detection, while the post-
launch phase deploys and optimizes the AI-based fire smoke
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detection system to Kanyini, leveraging real satellite data and
refining onboard processing capabilities to enhance accuracy
and efficiency. This paper presents our work in the pre-launch
phase.

To evaluate the feasibility of onboard smoke detection,
we have chosen our previously developed CNN-based model,
Variant Input Bands for Smoke Detection (VIB SD) [14], as
a suitable lightweight AI model for the Kanyini/HS2 mission.
VIB SD was originally designed and trained with Landsat-
8 imagery, it has not yet been tested for onboard tasks and
was trained with different number of bands to classify a
different set of classes. Therefore, it requires some adaptations,
alongside retraining and comprehensive evaluation, to ensure
its effective deployment on the Kanyini satellite.

Since the actual computing environment and real hyperspec-
tral imagery captured by HS2 onboard the Kanyini satellite
were not available during the early stage of the mission,
we simulated a comprehensive training dataset from VIIRS
imagery, which encompassed a wide range of generated hy-
perspectral imagery and the dataset covers various fire smoke
scenarios across Australia. To evaluate the onboard perfor-
mance, we developed an emulation system to evaluate each
step of onboard processes and AI tasks using computational
capabilities similar to those of the Kanyini satellite.

Our experiments have demonstrated significant advantages
of integrating AI onboard for smoke detection in satellite
imagery, as compared to traditional methods. As detailed in
Section IV-C, for scenarios where 10% of the imagery con-
tains fire smoke, the AI onboard approach markedly reduces
the data downlink volume to just 16% of its original size
(from 388MB to 61MB), resulting in an 84% decrease in
energy consumption (from 0.414 to 0.065 Watt-Hour). Such
efficiency is particularly advantageous considering the limited
downlinking capacity during each satellite pass, underscoring
the effectiveness of onboard AI in optimizing resource usage
in satellite-based monitoring tasks.

In summary, the major contributions of our work presented
in this paper are:

1) Generation of a comprehensive hyperspectral train-
ing dataset: We created a training dataset using the Visi-
ble Infrared Imaging Radiometer Suite (VIIRS) imagery
that encompasses diverse variations of fire smoke. The
dataset includes four fire smoke scene-related classes,
namely ”Smoke,” ”Cloud,” ”Mixed,” and ”Clear.” This
dataset provides a valuable resource for training and
evaluating fire smoke detection models.

2) Emulation system for onboard performance evalu-
ation: We developed an emulation system to evaluate
the onboard performance of different processes and AI
tasks. This system serves as a valuable tool for opti-
mizing algorithms and workflows before the deployment
on actual satellite systems, ensuring the efficiency and
effectiveness of onboard processing.

3) Adaptation and deployment of the VIB SD model:
We adapted the VIB SD model, a lightweight CNN-
based approach suitable to operate within the computa-
tional and data transfer constraints of the HyperScout-
2 sensor on the Kanyini satellite. The VIB SD model

demonstrates a high prediction accuracy and achieves
a low false negative rate on the simulated dataset,
indicating its effectiveness in detecting fire smoke.

4) Comprehensive experimental evaluation: We con-
ducted comprehensive experiments to evaluate the var-
ious scenarios of onboard processing, providing empir-
ical evidence on the feasibility and significance of AI
onboard smoke detection. These experiments validate
the benefits of onboard smoke detection in terms of
downlink efficiency, energy consumption, and detection
speed.

The paper is organized as follows: Section II reviews the
related work in AI onboard and fire/smoke detection. in Sec-
tion III, we provide an overview of the simulation process for
the training dataset, describe the architecture of VIB SD, and
detail the design of the emulation system. Section IV presents
and discusses the experiments and results on the prediction
accuracy of VIB SD with different selected bands and the
emulation results of various onboard processes. Section IV-D
discusses the limitations and constraints of the research. Fi-
nally, Section V summarizes the key conclusions drawn from
the study, and also explores potential future directions.

II. RELATED WORK

The advancement of Artificial Intelligence (AI) in satellite
systems has been marked by substantial progress. Initially,
research in this area was concentrated on the application of
AI algorithms and machine learning techniques for on-ground
processing of satellite imagery data. These applications span
a range of fields including land cover classification [15],
[16], vegetation monitoring [17], [18], water quality assess-
ment [19], disaster response [20], [21], climate change moni-
toring [22], [23], and smoke detection [5], [6].

More recently, the focus has shifted toward the onboard de-
ployment of AI in satellite systems. Implementing AI directly
on satellites offers several distinct advantages such as au-
tonomous decision-making and real-time data analysis, thereby
significantly improving mission performance [24]. However,
deploying AI onboard also presents unique challenges, par-
ticularly constraints related to hardware and computational
capacity [8], [24].

To mitigate these constraints, several studies have explored
AI solutions in the context of onboard optical and multispectral
imaging. Salazar et al. proposed a Convolutional Neural Net-
work to autonomously prioritize RGB images based on cloud
coverage levels, thereby optimizing the limited bandwidth of
small satellites [25]. Similarly, Del Rosso et al. focused on de-
tecting volcanic eruptions through CNN designed specifically
to work within the computational constraints of aerospace
applications [26]. Mateo-Garcia et al. proposed ’WorldFloods’,
an in-orbit re-trainable machine learning payload that not
only processes optical imagery for flood mapping but is also
capable of ’on-the-fly’ model updates [27]. Moreover, work in
multispectral sensing for environmental monitoring has shown
the capability of machine learning algorithms to estimate
variables like sea ice concentration and soil moisture [28],
[29].
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A specific focus within these developments is the use of AI
for hyperspectral imaging [12], [13], [30]. Hyperspectral data
offer richer informational content but at the cost of gener-
ating larger datasets, which are challenging both to process
onboard and to transmit back to Earth. One notable study
published in [12], [13] presents the first in-orbit demonstration
of AI applied to hyperspectral and thermal sensing using the
HyperScout-2 imager. Deployed in the ϕ-Sat-1 mission, it
utilized a CNN for cloud detection with an 95% accuracy.
Another work [31] showcases the in-orbit demonstration of
HyperScout-1, the first hyperspectral imager for nanosatel-
lites, with potential applications in land cover classification,
vegetation monitoring, water quality assessment, and disaster
response. AI has also been applied for wildfire detection in
the hyperspectral domain. Thangavel et al. have conducted a
case study using CNNs to detect wildfires autonomously in
hyperspectral imagery [32]. Further, Spiller et al. investigated
edge computing approaches to perform wildfire segmentation
analysis directly from satellite platforms, discussing the feasi-
bility of implementing CNNs on various hardware accelerators
like Intel Movidius Myriad 2 and Nvidia Jetson series for
real-time alerting [33]. These advancements not only pave the
way for more real-time applications but also demonstrate the
growing emphasis on using AI for complex hyperspectral data
analysis in an onboard setting.

