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 65 

Abstract 66 

Cupressaceae is a conifer family rich in plants of horticultural importance, including Cupressus, 67 

Chamaecyparis, Juniperus and Thuja, yet genomic surveys are lacking for this family. Cupressus 68 

gigantea, one of the many rare conifers that are threatened by climate change and anthropogenic 69 

habitat fragmentation, plays an ever-increasing role in ecotourism in Tibet. To infer how past 70 

climate change has shaped the population evolutionary of this species, we generated a de novo 71 

chromosome-scale genome (10.92 Gb) and compared the species’ population history and genetic 72 

load to that of a widespread close relative, C. duclouxiana. Our demographic analyses, based on 73 

83 re-sequenced individuals from multiple populations of the two species, revealed a sharp decline 74 

of population sizes during the first part of the Quaternary, however, populations of C. duclouxiana 75 

then started to recover, while C. gigantea populations continued to decrease until recently. The 76 

total genomic diversity of C. gigantea is smaller than that of C. duclouxiana, but contrary to 77 

expectations, C. gigantea has fewer highly and mildly deleterious mutations than C. duclouxiana, 78 

and simulations and statistical tests support purifying selection during prolonged inbreeding as the 79 

explanation. Our results highlight the evolutionary consequences of decreased population size on 80 

the genetic burden of a long-lived endangered conifer with large genome size and suggest that 81 

genetic purging deserves more attention in conservation management. 82 

 83 

Key words: endangered species, cypresses, effective population size, large genomes, genetic load 84 

 85 

Introduction 86 

Many conifers are important as sources of timber, in landscaping, and in the cultures of people 87 

around the world. Some, such as species of Cupressus, Chamaecyparis, Juniperus and Thuja, have 88 
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been the subject of selection for ornamental purposes, leading to the development of hundreds of 89 

cultivars [1]. Others, such as the common cypress, Cupressus sempervirens, are highly praised 90 

trees with a rich historical significance in cultures across the West Asia, Asia Minor, 91 

Mediterranean basin, and North Africa [2]. In Tibet, species of Cupressus have been used for 92 

temple construction since the Bronze Age, and there is evidence that Cupressaceae forests 93 

transitioned into desert pastures at some point within the last 5000 years [3]. Among the culturally 94 

most important species is Cupressus gigantea W.C. Chen & L.K.Fu, locally known as the Tsangpo 95 

River cypress, which has a narrow distribution in the dry valleys of the Yarlung Tsangpo and 96 

Nyang rivers in the southern Qinghai-Tibet Plateau (QTP, Figure 1). This endemic cypress is 97 

classified as ‘Vulnerable’ in the IUCN Red List [4] and a ‘First-class national key protected wild 98 

plant’ in Chinese rare species lists [5]. It is the highest and largest tree living 3000 meters above 99 

sea level: Mature individuals reach between 30 and 45 m in height, with diameters of 3 to 6 meters 100 

[6]. In the valleys where it occurs, C. gigantea and Pinus densata, another conifer with smaller 101 

size, are the only two species of trees that can provide the timber for diverse artificial construction 102 

[3, 7]. In addition, the branchlets of C. gigantea are one of the raw materials for the production of 103 

special incense, which is used by the Tibetans in their daily lives and religious practices [8]. 104 

 105 

Figure 1 | Habit, genomic landscape, geographic sampling, and phylogeny for Cupressus 106 

gigantea. (A) The so-called King Cypress, one of the largest known individuals at Nyingchi. (B) 107 

Genomic landscape of the 11 assembled chromosomes. Track V, GC content; track IV, gene 108 

density; track III, distribution of repeat elements; track II, distribution of Ty3-Gypsy elements; 109 

track I, distribution of Ty1-Copia elements; center, intra-genome colinear blocks connected by 110 

curved lines. (C) Sample locations of the nine sampled C. gigantea populations and the 17 C. 111 

duclouxiana populations. (D) A neighbor-joining phylogenetic tree of all sampled individuals 112 

based on identity-by-state (IBS) genetic distances. 113 

 114 
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Here we focus on the genetics of C. gigantea, specifically on its demographic history, genetic 115 

diversity and genetic load (defined as the reduction of population fitness due to the fixation of 116 

deleterious mutations [9]). As population sizes decrease, inbreeding increases, with negative 117 

effects on genetic diversity, making populations more vulnerable to external threats [10, 11]. The 118 

expected negative feedback loop continues by increasing the probability of stochastic 119 

demographic events and genetic drift [12]. Population-genetic theory predicts that, in small 120 

populations, recessive deleterious mutations tend to accumulate and increase the risk of extinction 121 

[9, 13]. On the other hand, continuous inbreeding results in the increased expression of (partially) 122 

recessive deleterious mutations, which creates the potential for purifying selection to remove these 123 

mutations. This process, known as genetic purging, depends on the degree of dominance and the 124 

magnitude of the deleterious effects [14]. For plants, more recent studies have examined the 125 

genetic effects after prolonged population decline in a rare Asian Betulaceae, Ostrya rehderiana, 126 

and its widespread close relative, O. chinensis [15], in the Chinese Tertiary relict species 127 

