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Abstract
Medicinal plants contain numerous bioactive secondary metabolites (SMs) that can be used for the treatment and prevention of diseases. SM

concentration  is  a  crucial  standard  for  evaluating  the  quality  of  medicinal  plants.  SM  accumulation  is  affected  by  multiple  factors,  including

genetic  background,  climate,  soil  physical  and  chemical  properties,  and  environmental  changes.  In  recent  years,  increasing  studies  have

indicated that rhizospheric  and endophytic  microorganisms,  play an essential  role in regulating the accumulation of  SMs in medicinal  plants.

While some microorganisms establish symbiotic relationships with medicinal plants to promote plant growth. Other microorganisms can directly

synthesize SMs or promote plant SM biosynthesis through multiple strategies, such as activating plant immune signaling pathways and secreting

plant  hormones  into  host  cells  to  manipulate  hormone-mediated pathways.  In  contrast,  SMs may improve plant  resistance to  environmental

stresses, thereby affecting the composition of rhizospheric and endophytic microorganisms. In this review, we summarized the recent progress in

understanding the role of microorganisms in regulating SM accumulation in medicinal plants. Further studies should focus on the application of

utilizing microorganisms to enhance the accumulation of bioactive SMs in medicinal plants.
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 Introduction

Medicinal  plants  are  widely  used  to  produce  clinical  thera-
peutic  drugs  or  raw  materials  for  drug  preparations,  because
they  are  rich  in  various  crucial  bioactive  substances,  such  as
secondary metabolites (SMs), polysaccharides, starch, and other
carbohydrates[1,2].  Medicinal  plants  have  become  important
economic  crops  in  several  countries  owing  to  their  high
demand.  According  to  the  China  Statistical  Yearbook  (2022),
China exported approximately 125,971 tons of medicinal plants
valued at $962.93 million in 2021[3]. In recent years, the market
demand  for  medicinal  plants  has  grown  rapidly.  For  example,
Yinxiang  (Cinnamomum  burmannii Blume)  is  a  medicinal  herb
and spice commonly used in China and Southeast Asia. It had a
global  output  of  approximately  23,000  tons  in  2017,  of  which
the trade of Koerintji cinnamon was $148 million, accounting for
approximately  40%  of  the  global  market[4].  The  protracted
accumulation  time  and  low  content  of  bioactive  SMs  are  the
primary  problems  restricting  the  production  of  medicinal
plants and clinical medication[5].  For example, 10 tons of Taxus
bark or 3000 yew trees were required to produce 1 kg of pacli-
taxel  in  2009[6].  Certain  medicinal  plants,  such  as  tangerine
peels,  require  protracted  aging  times  to  accumulate  effective
active ingredients[7].  Therefore, improving the accumulation of
bioactive  SMs  in  medicinal  plants  is  a  key  challenge  for  the
production of medicinal plants.

SM accumulation is affected by internal physiological factors,
including  plant  variety,  age,  developmental  stage,  and  differ-
ent plant organs.  For example,  it  has been reported that there

are  significant  differences  in  the  volatile  components  of  the
Citrus  reticulata "chachi"  peel  at  different  development
stages[8].  The  contents  of  C6-C9  alcohols  and  aldehydes  are
higher  during  the  early  stage  (July-  October),  whereas  the
contents of terpenes, ketones, and esters are higher during the
late stage (November-December)[8].  The biosynthesis of SMs in
medicinal  plants  is  also  influenced  by  external  environmental
factors,  such  as  light,  water,  temperature,  salinity,  pH,  and
microorganisms[9,10].  Environmental  changes  cause  a  series  of
physiological changes in plants, thereby affecting the accumu-
lation  of  SMs.  The  total  phenol  content  in Dracocephalum
forrestii significantly  increases  upon  treatment  with  blue  and
red  light,  especially  in  the  case  of  caffeic  acid,  salvianolic  acid
I/H, salvianolic acid E, and salvianolic acid B[11]. Otherwise, some
SMs can significantly enhance the adaptability of plants to the
environment,  including  salt,  drought,  and  disease  resistance.
For  example,  the  active  ingredients  in Saposhnikova  divaricate
naringin dihydrochalcone, scopolin, deltoin, and overatorin can
enhance plant resistance to drought stress[12].

Recently,  increasing  studies  have  shown  that  rhizospheric
and endophytic microorganisms significantly affect SM synthe-
sis  in  medicinal  plants.  With  the  rapid  development  of  high-
throughput  sequencing  technology,  rhizospheric  and  endo-
phytic microorganisms are reported to be closely related to the
accumulation  of  SMs  in  medicinal  plants[13,14].  Owing  to  the
advantages  of  easy  cultivation  and  fermentation  by  microor-
ganisms,  they  have  great  application  prospects  for  improving
the production of  bioactive  ingredients  in  medicinal  plants.  In
this review, we summarize recent progresses in understanding
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the  role  of  microorganisms  in  the  accumulation  of  SMs  in
medicinal plants.