With the promising benefits of current and upcoming Cube-
Sat missions equipped with hyperspectral sensors, a thor-
ough investigation of the energy consumption associated with
application-specific AI onboard processing solutions during
the pre-launch phase is crucial. Such an emulation is essential
for accurate estimations of onboard performance and allows
for the efficient calibration of AI models post-launch once real-
world data are available. This paper focuses on the pre-launch
phase.

III. MATERIALS AND METHODS

In this section, we present the procedures undertaken during
the pre-launch phase for AI onboard fire smoke detection, as
illustrated in Figure 1. The workflow is divided into three main
components: (1) training dataset generation; (2) on-ground
preparation; and (3) onboard emulation. The training dataset
generation component involves the synthesis of Hyperscout-
2 (HS2) imagery. From this synthesized data, we generate
and pre-label a training dataset over a wide range of fire
smoke conditions, further detailed in Section III-A. The second
component, on-ground preparation, encompasses a variety of
tasks including band selection analysis, AI model preparation,
and the setup and tuning of the emulation system. The details
are elaborated in Sections III-C, III-B, and III-D, respectively.
The onboard emulation component includes the emulation of
onboard performance and the evaluation of the AI model in
an onboard setting. The details are presented in Section III-D.

A. Training Dataset Generation
Due to the fact that the Kanyini satellite is yet to be

launched, a simulated imagery dataset was generated for
training the VIB SD learning model through a series of steps
outlined below.

Fig. 1. overview of the pre-launch phase for AI onboard fire smoke detection.
There are three main components of the workflow: (1) Training Dataset
Generation, where Hyperscout-2 (HS2) imagery is synthesized to create a pre-
labeled training dataset covering a diverse range of fire smoke conditions; (2)
On-Ground Preparation, which involves tasks such as band selection analysis,
AI model preparation, and setting up and tuning the emulation system; (3)
Onboard Emulation, depicting the emulation of onboard performance and the
evaluation of the AI model in an onboard setting.

1) Generating HyperScout-2 imagery: The HyperScout-2
hyperspectral imager captures 45 spectral bands across the
400-1250 nanometre range and 3 bands at thermal wavelengths
between 8-14 µm. HS2 achieves a ground-sampling distance
of 75 m/pixel at an orbit of 500 m altitude [13], and an
optimal resolution of 390m in the TIR (thermal infrared).
The NASA/NOAA Suomi NPP satellite carrying VIIRS was
chosen to provide spectral data for hyperspectral imagery sim-
ulation instead as it captures daily imagery over the Australian
continent. VIIRS however has a coarser resolution of at best
375 m for visible – SWIR, and 1000 m for TIR. It also has a
much coarser spectral resolution being a multispectral instead
of hyperspectral camera, and has only 11 bands that provide a
wavelength overlap to those of HS2. Out of 48 spectral bands,
this then left 27 HS2 spectral bands that required simulation.
It should be noted that VIIRS imagery is captured with a
radiometric resolution of 12 bits, in contrast to the 16-bit
resolution of HyperScout-2 [9]. Further information can be
found in our project report [34].

The VIIIRS products utilised for simulating HS2 imagery
were the VNP09GA daily surface reflectance L2 product at
500m and 1km resolution, and the VNP09CMG daily L3
product at 0.05 degree spatial resolution that provides surface
emission and brightness temperature. Both data products are
corrected for atmospheric conditions. The VIIRS reflectance
imagery (visible-SWIR wavelengths) was accessed via the
Land Processes Distributed Active Archive Center (LP DAAC)
APPEEARS data access tool [35] while the emission imagery
(thermal wavelengths) was accessed via direct download link
available from LP DAAC.

HyperScout-2 simulated images were produced by first
transform the VIIRS imagery to the best expected resolution of
HS2 image resolution, using bi-linear interpolation algorithm.
This does not infer any new spatial information, but merely up-
samples the image pixel grid to a higher resolution. Secondly
band gaps or missing spectral information, of which there
are 27, were filled through a combination of (i) duplicating
spectral information, where broader wavelength range VIIRS
bands encompassed 2 or more HS2 bands; and (ii) applying
spectrally averaging of 2 VIIRS bands at a longer and shorter
wavelength than the missing wavelength band. Poissonian
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distributed random noise R(λ) was multiplicatively added to
each pseudo-band as appropriate for electromagnetic imagery
(e.g. photon noise, (Syed et al. 2022)).

2) Training Sample Acquisition: They are necessary for the
development of an accurate and smoke-biased detection model,
the proposed training dataset imagery acquisition followed
three principles:

• Aim to distinguish 4 classes: smoke, cloud, mixtures of
aerosols, and with the remaining pixels being assigned to
background land-cover and land-use (LULC).

• Aim to capture as much variance within each of those 4
classes so that the model is robust in a real-life scenario.

• Encompass as much generic variations in the image data
related to the HS2 satellite model, so that the model
is also robust to the variations in changes to image
acquisition (e.g. scale, lighting changes, season, contrast,
image noise).

To produce the simulated imagery dataset, 6 regions of
interest were chosen across 5 Australian states and territories,
encompassing over 53 million hectares of land surface area.
Image dates were chosen to overlap historical fire events in
each state, resulting in the processing of over 500 VIIRS
satellite images over 200 dates, and bushfire events over
3 years from 2018-2020. This broad range in spatial and
temporal characteristics in the training data is essential as it
allows capturing different seasonal bushfire events, occurring
in different climactic zones, with imagery captured at different
times of day, and viewing angles. This heterogeneity is crucial
for the robustness of an AI smoke detection model.