Dipertonia dyeriana and D. sinensis [16], and in Chinese endemic apricots (Prunus hongpingensis 128 

and P. zhengheensis [17]. No study so far has focused on the genomic effects of population 129 

bottlenecks in conifer, likely because of their huge genomes.  130 

Here, we sequenced and assembled a high-quality genome for C. gigantea, which has a large 131 

genome size around 11 Gb, and then re-sequenced 31 additional C. gigantea and 52 C. 132 

duclouxiana individuals across their distributional ranges (Figure 1) to identify genome-wide 133 

genetic variations. Cupressus duclouxiana diverged from C. gigantea about eight million years 134 

ago (Mya) [18] and is widespread between 1,400 to 3,300 m in Yunnan and southwestern Sichuan 135 

(Figure 1). Based on these genomic data, we aimed to address the following questions: (1) Did the 136 

demography of two species respond similarly to historical climatic oscillations or more recent 137 

disturbance by humans? If not, why might their demographic histories differ? And (2) What is the 138 

pattern of accumulation of deleterious mutations and genetic purging in the common vs. the rare 139 

species?  140 

 141 

Results 142 

Genome evolution of Cupressus gigantea 143 

Based on k-mer frequency analysis with ~1,380 Gb (~113.04 × coverage) DNBseq short reads, the 144 

genome size of the C. gigantea was estimated to be 10.38 Gb (Table 1; Figure S1 and Table S1). 145 

To obtain a high-quality of genome for C. gigantea, we first generated ~1,212 Gb (~117× 146 

coverage) Nanopore long sequencing reads and resulted in primary genome of 10.92 Gb. This 147 

assembly contained 18,562 contigs with contig N50 of 1.61 Mb (Table 1; Table S2). We then 148 

used ~1,152 Gb Hi-C reads (~111× coverage) to assist the assembly correction. Consequently, 149 

nearly 94% (10.26 Gb) of the assembled contigs were anchored to 11 chromosomes. The 150 

super-scaffold N50 was improved to 917.08 Mb, and the longest chromosome contains 1189.33 151 

million of bases (Table 1, Figure 1B; Figure S2). Based on BUSCO estimation, 1,296 of 1,614 152 

core genes were complete (Table S3). In addition, about 99.87% of short reads and 90.02% of 153 

RNA-seq reads could be mapped onto the assembly. Together these results indicate the relatively 154 

high completeness and continuity of the C. gigantea genome (Table S2, S4).  155 

 156 

 157 

 158 
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Table 1 The statistics for genome sequencing of Cupressus gigantea 159 

Category Item Statistic 

Sequencing 

DNBseq data (Gb)/coverage(X) 1380.98/113.04 

Nanopore data (Gb)/coverage(X) 1212.20/116.78 

Hi-C data (Gb)/coverage(X) 1152.33/111.01 

Assembly features 

Estimated genome size (Gb) 10.38 

Assembly genome size (Gb) 10.92 

Number of contigs 18562 

Contig N50 (Mb) 1.61 

Number of scaffolds 605 

Scaffold N50 (Mb) 917.08 

Longest scaffold (Mb) 1189.33 

Chromosome-scale scaffolds (Gb) 10.26 (94.96%) 

GC content (%) 34.90 

Annotation 

Predicted gene number 35384 

Functional gene number 31306 

Repetitive elements content (%) 88.62 

 160 

By combining ab initio, homology, and transcriptome prediction strategies, a total of 35,384 161 

hypothetical protein-coding genes were annotated. Repetitive sequences make up a large portion 162 

(~9.68 Gb) of the C. gigantea genome, with the most abundant type being long terminal 163 

repeat-retrotransposons (LTR-RTs) (Table 1; Table S5-S7). The expansion of LTR-RTs occurred 164 

rapidly between 1-2 Mya, a timeframe notably younger than previously estimates of gymnosperm 165 

genomes
 
[19], pointing to a relatively unique TE expansion in C. gigantea (Figure S3). The 166 

distribution of synonymous substitution rates per gene (Ks) and the distance-transversion rate at 167 

4-fold degenerate sites (4Dtv) indicate that the C. gigantea genome shares the seed plant whole 168 

genome duplication (WGD) [20], but no additional duplication (Figure S4). A total of 2558 169 

expanded gene families and 86 significantly expanded families were present in C. gigantea 170 

relative to Sequoiadendron giganteum. We also identified 694 gene families unique to C. gigantea. 171 

Functional enrichment analysis indicate that these expanded and unique gene families are mainly 172 

associated with flavone and flavanol biosynthesis, hypoxia, and cold stress response (Figure S5; 173 

Table S8-S11).  174 

 175 

Population structure and demographic history 176 

Overall, 83 individuals (32 individuals from nine populations of C. gigantea and 51 individuals 177 

from 17 populations of C. duclouxiana) were sampled and used for population analyses (Figure 178 