 Diversity of rhizospheric and endophytic
microorganisms in medicinal plants

The environment in which plants reside is filled with various
microorganisms,  including  those  in  the  soil  and  air,  as  well  as
microorganisms  in  plant  roots,  stems,  and  leaves.  These
microorganisms  interact  with  and  regulate  many  biological
processes  of  plants.  Among  these  microorganisms,  rhizo-
spheric  and  endophytic  microorganisms  most  significantly
affect the accumulation of SMs in plants[15]. The rhizosphere is a
collective  term  for  the  narrow  area  surrounding  plant  roots,
which is a complex ecosystem[16].  Endophytes are microorgan-
isms that reside within the tissues and organs of plants and are
generally  present  throughout  the  different  stages  of  plant
growth  and  development  without  causing  obvious  pathologi-
cal damage to the plant[17]. Note that endophytes usually origi-
nate  from  rhizospheric  microorganisms[18].  Plant  roots  secrete
several  organic  compounds,  including  some  primary  metabo-
lites  such  as  carbohydrates,  amino  acids,  organic  acids,  and
SMs,  which  can  provide  energy  for  microbial  survival.  There-
fore,  compared to other plant parts,  plant roots and the rhizo-
sphere are rich in various microorganisms. Microorganisms also
affect  many  physiological  processes  in  plants,  including  SM
accumulation.

With  the  development  of  16S  rDNA,  internal  transcribed
spacer  amplicon  sequencing,  and  macro-genome  sequencing
technologies,  the  diversity  of  rhizospheric  and  endophytic
microorganisms  in  many  medicinal  plants  has  been  revealed.
Here, we summarize the studies on the rhizosphere and endo-
phytic microorganisms of medicinal plants and list the reported
rhizospheric  and  endophytic  microorganisms  in  Table  S1
(Supplementary Table S1). The composition of rhizospheric and

endophytic  microorganisms  is  influenced  by  multiple  factors,
including  the  physical  and  chemical  properties  of  the  soil,
planting mode, developmental stage, and plant variety (Fig. 1).
For  example,  the  diversity  of  rhizospheric  microorganisms  in
Fritillaria taipaiensis is affected by the pH, urease activity, avail-
able phosphorus, and organic matter content[19]. An analysis of
the  rhizospheric  microbial  composition  of Panax  notoginseng
showed  that  disease-resistant  bacteria  and  plant  growth-
promoting  bacteria  in  farmland  were  significantly  lower  than
those  found  in  the  forest[20].  Different  developmental  stages
and  plant  species  also  affect  the  variety  and  abundance  of
rhizospheric  microorganisms[21,22].  Reportedly,  there  is  a  high
diversity  of  fungal  communities  in  the  rhizosphere  soil  of
Epimedium  koreanum Nakai  at  different  growth  stages  from
May  to  August,  especially Ascomycota, Basidiomycota,  and
Mortierellomycota[23]. Differences in the composition and abun-
dance  of  rhizospheric  and  endophytic  microorganisms  can
affect many biological processes in plants, such as growth and
development,  disease  resistance,  hormone  signaling,  and  the
accumulation of SMs[24,25].

 Regulation of the growth of medicinal plants
by microorganisms

Compared to  food crops,  medicinal  plants  generally  require
longer  growth  times  and  have  higher  requirements  for  soil
fertility,  which  restrict  their  high-quality  and  high-quantity
production[26].  Farmers  usually  use  large  amounts  of  chemical
fertilizers  to  increase  the  yield  of  medicinal  plants,  which  can
damage the soil microbial composition, reduce soil fertility, and
lead to soil compaction[27−29]. It is known that rhizospheric and
endophytic  microorganisms  can  promote  the  growth  and
development  of  medicinal  plants  in  multiple  manners[30,31].
Phosphorus  is  a  major  nutrient  for  plant  reproduction  and
growth.  However,  plants  can  only  utilize  a  small  amount  of
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Fig. 1    The diversity of rhizospheric and endophytic microorganisms in medicinal plants is affected by many internal and external factors.
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dissolved phosphorus in the soil (approximately <1%)[32]. Scien-
tists  have  isolated  a  phosphorus-solubilizing  bacterium  from
the rhizosphere of Mentha viridi that promotes root growth and
increases  fresh  and  dry  weights  by  releasing  free  phosphorus
from  rock  phosphate[33].  The  rhizosphere  bacterium Bacillus
amyloliquefaciens TB6  promotes  root  growth  and  significantly
increases the fresh weight of Panax ginseng[34]. The rhizosphere
microorganisms Bacillus  subtilis and Bacillus  velezensis isolated
from Angelica  sinensis (Oliv.)  significantly  increase plant height
and fresh weight[35].