Imagery tiles were produced by partitioning the simulated
HS2 imagery (derived by methods described above from the
VIIRS satelite images), at 75 m/pixel resolution, 48 spectral
bands, and 1 additional band consisting of a ”smoke”, ”cloud”,
”smoke cloud mixtures” mask derived from the Hyperscout-
2 Smoke Detection Algorithm (HSSDA), into square grids
containing 256x256 pixels (in the x-y dimensions). Each tile
covers a region of 19.2 x 19.2 km (36864 ha) on the ground.
The square grids, or tiles, were arranged so that they had
50% overlap in both the x and y direction. Tiles were only
retained if all 256x256 pixels in each dimension contained
valid spectral information. The final neural network training
dataset comprised 189,964 labelled hyperspectral tiles with
classes differentiating ”smoke”, ”cloud”, and ”mixtures of
smoke, haze, cloud and other aerosols” for the specific purpose
of training an AI smoke detection model for hyperspectral
data.

The HSSDA was developed using a risk-adverse approach,
broadly adapted from [36] and refined via empirical research
whereby pixels very unlikely belonging to one of the following
three aerosol classes of interest were removed. The formula for
the ”HyperScout-2 Smoke Detection Algorithm” (HSSDA),
and the method for assigning pixels to classes, is as follows:

• If (NDV I ≤ 0.51) or (NDBR ≤ 0.2) or (RNIRB ≤
4.5) or (NDVNIR ≤ 0.31) then: Pixel mask value = 0,
Class 0, ”no aerosol”;

• If (SLOPE2 < 5000) and (B16 < 1500) then: Pixel
mask value = 1, Class 1, ”smoke endmembers”;

• If (B16 > 3000) then: Pixel mask value = 3, Class 3,
”cloud endmembers”;

• Otherwise: Pixel mask value = 2, Class 2, ”aerosol
mixels”.

Where the spectral indices are defined below, both in general
wavelength regions, and in comparison to HS2 band numbers:

• Normalized Difference Vegetation Index (NDVI): NDVI
= (NIR - RED)/(NIR + RED) = (B30 - B16)/ (B30 +
B16)

• Normalized Difference Red Blue (NDBR): NDBR =
(RED - BLUE)/(RED + BLUE) = (B16 - B6)/ (B16 +
B6)

• Ratio NIR to Blue (RNIRB): RNIRB = NIR / BLUE =
HB30/B6

• Normalized Difference Violet NIR (NDVNIR): NDVNIR
= (VIOLET - NIR)/(VIOLET + NIR) = (B1 - B29)/ (B1
+ B29)

• Smoke-Cloud spectral slope index 1 (SLOPE1): SLOPE1
= (REDE - RED)/(0.744 - 0.648) = (B22 - B16)/(0.744
- 0.648)

• Smoke-Cloud spectral slope index 2 (SLOPE2).

The SLOPE1 and SLOPE2 indices were developed here as
they were found to differentiate key spectral features of clouds
and smoke. Although the SLOPE1 index is not used explicitly
in the classification of pixels values for smoke detection it
was found to provide useful information post-classification in
smoke-plume characteristics, particularly in identification of
the near-source (fire) end of the plume.

B. The VIB SD Model

Our previously proposed fire smoke detection model,
VIB SD [14], is a lightweight AI model designed specifi-
cally for fire smoke detection using multi-spectral satellite
imagery. VIB SD integrates two key modules, respectively
the Inception-Attention Module and the Inception-Residual
Module, to facilitate residual learning and feature extraction at
multiple scales, allowing an accurate detection of fire smoke
in various scenarios from satellite imagery, even if the fire
smoke is mixed with other types of aerosols such as cloud or
dust.

We chose VIB SD as the onboard AI model for our
emulation experiments for two primary reasons. First, VIB SD
is resource-efficient, featuring approximately 1.6 million pa-
rameters, in contrast to other state-of-the-art models that can
have over 50 million parameters. This lightweight archi-
tecture makes it well-suited for onboard satellite detection.
Second, VIB SD has demonstrated high prediction accuracy
in fire smoke detection tasks using multi-spectral satellite
imagery. In a previous study [14] VIB SD achieved an ac-
curacy rate of 93.57% when using 368 Landsat-8 imagery
with 256 × 256 resolution, classified into three categories:
“Clear,” “Other aerosol,” and “Smoke.” Moreover, on syn-
thetic HyperScout-2 hyperspectral imagery, VIB SD reached
a prediction accuracy of 95.7% and had a false negative rate
of only 2.3%. Readers can refer to [14] for more details about
the VIB SD model.
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C. Band Selection

The HyperScout-2 sensor employed in the Kanyini satel-
lite captures images comprising 45 visible and near-infrared
(VNIR) bands and 3 thermal bands. However, when imple-
menting AI onboard for fire smoke detection, the satellite does
not have the capability to support a large AI model that utilizes
input from all 48 bands. To address this limitation, we conduct
on-ground based band selection to identify the bands that have
the most significant impact on distinguishing between smoke
and non-smoke tiles. Only the identified bands are extracted
from the tiles during AI inference onboard before being fed
into the AI model.

To explore the effectiveness of different band selection tech-
niques, we employed three commonly used techniques: Pear-
son Correlation (COR), Principal Component Analysis (PCA)
[37], and Random Forest (RF) [38], [39]. Among these, PCA
operates as an unsupervised method, utilizing all available data
points irrespective of their labels. For Pearson Correlation,
despite its typical categorization as an unsupervised technique,
we adapted it for a supervised context by correlating features
with the pixel classes as described in Section III-A2. Random
Forest is a supervised method. Therefore, both COR and RF
require labeled data for band selection. Band selection using
COR and RF was conducted only using the training set.

The band importance derived from COR, PCA and RF
methods is depicted in Figure 2. All three methods effectively
identify the 11 original bands from the VIIRS imagery with
higher importance for smoke detection, demonstrating the gen-
eral effectiveness of these band selection techniques. A notable
observation is the varying degrees of band prioritization across
the methods. The RF method exhibits the largest variation
in band importance, indicating a more distinct differentiation
among bands. Conversely, the PCA method results in the
least variation, suggesting a more uniform importance across
the bands. This variation in the band importance show an
impact on the performance of smoke detection (discussed in
Section IV-B).