1C; Table S12). We generated 14.78 Tb data, resulting in an average sequencing depth of ~15× 179 

for each accession (Table S13). Based on the mapping results, we obtained ~1,390 million 180 

high-quality SNPs, approximately 97.19% of them located in intergenic regions (Figure S6).  181 

Based on linkage disequilibrium-pruned SNPs, we first clustered individuals using 182 

phylogenetic reconstruction analysis. Neighbor-joining (NJ) tree support the deep split between 183 

two species, and C. duclouxiana is then further divided into a northern and a southern lineage 184 

(Figure 1D). Clustering by principal component analysis (PCA) also supports three distinct 185 

groups (Figure S7). Genome-wide linkage disequilibrium (LD) varies markedly among the 186 
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species, with C. gigantea having a slower LD decay with half the maximum r
2
 not attained until 187 

~350 kb, whereas in C. duclouxiana, half the maximum r
2
 for was attained at ~185 kb (Figure 188 

S8).  189 

Based on whole-genome data, we further explored the demographic history of C. gigantea 190 

and closely related species. Results from SMC++ analysis of changes in effective population size 191 

(Ne) over the past 10 million years (Figure 2A) show that both species endured similar declines 192 

during the early Quaternary and then started to re-expand until the beginning of the Holocene 193 

(11,700 years ago) when the Ne of C. gigantea began to decline again, never to recover until the 194 

present [21]. This inference was also supported by Stairway Plot analyses (Figure S9). A GONE 195 

analysis of the species’ more recent population history indicated that, in contrast to the population 196 

recovery of C. duclouxiana, the Ne of C. gigantea has continued to decrease for the past ~6000 197 

years. This period spans approximately 120 generations, assuming a generation time of 50 years 198 

(Figure 2B). 199 

 200 

Figure 2 | Demographic history, genetic diversity, and estimates of inbreeding. (A) The 201 

demographic history was inferred using SMC++. The time scale on the x axis is calculated based 202 

on a mutation rate per generation (μ) of 7.0 × 10
-9

 and a generation time (g) of 50 years. The pale 203 

extra lines represent randomized replicates. The last glacial maximum is indicated by grey vertical 204 

bars. The grey dotted lines depict the onset of the Quaternary and of the middle Holocene. (B) The 205 

demographic history was inferred using GONE. The light background colors correspond to the 206 

upper and lower bounds of the 95% confidence intervals. (C) Boxplots showing genetic diversity 207 

(π), (D) whole-genome heterozygosity for each individual, and (E) inbreeding estimated from the 208 

genome proportion with runs of homozygosity (FROH). Coloured bars depict the total proportion of 209 

the genome with ROH longer than100 kb and the open bars show ROH longer than 1 Mb. P 210 

values for comparisons were obtained from Welch’s t-tests, with asterisks denoting the 211 

significance level (**** P < 0.0001). Comparisons were conducted between Cupressus gigantea 212 
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and C. duclouxiana, the latter either as a single entity or instead separated into its northern and 213 

southern populations. 214 

 215 

Genetic diversity and inbreeding in Cupressus gigantea 216 

We next tested how the reduced population sizes have influenced the two species’ genetic 217 

diversity and heterozygosity. Cupressus gigantea has significantly lower genetic diversity (π = 218 

0.00201) and heterozygosity (0.00201, individual-based) than C. duclouxiana (π = 0.00308, P < 219 

0.0001; heterozygosity = 0.00257, P < 0.0001; Figure 2C, D; t-test). In addition, the fraction of 220 

the genome in ROH (FROH), a genomic measure of inbreeding (ROH length > 100 kb), differed 221 

markedly between the species. On average, ROH regions comprised 21.93% of the C. gigantea 222 

genome but only 12.02% of the C. duclouxiana genome (Figure 2E; Figure S10, S11), indicating 223 

a higher level of inbreeding in C. gigantea. Using a threshold for ROH length of >1 Mb to 224 

evaluate recent inbreeding levels [15, 22], we found that 0.2198% of the C. gigantea and 0.1171% 225 

of the C. duclouxiana genome consisted of such long ROH regions (Figure 2E). Individuals’ 226 

whole-genome heterozygosity was also negatively correlated with FROH in both C. gigantea (r
2
 = 227 

37.34%, P < 0.00012) and C. duclouxiana (r
2
 = 76.88%, P < 2.2e-16) (Figure S12).  228 

 229 

Cupressus gigantea has fewer deleterious mutations than the widespread C. duclouxiana 230 

likely due to increasing inbreeding and purifying selection 231 

To estimate the genetic load of C. gigantea and C. duclouxiana, we first calculated the π (0-fold 232 

degenerate variants) / π (4-fold degenerate variants) ratio. We found a lower ratio in C. gigantea 233 

than in C. duclouxiana (Figure S13), suggesting that C. gigantea is under stronger purifying 234 

selection. To further test this, we assessed the genetic load by analysing the accumulation of 235 

deleterious derived alleles. For this, SNPs in coding sequences were categorized into four groups 236 

based on their impact on gene function: synonymous, tolerated, deleterious, and loss of function 237 

(LoF). In both species, most deleterious derived alleles were maintained in a heterozygous state, 238 

and there were fewer such alleles in C. gigantea than C. duclouxiana (Figure S14). Since the 239 

mutation rate of different species may be different, we used the number of derived synonymous 240 

mutations for normalization by comparing the ratio of derived functional variants (including LoF, 241 

deleterious and tolerated variants) to derived synonymous mutations at heterozygous sites and 242 

homozygous sites and found reduced LoF and missense variants in C. gigantea compared to C. 243 

duclouxiana (Figure 3A, B; Figure S15). Moreover, the ROHs had fewer LoF and deleterious 244 

alleles in the two species, and C. gigantea carried many fewer LoF and deleterious alleles in ROH 245 

regions than did C. duclouxiana (Figure 3C, D). 246 
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 247 

Figure 3 | Characterization of the genetic load of Cupressus gigantea and C. duclouxiana. (A), 248 

(B) Ratio of derived deleterious (A) and LoF (B) variants to derived synonymous variants in 249 

heterozygous (circles) and homozygous (triangles) tracts per individual. Horizontal bars represent 250 

the average values. P values for comparisons were obtained from Welch’s t-tests, with asterisks 251 

denoting the significance level (****, P < 0.0001, comparisons were conducted between C. 252 

gigantea and C. duclouxiana, the latter either as a single entity or instead separated into its 253 

northern and southern populations. (C), (D) Ratio of derived deleterious (C) and LoF (D) variants 254 

to derived synonymous variants inside ROH regions (squares) and outside ROH regions (rhombi) 255 

per individual. Horizontal bars represent the average values. P values for comparisons were 256 

obtained from Welch’s t-tests, with asterisks denoting the significance level (****, P < 0.0001, a 257 

comparison was conducted between in ROH regions and outside ROH). 258 

 259 

 To further test to what extent the detected purging of deleterious mutations in C. gigantea 260 

might be the result of prolonged inbreeding, we predicted the dynamics of deleterious derived 261 

alleles, using different values for the dominance coefficient (h) and the homozygous deleterious 262 

effect (s) (Figure 4). When considering scenarios consistent with the population demographic 263 

history, our simulation suggested that, after the first population decline (~6 to 0.15 Mya; Figure 264 

2A), purging produced a larger reduction of deleterious mutations in C. gigantea, particularly for 265 

mildly (s = 0.01) and strongly (s = 0.1) recessive deleterious mutations. Conversely, for weakly 266 

deleterious (s = 0.001) mutations with roughly additive effect (h=0.45), reductions in the Ne 267 

resulted in an increased mutation burden in the long term. However, within the time scale 268 

represented in these predictions, the increase in the genetic load due to weakly deleterious 269 

mutations with roughly additive effect was smaller than the reduction of purging observed for the 270 
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recessive deleterious mutations (h < 0.25). Lastly, we predicted the purging dynamics in extremely 271 

bottlenecked populations. The results showed that when populations become extremely small, e.g., 272 

Ne = 1000, the accumulation of deleterious mutations soared due to drift (Figure S16).  273 

 274 

Figure 4 | Predicted evolution of the deleterious burden for Cupressus gigantea and C. 275 

duclouxiana. The x axis corresponds to the generations before the present on a decimal logarithm. 276 

Panels depict different combinations the dominance coefficient (h) and the homozygous 277 

deleterious effect (s) based on the population demographic history, always assuming a haploid 278 

mutation rate of λ = 1. Cupressus duclouxiana was treated either as a single entity or instead 279 

separated into its northern and southern populations. 280 

 281 

Discussion 282 

Our study reveals demographic insights on two species of Cupressus, a genus rich in species of 283 

cultural and economic significance. By providing a chromosome-level genome (10.92 Gb, 284 

scaffold N50 = 917.08 Mb) of C. gigantea, a large, threatened conifer that today is restricted to the 285 

dry valleys of the Yalu Tsangpo River and Nyang River on the Qinghai-Tibet Plateau (QTP), we 286 

add an important genetic resource for the future protection of conifer germplasm. In addition, our 287 

whole-genome resequencing-based population genetic analysis of C. gigantea and its widespread 288 

relative C. duclouxiana revealed the decreased genetic diversity of the former species. This is 289 

consistent with our estimate that at present the effective population size (Ne) of C. gigantea is only 290 

around 0.2% that of C. duclouxiana (Figure 2A). Our demographic reconstruction showed that 291 

both species underwent similar population decline and recovery from the Pliocene to the 292 