To evaluate the smoke detection performance of the
VIB SD model using various selected band sets, experiments
were conducted with datasets comprising different band com-
binations. In addition to the three aforementioned band selec-
tion methods, two additional approaches were implemented:
the Ground Truth (GT) method and the Low Band Importance
(LBI) method. The GT method involves selecting bands that
are used to generating the pixel classes for labeling the tiles.
Specifically, bands B16, B22, B29, B1, B6, and B30 were
chosen for in the GT method, as detailed in Section III-A.
This approach serves to benchmark the effectiveness of the
band selection methods against an optimal scenario. The
LBI method, on the other hand, includes bands consistently
identified as of low importance by all three selection methods,
providing insight into the potential impact of poor band
selection on smoke detection performance. A summary of
the bands selected by each of the five methods is provided
in Table I. The smoke detection performance using different
selected bands are analysed and discussed in Section IV-B.

TABLE I
TOP BANDS IDENTIFIED BY THE FIVE METHODS

RF 1 PCA 2 COR 3 GT 4 LBI 5

Top 1 B16-I1-Red B6-M3-Blue B3-M2-Violet B16-I1-Red B31-pM7-NIR
Top 2 B1-M1-Violet B22-M6-RedEdge B16-I1-Red B22-M6-RedEdge B32-pM7-NIR
Top 3 B18-M5-Red B47-M15-THERM B29-I2-NIR B29-I2-NIR B33-pM7-NIR
Top 4 B30-M7-NIR B29-I2-NIR B22-M6-RedEdge B1-M1-Violet B34-pM7-NIR
Top 5 B29-I2-NIR B16-I1-Red B6-M3-Blue B35-pM7-NIR
Top 6 B30-M7-NIR B36-pM7-NIR

1 RF: Random Forest; 2 PCA: Principle Component Analysis; 3 COR:
Pearson Correlation; 4 GT: Ground Truth; 5 LBI: Low Band Importance

D. The Emulation System

To assess the efficacy of onboard processes, we have con-
structed an emulation system that approximates the computa-
tional environment of the Kanyini satellite. On the hardware
front, the system employs a Raspberry Pi (RPi) 4 Model
B, featuring a Cortex-A72 (ARM v8) 64-bit SoC running at
1.5GHz with four cores, along with 4GB of RAM. Addition-
ally, we utilize an Intel Neural Compute Stick 2 (NCS2), which
is equipped with 16 SHAVEs and incorporates Intel Myriad
X chip.

For software alignment, we configured the system to closely
emulate the satellite specifications. The operation system of the
Raspberry Pi is Raspberry Pi OS (Buster). We implemented a
software pipeline that incorporates OpenVINO toolkit version
2021 [40]. This setup enables the evaluation of various perfor-
mance metrics such as execution time, memory consumption,
and power usage across a broad spectrum of onboard tasks.
Importantly, while the emulation system is tailored to the
Kanyini satellite, it is architected to be flexible, thus allowing
easy adaptation for other mission profiles.

1) Hardware of the Emulation System: A satellite comput-
ing environment typically consists of three levels: spacecraft,
imager (or sensor), and AI module. In the Kanyini satellite, the
imager employed is HyperScout2, and the AI module utilizes
the Eyes of Things (EOT) board developed by Ubotica.

The emulation system, designed to replicate the computing
environment of a satellite, is composed of hardware compo-
nents that simulate the imager and AI module. For the imager
emulation, we use a Raspberry Pi to represent the HyperScout2
sensor. The AI module is emulated using an Intel Neural
Compute Stick 2 (NCS2), simulating the functionality of the
Eyes of Things (EOT) board. Figure 3 illustrates this hardware
setup.

In configuring the emulation system, we selected hardware
devices with specifications closely resembling or slightly supe-
rior to those anticipated in the satellite environment. The CPU
frequency, number of CPU cores, RAM, and VPU cores of the
emulation setup are carefully tuned to align with the expected
Kanyini satellite environment via software configurations dur-
ing the emulation experiments. It is important to note that
discrepancies in the system might lead to marginally over- or
underestimated performance results for the Kanyini satellite.
However, these mismatches do not significantly impact the
relative differences between results and will be addressed
during a later phase of calibration.

2) Software of the Emulation System: The software archi-
tecture of the emulation system comprises four distinct mod-
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Fig. 2. Comparative visualization of band importance as determined by Pearson Correlation to the smoke mask (COR), Principal Component Analysis (PCA),
and Random Forest (RF) methods in the context of band selection for AI onboard fire smoke detection. The three methods effectively identify the 11 original
bands from VIIRS imagery but with different prioritization of bands by each method.

Fig. 3. Illustration of the emulation system hardware setup, featuring the
Raspberry Pi as the HyperScout2 sensor emulator and the Intel Neural
Compute Stick 2 (NCS2) as the AI module emulator.

ules, as illustrated in Figure 4: (1) Performance Measuring; (2)
Resource Constraint; (3) Onboard Processing; and (4) Results
Analysis and Model Optimization. Together, these modules
establish a complete pipeline for evaluating the performance
of various onboard processing steps in the emulation environ-
ment.

Fig. 4. Schematic representation of the emulation system software architec-
ture, highlighting the four key modules: Performance Measuring, Resource
Constraint, Onboard Processing, and Results Analysis and Model Optimiza-
tion.

The Performance Measuring module is designed to assess
the running time, memory footprint, and power consumption
of different onboard processes. Currently, power consumption
measurements are conducted manually due to the lack of
a software interface with the USB power monitor. Future
research phases may include hardware upgrades to facilitate
software-based power consumption measurement. The Re-
source Constraint module imposes hardware limitations on
the emulation system to closely mimic the Kanyini satellite
environment. These constraints include the CPU frequency,
the number of CPU cores, and the RAM of RPi, as well
as the number of VPU cores (SHAVES) of the NCS2. The
Onboard Processing module executes various onboard tasks,
encompassing both AI and non-AI processes. Finally, the
Results Analysis and Model Optimization module collates and
examines the test results, offering insights and recommenda-
tions for optimizing the AI model.