Quaternary, reflecting major climatic fluctuations since the late Miocene. However, C. gigantea 293 

experienced sharper population reductions after the Naynayxungla glaciation (0.8-0.5 Mya) [21], 294 

resulting in a consistently smaller Ne than C. duclouxiana. Although the population sizes of both 295 

species recovered by ca. 0.15 Mya, the population size of C. gigantea increased more slowly than 296 
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that of C. duclouxiana. Even at the peak of population growth (~30,000 years ago), the Ne of C. 297 

gigantea was only approximately 43.03% as that of C. duclouxiana. The two species’ different 298 

deep demographic histories may reflect differences in their habitats in terms of climate, altitude, 299 

and topology: C. duclouxiana is mainly distributed in the lower elevation Hengduan Mountains 300 

within alternate valleys and mountains (Figure 1C), rather than the central highland, and it may 301 

therefore have been less impacted by the Pleistocene glaciations. Climate refugia in the valleys of 302 

the Hengduan Mountains may also have helped its population expansion [23]. By contrast, C. 303 

gigantea may have been restricted to the higher QTP, which likely suffered more severely from the 304 

Pleistocene climatic fluctuations. Even during the interglacial climate warming periods, the 305 

proximity to glaciers and the restricted availability of suitable habitats could have hampered the 306 

recovery of C. gigantea [21, 24].  307 

After the Last Glacial Maximum (LGM), the populations of both species declined, but unlike 308 

C. duclouxiana, the population size of C. gigantea never recovered and kept falling through the 309 

Holocene according to SMC++ (Figure 2A). Our reconstruction of the species’ recent 310 

demographic history using GONE [25] further suggested that C. gigantea experienced a sharp 311 

reduction of Ne started about 6000 years ago (Figure 2B), while the Ne of C. duclouxiana 312 

recovered. The two species’ contrasting recent demographic histories likely result from different 313 

degrees of anthropogenic disturbance. Anthropogenic disturbance in the Yarlung Tsangpo valley is 314 

documented by Bronze Age cultural remains, including agriculture [26] and temples built from 315 

cypress wood from ~4300 years ago [7]. This likely involved the felling of C. gigantea, because 316 

along with Pinus densata, it represents one of the very few timber species in this tree-deficient 317 

region. Archaeological remains and paintings in ancient temples also support that Holocene 318 

humans cut down high-altitude timber for construction [3]. Cupressus duclouxiana, by contrast, 319 

mainly occurs at lower altitudes in the southern Hengduan Mountains and the Yungui Plateau, 320 

which are covered by species-rich forests that probably suffered less from monospecific logging. 321 

Our study further reveals the effects of long-term population size decline on the genetic load 322 

in these long-lived conifers. In fact, obtaining direct fitness estimates for woody plants, for 323 

example, from the numbers of developing seeds following pollination, is challenging in trees that 324 

occur in remote parts of Tibet and whose cones are borne at 5 to 40 m above the ground. Modern 325 

studies therefore rely on genomics approaches to study the effects of inbreeding and the genetic 326 

load of trees [15-17] and rare animals [9, 13, 27]. Interestingly, we found that the more 327 

endangered species C. gigantea has a lower genetic load than its more widespread relative, C. 328 

duclouxiana. The most plausible explanation for this is stronger genetic purging during a strong 329 

population bottleneck in the distant past (Figure 2A), when effective population sizes of C. 330 

gigantea appear to have been down to perhaps just 4,416 to 4,709 individuals, followed by a 331 

pronounced population decline from ~6000 to hundreds of individuals during the mid-Holocene 332 

(Figure 2B). This interpretation is also supported by the lower π0/π4 ratio and fewer deleterious 333 

mutations within runs of homozygosity (ROH), suggesting a reduction of both highly and mildly 334 

deleterious mutations through prolonged inbreeding in C. gigantea.  335 

Previous empirical studies of genetic purging in wild populations have found that severely 336 

deleterious variants are more likely to be purged by strong purifying selection, whereas slightly 337 

deleterious mutations tend to accumulate due to relaxed purifying selection, which eventually 338 

leads to increased genetic load [15, 28-30]. We also explored the accumulation of deleterious 339 

mutations in C. gigantea considering genetic drift and purging under four population size 340 
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scenarios, including a severe population decline to about one sixth of the current Ne (Ne = 1000). 341 

Under the latter scenario, the accumulation of deleterious mutations soared due to drift (Figure 342 

S16), as may have occurred in O. rehderiana in which only a handful of individuals may have 343 

survived an inferred bottleneck [15]. The somewhat larger Ne of C. gigantea could have permitted 344 

more effective purifying selection of deleterious mutations than was possible in O. rehderiana. 345 

Today, C. gigantea is well protected in the Gongbu Nature Reverse, which was designed 346 

specifically to protect this tree species. Moreover, we found the absence of very long ROH 347 

(lengths >1 Mb) in all sampled populations of C. gigantea, consistent with a previous result of low 348 

inbreeding based on transcriptome data [31]. Field observations by one of us, Jian Luo, found that 349 

C. gigantea is fruiting normally and producing seedlings, suggesting that populations today are not 350 

suffering from strong inbreeding depression. Thus, the long-term decreasing population size of C. 351 

gigantea seems to have facilitated extensive purging of deleterious alleles and contributed to the 352 

populations’ adaptation and survival.  353 

 354 

Materials and methods 355 

Plant material and genome sequencing 356 

For genome sequencing, fresh intact young scale leaves of C. gigantea were collected from the 357 

Forestry Bureau’s central nursery, Nyingchi, Tibet (94°14’21’’E, 29°45’9’’N). High-quality 358 

genomic DNA was firstly isolated and extracted from these fresh young scale leaves using a 359 

modified CTAB method [32]. Regarding Nanopore sequencing, we constructed 20-kilobase (kb) 360 

libraries using the SQK-LSK109 kit presented by Oxford Nanopore Technologies (ONT). These 361 

libraries were subsequently processed on the PromethION platform, utilizing a total of 20 cells. A 362 

single independent complementary library with 300-400 base pair (bp) insertions was also 363 

generated and sequenced on the DNBSEQ
TM

 platform. To achieve chromosome-level genome 364 

assembly, two Hi-C libraries prepared with MboI restriction enzyme were created following the 365 

procedures described previously [33] and sequenced on the DNBSEQ
TM

 platform. Additionally, 366 

we conducted RNA-sequencing (RNA-seq) for five tissues that included shoots, scale leaves, 367 

stems, cones and roots (Table S4). Briefly, total RNAs were isolated and extracted using TRIzol
TM

 368 

reagent (Invitrogen), followed by assessment of RNA integrity using the Agilent 2100 Bioanalyzer 369 

system (Agilent Technologies). 150 bp paired-end libraries were then constructed using MGIEasy 370 

RNA Library Prep Set according to the manufacturer's protocols. Finally, we conducted the 371 

sequencing of these libraries on the MGISEQ-2000 platform. 372 

 373 

Genome assembly 374 

The chromosome-level assembly of C. gigantea comprised the following steps: initial assembly, 375 

short reads correction, Hi-C scaffolding, and manual checking of positioning and ordering. First, 376 

all raw ONT long reads were base error-corrected by Canu (ver. 2.0) [34]. The SMARTdenovo 377 

(ver. 1.0; https://github.com/ruanjue/smartdenovo) software was then used to assemble the contigs. 378 

Next, the clean reads generated from DNBSEQ were aligned back to the assembled contigs using 379 

the Burrows-Wheeler Aligner program (BWA-MEM ver. 0.7.17) [35] and sorted by SAMtools 380 

(ver. 1.9) [36]. GATK (ver. 4.2.0) UnifiedGenotyper was employed for the identification of 381 

homozygous variants with specific criteria (base quality ≥ 20, mapping quality ≥ 40 and depth ≥ 2) 382 

and to generate a refined assembly [37]. For Hi-C scaffolding, the processed Hi-C reads were 383 

aligned to the assembled contigs via Juicer (ver. 1.5.6) [38] and BWA-MEM, utilizing default 384 
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settings. Subsequently, HiC-Pro (ver. 2.7.8) was employed to assess library quality by quantifying 385 

the abundance of unique valid paired-end reads [39]. Unique mapped read pairs were preserved 386 

for downstream analysis. The 3D-DNA pipeline was employed to execute clustering, ordering, and 387 

orientation procedures, leveraging normalized Hi-C interactions as the basis [40]. Finally, the 388 

scaffolds were partitioned into 1 kilobase (kb) bins, and ordering and orientation were adjusted 389 

manually based on the contact maps generated by HiCPlotter software 390 

(https://github.com/kcakdemir/HiCPlotter/).  391 

To evaluate the completeness and continuity of the assembly, we mapped the RNA-seq reads 392 

to the chromosomes using HISAT2 (ver. 2.1.0) with default settings [41]. Furthermore, we 393 

employed BUSCO (ver. 5. beta.1) to search for 1,614 conserved protein models from the 394 

Embryophyta odb10 database within the genome sequences, providing additional assessment of 395 

the genome assembly quality [42]. 396 

 397 

Genome repeat element identification and gene prediction  398 

To annotate and analyze repetitive sequences within the C. gigantea genome, a dual approach 399 

combining homology-based and de novo methods was employed. Specifically, we utilized 400 

RepeatModeler (ver. 2.0.1) to construct a de novo repeat library [43]. RepeatMasker (ver. 4.1.1) 401 

[44] and RepeatProteinMask (http://www.repeatmasker.org/) were employed to create a 402 

“Viridiplantae” repeat library from the Repbase database (ver. 22.12). Tandem Repeats Finder 403 

(ver. 4.09) was additionally utilized for the identification of tandem repeat elements [45].  404 

Next, we predicted protein-coding genes within the repeat-masked C. gigantea genome using 405 

a combination of ab initio-based, homology-based and RNA-seq-based approaches (see details in 406 

Supplementary Methods). The integrated gene set was generated by EVidenceModeler (EVM; 407 

ver. 1.1.1) [46]. The functions of protein-coding genes were assigned following two strategies: we 408 

adopted eggNOG-mapper (ver. 2) to align proteins to the eggNOG5.0 database [47]. Secondly, we 409 

performed BLASTP (E-values ≤ 1e-5) alignments of the predicted protein sequences against 410 

multiple databases, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes 411 

(KEGG), Cluster of Orthologous Groups of proteins (COG), Non-redundant Protein Sequence 412 