An exemplary emulation workflow begins by matching the
hardware resources, and proceeds with the onboard processing
sequence, which could includes the following steps: (1) tiling
and extracting specific bands from an image, (2) conducting
AI inference, (3) creating a mask based on the AI inference
results, (4) combining tiles with detected features, (5) com-
pressing the merged image, and (6) dividing the compressed
image into smaller segments in preparation for downlink
transmission.

In order to facilitate onboard inference, the AI model needs
to be converted into the Intermediate Representation (IR)
format. This conversion is accomplished using the OpenVINO
(Open Visual Inference and Neural network Optimization)
toolkit [41]. OpenVINO is a versatile open-source toolkit
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designed for optimizing deep learning models from various
frameworks and deploying them across a wide range of Intel
processors and hardware platforms, including the NCS2 used
in our emulation system.

Figure 5 illustrates the three-step process of preparing
the AI model for onboard inference: model training, model
converting, and model inference. The first two steps, model
training and converting, are carried out on the ground. During
model training, a model is trained and then saved on a host
computer. In the model converting step, this trained model is
transformed into the IR format using the OpenVINO optimizer.
This process results in two files: an XML file (.xml), which
represents the network topology, and a binary file (.bin) con-
taining the network parameters. These files are then deployed
onto the NCS2 for performing onboard inferences.

Fig. 5. A schematic representation of the AI model preparation process for
onboard inference, detailing the steps of model training, model converting
using OpenVINO optimizer, and model inference on the NCS2.

We have implemented the following onboard processes
during the pre-launch phase:

• Compress imagery: the emulation system supports the
following compression methods: LZMA, LZW, Pack-
Bits, Deflate, PIXTIFF, LERC, Zstd, JPEG, JPEG2000,
JPEGXL, and PNG.

• Split imagery into small files for downlinking.
• Partition imagery into tiles: the default tile dimension is

256 by 256, which is configurable.
• Extract specified bands from imagery or tiles.
• Merge specific tiles into the original imagery and mask

the other tiles.
• Onboard inference using VIB SD model.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

The experiments in this study aim to validate the feasibility
and benefits of onboard fire smoke detection, supported by
experimental results. The experiments consist of two parts:
(1) investigating the prediction accuracy of the VIB SD model
using different sets of selected bands, and (2) evaluating the
onboard performance of various processes, including both non-
AI and AI tasks.

A. Data Preparation

In the experiments, we use the simulated imagery described
in Section III-A. The imagery is partitioned into tiles of a
dimension of 256 by 256 pixels, consisting of 49 bands, which
include 45 VNIR bands, 3 thermal bands, and a mask band.
The mask band contains pixel-level labels, assigning each pixel
to one of four classes: 0 for clear, 1 for smoke, 2 for mixed,
and 3 for cloud.

As the VIB SD model works to predict whether a tile
contains smoke, the pixel-level label needs to be converted into

a tile-level label. The tile-level labels consist of two classes:
smoke and non-smoke. If a tile contains any smoke pixels, it is
categorized as smoke. Otherwise, it is identified as non-smoke.

To generate datasets for our experiments, we sample 1600
tiles for each set of selected bands, as outlined in Section III-C.
These 1600 tiles are evenly split between the two classes
(smoke and non-smoke), with 800 tiles in each. The sam-
pling strategy aims to ensure a balanced distribution of tiles,
covering a variety of scenarios and minimizing dataset bias.
Consequently, a total of 21 distinct datasets are generated.

During the experiments, each dataset is randomly parti-
tioned into a training set (comprising 60% of the tiles), a
validation set (20%), and a test set (another 20%). Then, a
VIB SD model is trained on the training set and evaluated
on the test set. This entire process is repeated 10 times for
each dataset, resulting in 210 trained models and their cor-
responding prediction results. From the 10 prediction results
obtained for each dataset, we report the average accuracy and
false negative rate (FNR).

Accuracy is calculated using the formula: Accuracy = (TP
+ TN) / (TP + TN + FP + FN), where TP denotes true
positives (correctly detected tiles with smoke), TN denotes
true negatives (correctly identified tiles without smoke), FP
denotes false positives (incorrectly detected tiles as having
smoke when there is not), and FN denotes false negatives
(incorrectly identified tiles as not having smoke when there
is). This metric reflects the proportion of correctly identified
tiles (both with smoke and without smoke) among the total
number of tiles. For calculating the FNR, the formula is: FNR
= FN / (FN + TP), which is a critical metric in this context as
it indicates the rate of missed smoke detection events, essential
for assessing the efficacy of the model.

B. Prediction Results

As discussed in Section III-C, we employed five band se-
lection methods: COR, PCA, RF, GT, and LBI. In this section,
we present and analyse the smoke detection performance using
various selected band sets. Applying these five methods, we
generated 21 distinct sets of bands by selecting 2 to 6 bands
from each method (where applicable). These band sets were
used to create corresponding datasets, named according to the
band selection method and the number of bands selected, as
indicated in Table I. For instance, COR4 refers to the dataset
generated by selecting the top 4 bands from the COR method,
i.e., B3-M2-Violet, B16-I1-Red, B29-I2-NIR, and B22-M6-
RedEdge. Note that band selection was conducted only using
the tiles in the training set.

The experimental results, summarized in Table II, are
grouped by the number of bands selected, ranging from 2
to 6. In each group, the best results are highlighted in bold.
Overall, selecting the top 4 bands demonstrated the highest
performance, with COR and RF achieving the best accuracy
and FNR, or close to it. A detailed analysis of each method
reveals the following: (1) LBI consistently shows the poorest
accuracy, indicating the necessity of band selection; (2) The
GT method consistently performs well across all groups, as
expected, confirming the importance of selecting the right

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2024.3394574

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

bands for smoke detection. The highest performance from GT,
an accuracy of 0.957 and FNR of 0.21 with 4 bands, was
also achieved by COR and RF with certain band selections;
(3) COR achieves the highest accuracy with 3 and 4 band
selections, albeit with a slightly higher FNR than the optimal
0.21. However, its accuracy drops to 0.897 with only 2 bands.
It is noted that COR is the one method attaining top accuracy
with fewer than 4 bands; (4) While PCA does not reach the
highest accuracy, it performs best (tied with GT) in the 2-band
group and maintains good results across all groups; (5) The
performance of RF performance appears more sensitive to the
number of selected bands, showing the best accuracy and FNR
with 4 bands, but performing poorly (except when compared
to LBI) with 2 bands.