Database (NR) and Swiss-Prot protein database. Results generated from these two strategies were 413 

integrated to predict the genes. 414 

 415 

Plant material and whole-genome resequencing of Cupressus gigantea, C. duclouxiana, and 416 

outgroups 417 

To conduct a comparative population-genomics study, we collected leaf material from nine wild C. 418 

gigantea populations (n = 32) and 17 wild C. duclouxiana populations (n = 51) in the southern 419 

Qinghai-Tibet Plateau (Figure 1C; Table S12). Because of the huge genomes of the species 420 

investigated in this study, resequencing encountered unprecedented challenges, including higher 421 

costs and computational demands. To detect genetic variation across the whole geographical 422 

distribution of the two species, we sampled from as many populations as possible yet only two to 423 

seven mature individuals per population [48]. In each population, the distance between sampled 424 

individuals was >100 meters. Young scale leaves (~1 g per sample) were collected, rapidly 425 

desiccated using silica gel, sealed in plastic bags, and transported back to the laboratory. 426 

Additionally, we collected leaves from one Juniperus microsperma and five C. chengiana trees as 427 

outgroup samples (Table S13). Research and sample collection were both approved by the 428 
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Forestry and Grassland Bureau of the Tibet Autonomous Region (as a part of the Second Tibetan 429 

Plateau Scientific Expedition and Research (STEP) program). Permanent vouchers for this study 430 

have been deposited in the Sichuan University Museum under the accession numbers SZ02076005 431 

to SZ02076092. For each sample, genomic DNA was isolated and extracted using the Magnetic 432 

Universal Genomic DNA kit (TIANGEN, China) following the provided protocols. DNA quality 433 

was evaluated using 1% agarose gels, while the concentration was determined using Qubit® DNA 434 

Assay Kit in the Qubit® 3.0 Fluorometer (Invitrogen, USA). A quantity of 0.2 μg genomic DNA 435 

from each sample was used to construct a sequencing library using NEB Next® Ultra™ DNA 436 

Library Prep Kit (NEB, USA), followed by sequencing on the DNBSEQ-T7 platform. Each 437 

sample was sequenced to achieve a target coverage of 15×. We used fastp (ver. 0.21.0) [49] to 438 

remove adaptors and low-quality bases and obtained clean sequencing reads with 167.96 Gb data 439 

for each sample on average for further analysis (Table S13). 440 

 441 

Variation calling, quality control and validation 442 

After quality control, the filtered reads of each sample were aligned to C. gigantea reference 443 

genome using BWA-MEM with default parameters [35]. SAMtools was employed to convert 444 

SAM format file into the BAM format and sort the alignments based on mapping coordinates [36]. 445 

Duplicated reads, which my have been introduced during library construction, were then removed 446 

using Sambamba (ver. 0.8.3) [50]. Finally, the coverage and depth of sequence alignments were 447 

calculated using the depth program in SAMtools (Table S13). 448 

For SNP and InDel identification, we again used GATK with the HaplotypeCaller module 449 

and the GVCF mode [37]. In brief, the BAM alignment file was firstly processed through 450 

HaplotypeCaller to call haplotypes for each sample. Subsequently, a joint genotyping step was 451 

performed for on genomic variant call formats (gGVCFs) files using GenotypeGVCFs to 452 

consolidate variations comprehensively. The GATK-recommended hard-filtering criteria were 453 

then applied to exclude variants with low-confidence (QUAL < 30 || DP < 5 || QD < 2.0 || MQ < 454 

40.0 || FS > 60.0 || SOR > 3.0 || MQRankSum < -12.5 || ReadPosRankSum < -8.0). This yielded a 455 

total of ~1,390 million high-quality SNPs that served as the basis for all analysis.  456 

 457 

Population structure analysis 458 

For all individuals, we further filtered out SNPs with a minor allele frequency (MAF) ≤ 0.05 and 459 

missing rate ≥ 10%. To mitigate the influence of regions with extensive strong linkage 460 

disequilibrium (LD), we used PLINK (ver. 1.90) with parameters “-indep-pairphase 100 10 0.2” to 461 

generate a LD-pruned SNP dataset [51]. Finally, a subset of 6,222,538 SNPs were retained for 462 

analysis of phylogenetic and population structure. To evaluate the relatedness between individuals, 463 

the pairwise identity-by-state (IBS) genetic matrix was computed using PLINK with the parameter 464 

“-distance 1-ibs flat-missing”. Utilizing the distance matrix, a neighbor-joining phylogenetic tree 465 

was constructed using MEGA (ver. 6.0) [52]. Additionally, a principal component analysis (PCA) 466 

was constructed using PLINK with parameters “--pca” to further explore the population structure.  467 

 For the estimation and comparison of genetic diversity across populations of C. gigantea and 468 

C. duclouxiana, we calculated the average pairwise nucleotide diversity (π) using VCFtools (ver. 469 

0.1.17) with 100 kb sliding windows in 10 kb steps [53]. Individual whole-genome heterozygosity 470 

was also determined using VCFtools with parameters “--het”. To further assess the LD pattern 471 

within each species or lineages, we calculated the correlation coeffient (R
2
) between any two loci 472 
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using the program PopLDdcay (ver. 3.41) with “–maxDist 1000” [54].  473 