TABLE II
SMOKE DETECTION RESULTS USING VIB SD WITH DIFFERENT SELECTED

BANDS.

BS-Method 1 #Bands 2 Accuracy 3 FNR 4

COR 5 2 0.897 ± 0.013 0.068 ± 0.019
PCA 6 2 0.912 ± 0.016 0.035 ± 0.016
RF 7 2 0.890 ± 0.020 0.071 ± 0.019
GT 8 2 0.912 ± 0.016 0.038 ± 0.020
LBI 9 2 0.550 ± 0.020 0.245 ± 0.091

COR 5 3 0.957 ± 0.010 0.028 ± 0.014
PCA 6 3 0.939 ± 0.012 0.030 ± 0.013
RF 7 3 0.919 ± 0.024 0.042 ± 0.014
GT 8 3 0.925 ± 0.016 0.031 ± 0.013
LBI 9 3 0.555 ± 0.032 0.277 ± 0.085

COR 5 4 0.957 ± 0.008 0.023 ± 0.011
PCA 6 4 0.943 ± 0.009 0.027 ± 0.006
RF 7 4 0.957 ± 0.010 0.021 ± 0.010
GT 8 4 0.957 ± 0.009 0.021 ± 0.011
LBI 9 4 0.582 ± 0.025 0.248 ± 0.077

PCA 6 5 0.955 ± 0.011 0.023 ± 0.014
RF 7 5 0.953 ± 0.019 0.032 ± 0.015
GT 8 5 0.954 ± 0.010 0.028 ± 0.010
LBI 9 5 0.547 ± 0.023 0.218 ± 0.087

GT 8 6 0.950 ± 0.012 0.023 ± 0.009
LBI 9 6 0.560 ± 0.049 0.183 ± 0.115

1 BS-Method: Band Selection Method; 2 #Bands: number of bands; 3

Accuracy: Prediction Accuracy; 4 FNR: False Negative Rate; 5 COR:
Pearson Correlation; 6 PCA: Principle Component Analysis; 7 RF: Random
Forest; 8 GT: Ground Truth; 9 LBI: Low Band Importance.

In summary, these results suggest that while COR is gener-
ally a robust choice, PCA is a safer option across different
scenarios. However, when using RF, the number of bands
selected should be carefully considered.

C. Emulation Results

Emulation experiments were conducted using various pa-
rameters, including different numbers of pixels across the track
for visual and near-infrared bands (selected from 3072 and
2560), different numbers of bands (selected from 45 and 48)
and different numbers of tiles (selected from 5, 10, 20 and 40).

The results of different onboard processes with these different
configurations are presented Table III.

To evaluate the benefit with AI onboard, we use an example
to compare the two scenarios: traditional smoke detection with
AI on-ground and smoke detection with AI onboard. The
input image has a resolution of 3072 by 1856 pixels and
contains 45 bands. This image is simulated from a fire event
near the Coorong in South Australia on December 31st, 2020.
Approximately one-third of the image is covered by water, and
about 5% shows fire smoke over land. Corresponding RGB
and HSSDA figures are presented in Figure 6.

Fig. 6. The HS2 simulated image over a fire event near the Coorong in South
Australia on December 31st, 2020. Left: A ‘natural colour’ composite in red-
green-blue wavelengths. Here the smoke plume appears in blue-ish grey tones
near source, and white higher in the plume (visibly similar to cloud in other
parts of the image). Burn scars are also hard to visibly separate from dark
vegetation. Right: The HSSDA mask over the ‘natural colour’ composite. Here
the two classes containing smoke are shown in red and orange. The plume
is clearly detected, with the densest smoke near source classified as “smoke
endmember”. Smoke is not confused as being cloud. False detections occur
near the shoreline.

Using the developed emulation system, we measure the
running time, memory footprint, and power consumption
associated with each step of the process workflow in the
two scenarios. As illustrated in Figure 7, this process of
AI on-ground scenario begins with the compression of a
captured image, having dimensions of 3072 by 1856 pixels and
consisting of 45 bands (excluding thermal bands). The LZMA
compression is then applied to reduce the original image size
of 489 MB to a compressed file of approximately 388 MB.
Our emulation reveals that this compression step takes about
656 seconds, consumes an average of 23 MB of memory with
a peak at 530 MB, and has a power consumption of around
0.5 Watt.

Subsequently, the compressed image is divided into 778
smaller files, each 512 KB in size, to facilitate transmission
(downlinking) to the ground station. The file splitting process
is relatively fast, taking about 7 seconds, and requires an
average memory of 22 MB with a peak at 83 MB. The
power consumption during this step remains around 0.5 Watt.
Once all these split files are successfully downlinked to the
ground station, the smoke detection analysis is performed on
the ground.

Figure 8 showcases the simulated onboard smoke detection
process using AI. In this setup, the process begins with tiling
and band extraction from the input imagery, resulting in 84
tiles. Each tile, with dimensions of 256 by 256 pixels and
comprising 3 selected bands, has a file size of about 0.38
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TABLE III
EMULATION RESULTS OF ONBOARD PROCESSES.

Task #ACT 1 Size 2 Output 3 #Bands 4 #Tiles 5 Runtime 6 Mem-A 7 Mem-P 8 Power 9

compress 3072 489.38 38.15 45 5 462.964 23.73 530.00 0.56
compress 3072 489.38 60.53 45 10 655.716 22.95 529.57 0.44
compress 3072 489.38 105.12 45 20 691.346 23.28 529.73 0.42
compress 3072 489.38 194.31 45 40 739.537 25.82 532.20 0.52
compress 2560 407.82 35.53 45 5 538.534 23.11 447.81 0.48
compress 2560 407.82 57.86 45 10 551.944 23.58 448.30 0.52
compress 2560 407.82 102.54 45 20 575.366 23.39 448.10 0.48
compress 2560 407.82 146.86 45 30 602.159 24.26 449.03 0.49
compress 2560 407.82 191.30 45 40 562.194 26.39 451.25 0.45
compress 3072 489.38 388.58 45 45 833.857 22.14 529.06 0.47
compress 2560 407.82 323.82 45 45 690.647 22.06 447.54 0.46
compress 3072 489.38 149.60 45 30 527.425 23.34 531.55 0.51

merge tiles 3072 489.38 489.38 45 5 6.287 29.64 519.41 0.53
merge tiles 3072 489.38 489.38 45 10 6.175 26.04 519.24 0.49
merge tiles 3072 489.38 489.38 45 20 6.235 26.56 518.98 0.44
merge tiles 3072 489.38 489.38 45 30 6.161 29.23 518.99 0.46
merge tiles 3072 489.38 489.38 45 40 6.107 29.37 519.13 0.45
merge tiles 2560 407.82 407.82 45 5 5.291 29.29 437.40 0.47
merge tiles 2560 407.82 407.82 45 10 5.269 29.52 437.73 0.47
merge tiles 2560 407.82 407.82 45 20 5.196 29.36 437.56 0.43
merge tiles 2560 407.82 407.82 45 30 5.141 29.30 437.50 0.44
merge tiles 2560 407.82 407.82 45 40 5.029 29.49 437.70 0.41

smoke mask 3072 489.38 10.88 45 10 2.734 29.19 527.05 0.51
smoke mask 2560 407.82 9.06 45 10 2.345 28.97 444.15 0.48

split 3072 38.15 0.50 45 5 0.682 22.50 61.07 0.44
split 3072 60.53 0.50 45 10 1.09 22.40 83.29 0.52
split 3072 105.12 0.50 45 20 1.886 22.55 128.04 0.48
split 3072 194.31 0.50 45 40 3.509 22.60 217.29 0.42
split 2560 35.53 0.50 45 5 0.661 22.45 58.34 0.45
split 2560 57.86 0.50 45 10 1.055 22.78 81.09 0.41
split 2560 102.54 0.50 45 20 1.835 22.55 125.47 0.42
split 2560 146.86 0.50 45 30 2.619 22.69 169.94 0.5
split 2560 191.30 0.50 45 40 3.446 22.54 214.13 0.46
split 3072 388.58 0.50 45 45 6.713 22.23 411.38 0.52
split 2560 323.82 0.50 45 45 5.69 22.69 347.08 0.48
split 3072 149.60 0.50 45 30 2.58 22.47 172.62 0.46

tiling&extract bands 3072 489.38 0.38 3 84 3.478 33.31 523.25 0.47
tiling&extract bands 3072 489.38 0.51 4 84 3.633 32.89 523.84 0.44
tiling&extract bands 3072 489.38 0.63 5 84 3.635 32.74 523.95 0.46
tiling&extract bands 2560 407.82 0.38 3 70 2.889 33.24 441.88 0.55
tiling&extract bands 2560 407.82 0.51 4 70 3.059 32.67 441.90 0.46
tiling&extract bands 2560 407.82 0.63 5 70 3.07 32.74 442.30 0.47

VIB SD inference 6.29 1.582 29.51 54.52 1.31
1 #ACT: the number of pixels of VNIR bands on across the track; 2 Size: the imagery file size in MiB; 3 Output: the output file size in MiB; 4 #Bands: the
number of bands; 5 #Tiles: the number of tiles; 6 Runtime: running time in seconds; 7 Mem-A: the average memory in MiB; 8 Mem-P: the peak memory in
MiB; 9 Power: the power consumption in Watt.

Fig. 7. Simulation results showcasing the workflow of traditional smoke detection (AI on-ground), including the compression and downlinking steps prior to
ground-based smoke detection analysis.
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MB. The tiling and band extraction step takes approximately
3.5 seconds, utilizes an average memory of 33 MB (peaking
at 325 MB), and consumes around 0.5 Watt of power.

These 84 tiles then undergo AI model inference. This step
of the process requires about 1.6 seconds, with an average
memory usage of 29 MB, a peak memory usage of 54 MB,
and a power consumption of 1.31 Watts. Assume that the AI
model identifies ten tiles containing smoke. These detected
tiles are then merged back into a single image, which retains
the dimensions of the original imagery, band selection, and
georeferencing information. The merging process consumes
6.2 seconds, an average memory of 26 MB, peaks at 519 MB,
and requires approximately 0.5 Watt of power.

Following the merging, the next step is the compression
of this merged image from sized at 489 MB to 61 MB. The
compressed file is then segmented into 122 smaller files, each
of 512 KiB, ready for downlinking to the ground station. For
data downlinking, assuming the downlinking data rate is 28.7
Mbps, and the downlink power is 13.8 Watt (derived from
the Φ-Sat-1 mission [13]), the energy consumption for data
downlinking in the example of the AI onboard scenario is
0.065 Watt-Hour, while the AI on-ground scenario requires
0.414 Watt-Hour.

Table IV compares the resource consumption between the
two scenarios, AI onboard and AI on-ground. The traditional
scenario wit AI on-ground, requires downlinking the entire
compressed image, sized at 388MB. This process incurs sig-
nificant resource usage for data downlinking, notably a transfer
time of 108 seconds and an energy expenditure of 0.414 Watt-
Hour. In contrast, the AI onboard scenario demonstrates a
marked efficiency improvement, which reduces the downlink
data volume to 61MB with downlink time to 17 seconds and
energy consumption to 0.065 Watt-Hour. Notably, this reduced
data volume is particularly advantageous given the constraints
on downlinking capacity during each satellite pass over a
ground station, potentially avoiding delays inherent in waiting
for subsequent passes for data transmission.

TABLE IV
COMPARISON OF RESOURCE CONSUMPTION IN AI ONBOARD VS. AI

ON-GROUND SCENARIOS.