 474 

Demography inference 475 

SMC++ (ver. 1.15.4) was used to infer population demography [55] based on neutral regions 476 

(excluding sites within 5-kb gene regions). Due to the linear scalability of computational and 477 

memory requirements with the total analyzed sequence length in SMC++, it is generally advisable 478 

to perform computations on a relatively small number of individuals. 479 

(https://github.com/popgenmethods/smcpp#frequently-asked-questions). For each population of C. 480 

gigantea and C. duclouxiana, we therefore down-sampled to 5 (4 times) randomly selected 481 

individuals. The mutation rate (μ) was assumed to be 7.0 × 10
-9

 and the generation time (g) was 482 

assumed to be 50 years [56]. To further validate the demographic history, we also employed the 483 

Stairway Plot (ver. 2) to infer Ne based on the folded site frequency spectrum (SFS) for each 484 

species [57]. We employed 200 bootstraps to generate median estimations and calculate a 95% 485 

confidence interval (CI). Furthermore, we used GONE to infer recent changes in Ne [25]. We 486 

conducted 40 replicate analyses, with each analysis involving the random sampling of 50,000 487 

SNPs from each chromosome. We only focus Ne changes within 200 generations, a time interval 488 

deemed reliable according to the User’s Guide of GONE.  489 

 490 

Genetic load and deleterious mutations 491 

We estimated genetic load in C. gigantea and C. duclouxiana using two approaches. First, we 492 

computed the genetic diversity of 0-fold and 4-fold degenerate sites for each sample. The 493 

identification of 0-fold and 4-fold degenerate sites was performed using a Python script 494 

(https://github.com/hui-liu/Degeneracy). This process involves iterating across all four possible 495 

bases at each site along with a transcript. To assess the genomic extent of inbreeding, 496 

genome-wide runs of homozygosity (ROH) were obtained using BCFtools (ver. 1.9) with default 497 

parameters [58]. ROH longer than 100 kb were retained. Individual inbreeding levels were 498 

evaluated using FROH, which quantifies the fraction of the genome covered by ROH [13]. 499 

 Second, we used SnpEff (ver. 5.0) to predict the impacts of SNPs on genes or proteins [59]. 500 

The variants were classified into three categories: 1) Loss of function (LoF), denoting those with 501 

high impact on the transcription and translation such as stop codon gain/loss, start codon loss; 2) 502 

missense; and 3) synonymous. In total, we identified 482,347 mutations. Missense SNPs were 503 

further divided into non-synonymous deleterious (SIFT score < 0.05) or non-synonymous 504 

tolerated (SIFT score ≥ 0.05) categories, determined by the SIFT score generated with the SIFT 505 

4G (ver. 6.2.1) software [60]. The UniRef90 protein database was employed to search for 506 

homologous sequences. Sites labeled as ‘NA’ and those classified as low confidence (85,364 507 

mutations) were excluded. At each SNP position, we utilized est-sfs to determine the derived and 508 

ancestral allelic state, leveraging J. microsperma and C. chengiana as outgroups [61]. We further 509 

counted the number of LoF and deleterious variant sites for all derived alleles (the total number of 510 

derived alleles is calculated as the twice the count of homozygous genotype plus the count of 511 

heterozygous genotype) occurring in ROH and outside-ROH regions for every individual. These 512 

counts were then standardized by the number of derived synonymous sites in the same genomic 513 

region.  514 

 515 

Prediction of the number of derived deleterious alleles 516 
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To further test the hypothesis of purging deleterious mutations in the C. gigantea populations, we 517 

performed theoretical predictions of the number of derived deleterious alleles. We followed the 518 

approach of Kleinman-Ruiz et al. [62], which is based on a model developed by García-Dorado 519 

[63, 64]. The model initially assumes the presence of an ancestral population characterized by a 520 

very large effective size (Nanc), which approaches the mutation-selection-drift (MSD) equilibrium 521 

and has a haploid derived allele number. Subsequently, as effective population size undergoes 522 

successive reductions to a Nnew over multiple generations, the model can predict the total number 523 

of segregating and fixed deleterious mutations, including those segregating within the ancestral 524 

population and those originating from ongoing mutation as the population approaches a new MSD 525 

equilibrium (see details in Supplementary Methods).  526 

We counted derived mutations for different combinations of selection coefficients (s) and 527 

dominance coefficients (h). Predictions were generated from weakly deleterious (s = 0.001), 528 

mildly deleterious (s = 0.01), and strongly deleterious (s = 0.1) selection coefficients. To avoid 529 

introducing a large hidden burden into large populations by assuming h = 0 and thereby possibly 530 

exaggerating the contribution of purging to the changes of overall derived counts, we used h = 531 

0.05 to predict the highly recessive case and. For the sake of symmetry, we also used h = 0.25 and 532 

0.45 to predict partially recessive and roughly additive cases.  533 
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