Step AI On-ground 1 AI Onboard 2

Tiling & Band
Extraction

- 3.5s / 33MB-523MB / 0.5W

AI Inference - 1.6s / 29MB-54MB / 1.31W
Merge - 6.2s / 26MB-519MB / 0.5W
Compress 656s / 23MB-530MB / 0.5W 656s / 23MB-530MB / 0.5W
Split 7s / 22MB-83MB / 0.5W 1.1s / 22MB-83MB / 0.5W

Processing 3 663s, 0.092WH 668s, 0.093WH

Downlink 4 388MB, 108s, 0.414WH 61MB, 17s, 0.065WH
1 in format of running time (seconds)/average memory (MB)-peak memory
(MB)/power consumption (Watt);
2 in format of running time (seconds)/average memory (MB)-peak memory
(MB)/power consumption (Watt), assuming that 10% of the original imagery
contains smoke;
3 in format of running time (seconds), total energy consumption in
Watt-Hour (WH);
4 in format of downlink volume (MB), transferring time(seconds), energy
consumption in Watt-Hour (WH). Calculation assumes downlink data rate is
28.7 Mbps and downlink power consumption is 13.8 Watt.

Although the introduction of AI onboard introduces addi-

tional steps such as tiling, band extraction and AI inference,
these steps are executed relatively fast (3.5 seconds and 1.6
seconds, respectively) and with small power consumption.
The most time-consuming step, compression, remains constant
in both scenarios, ensuring that the overall processing time
and energy consumption are only marginally increased (from
663 seconds to 668 seconds, from 0.092 WH to 0.093 WH)
when AI is onboard. The slight increase in processing time is
outweighed by the substantial benefits in downlink efficiency.

In summary, the implementation of AI onboard for smoke
detection exhibits clear advantages over traditional methods.
These benefits primarily manifest in reduced downlink require-
ments, leading to significant savings in processing time and
energy.

D. Discussion

This discussion delves into the deeper implications, limita-
tions, and practical applicability of our findings. The VIB SD
model has demonstrated high prediction accuracy and a low
false negative rate in simulated datasets. However, its true
effectiveness will be more accurately evaluated when applied
to actual satellite data from the Kanyini mission.

Real-world conditions present several challenges that could
potentially affect the model performance. These include atmo-
spheric variability, cloud cover, and sensor noise. Implement-
ing atmospheric correction onboard satellites could signifi-
cantly increase timing and energy consumption. Conversely,
omitting this step might impair the model accuracy. Although
the onboard data handling (OBDH) system of the Kanyini
satellite being equipped with coarse georeferencing and at-
mospheric correction capabilities, there remains a potential
for discrepancies in accuracy and energy efficiency. Future
research should focus on validating the model performance
under varying and unpredictable environmental conditions.

Additionally, while our emulation results are indicative,
they are subject to variables such as hardware and software
discrepancies, and coding practices. Notably, the difference in
VPU chips could cause variations in AI model performance.
This necessitates a meticulous calibration of the emulation
system to better align with the satellite computing envi-
ronment. Gaining access to the satellite or its engineering
model will be crucial for this calibration, ensuring our results
more accurately reflect the operational realities of the Kanyini
satellite.

An important finding of our study is the significant re-
duction in downlink time and energy consumption achieved
by integrating AI onboard. This improvement is crucial for
enhancing data transmission efficiency in satellite operations.
However, it is accompanied by an increased demand for
onboard processing time due to AI inference. Balancing
downlink efficiency with the additional onboard processing
requirements is important, especially for missions with limited
power resources or downlink opportunities.

Furthermore, our study highlights another significant benefit
of onboard AI: the early detection of fire smoke. Traditional
methods typically yield smoke detection results only after the
imagery is downlinked and processed on the ground, which
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Fig. 8. Simulation of the onboard smoke detection process using AI, detailing the steps of tiling, band extraction, AI model inference, image merging,
compression, and file segmentation for downlinking, along with their respective time, memory, and power requirements.

can delay response times. In contrast, AI onboard enables im-
mediate fire smoke detection directly on the satellite, a capabil-
ity that is particularly advantageous in satellite constellations.
This enables rapid transmission of detection results between
satellites, facilitating early warning systems for wildfires and
other urgent environmental monitoring tasks. This proactive
detection capability enhances the responsiveness of satellite-
based monitoring systems and contributes to timely decision-
making and intervention in emergencies.

In conclusion, our research presents valuable insights into
the potential of AI-enhanced fire smoke detection for satellite
applications. However, it also highlights the imperative of
rigorous real-world testing and calibration to fully realize and
optimize this technology for practical use in satellite missions.

V. CONCLUSION AND FUTURE WORK

In conclusion, this research project has provided a solution
for energy-efficient AI-based onboard processing of hyper-
spectral imagery for early fire smoke detection, especially for
the pre-launch stage. The deployment of the VIB SD model,
operating within the constraints of the HyperScout-2 sensor
on the Kanyini satellite, has demonstrated promising results
in terms of high prediction accuracy and low false negative
rate. The simulation of a comprehensive training dataset
and the implementation of an emulation system have further
confirmed the feasibility and benefits of onboard processing.
The significant reduction in data downlink volume and energy
consumption, coupled with the increased speed of fire smoke
detection achieved through AI onboard, highlight the practical
advantages of onboard AI-based fire smoke detection. The
findings of this research not only contribute to advancing
satellite-based early fire smoke detection capabilities but also
hold promise for enhancing wildfire monitoring and response
efforts.

Future work in the post-launch phase involves calibrating
the emulation system to match the actual environment of

Kanyini. Additionally, there is a need for model implementa-
tion and step-wise model updates using real Kanyini imagery
training data after the launch. Exploring alternative AI models,
such as segmentation models, can also be considered. Lastly,
conducting a comparison between AI-based and determinis-
tic (spectral index-based smoke detection) onboard methods
would provide valuable insights.

Moreover, onboard change detection techniques utilizing
time series imagery have demonstrated promising outcomes
[42]–[44]. However, in our current study, the implementation
of such techniques was constrained by the limited power and
storage capacities of the satellite platform. Future research will
explore these advanced change detection methodologies, such
as [45], [46], particularly for fire smoke detection.

Code and simulation results are available at
https://github.com/ShaLu-ML/SS-P2.38 (access can be
provided on request). More details can be found in our
project report [34].
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