Endophytes  reside  in  plants  in  symbiotic  or  parasitic
manners,  and  most  of  them  are  derived  from  rhizospheric
microorganisms. Endophytes promote the growth of medicinal
plants by either providing some nutrients for plants or protect-
ing  plants  from  pathogen  infection.  Certain  bacterial  and
fungal genomes, such as Rhizobium sp. WYJ-E13, Penicillium sp.,
Fusarium sp., Coniochaeta sp., Cladosporium sp.  and Alternaria
sp.,  contain  genes  related  to  nitrogen  metabolism,  hormone
synthesis,  phosphate  metabolism,  and  root  colonization[36,37].
Thus,  they  can  provide  nutrients  for  plants,  which  directly
promote growth through nitrogen fixation, phosphorus acqui-
sition,  and  siderophore  production[38,39].  Certain  endophytes
(e.g. Fusarium genus TH15) synthesize sugars, amino acids, and
vitamins  to  provide  energy  to  plants[40].  Notably,  endophytes
can  also  protect  plants  from  pathogenic  infections.  Han  et  al.
(2022)  found  that Acrophialophora  jodhpurensis MR-57  inhibits
the  spore  germination  rate  of Fusarium  equiseti and  leads  to
hyphal  deformation  or  degradation,  thereby  increasing  the
stem length,  root  length,  root  fresh weight,  and dry  weight  of
Saposhnikovia  divaricate[41].Reportedly,  endophytes  secrete
hormones  such  as  indole-3-acetic  acid  (IAA)  to  promote  cell
division  or  the  expression  of  genes  related  to  plant  growth,
thereby  increasing  root  length,  stem  length,  and  root
weight[40,42].  It  was  reported  that Plectosphaerella  cucumerina
form Rumex  gmelinii Turcz.  can  promote  the  expression  of
genes  related  to  cytokinin  and  auxin  synthesis  to  increase
hormone accumulation and affect plant growth[43]. In addition,
Pseudomonas sp.，an endophytes  from Zingiber  officinale, can
produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase,
which hydrolyzes the precursor of ethylene synthesis, ACC, into
α-Butyric  acid  and  ammonia  to  reduce  the  accumulation  of
excess  ethylene,  and  that  decomposed  ammonia  can  increase
nitrogen content in the soil[44,45].

Notably,  some  microorganisms  can  also  simultaneously
promote plant growth and the accumulation of bioactive SMs,
and  these  microorganisms  may  have  good  application
prospects. For example, the endophytic bacteria Mucilaginibac-
ter sp. and Pseudomonas sp. isolated from Cannabis sativa L. not
only  promote  plant  growth  but  also  significantly  increase  the
accumulation  of  cannabinoids[46]. Azotobacter  chloricum and
Azospirillum  brasilense,  two  rhizospheric  bacteria  from Mentha
pulegium L.,  have  been  used  in  combination  to  increase  the
abscicic  acid  (ABA),  protein,  and  soluble  sugar  contents  in
peppermint,  enhance  plant  resistance  to  drought  stress,  and
increase  the  phenolic,  flavonoid,  and  oxidized  monoterogene
contents  in Mentha  pulegium L.[47].  Overall,  rhizospheric  and
endophytic  microorganisms  can  serve  as  crucial  regulatory
factors that modulate the growth and development of medici-
nal plants in multiple manners.

 Promoting the accumulation of SMs by

microorganisms

SMs are produced during the life activities of plant cells, and
their  production  and  distribution  are  generally  specific  to
species,  organs,  tissues,  growth,  and  developmental  stages.
SMs are the primary source of bioactive components in medici-
nal  plants  and  are  a  class  of  compounds  produced  by  medici-
nal plants that cannot be absorbed or converted into energy by
the  plant  itself.  The  accumulation  and  synthesis  of  SMs  are
complex and regulated by internal  factors in plants (e.g.,  gene
expression, enzymes, hormones, different organs, and develop-
mental  stages)  and  external  environmental  factors  (e.g.,
temperature,  light,  microorganisms,  and insects)[10].  Some SMs
are  synthesized  under  stressful  conditions  and  can  promote
plant  resistance  and  adaptation  to  environmental  changes,
including  biotic  and  abiotic  stresses.  Therefore,  these  SMs  are
synthesized  to  help  plants  adapt  better  to  their
environment[48].  During  the  past  decade,  rhizospheric  and
endophytic  microorganisms  have  been  shown  to  be  highly
related to the accumulation of  SMs.  While certain microorgan-
isms  can  directly  synthesize  SMs[49],  others  can  promote  the
biosynthesis of SMs using multiple strategies. In this review, we
summarize  the recent  progresses  in  understanding the role  of
microbes in regulating SM accumulation in medicinal plants.

 SMs directly synthesized by rhizospheric and
endophytic microorganisms

With the development of high-throughput sequencing tech-
nology,  scientists  have  discovered  that  the  genomes  of  some
endophytes  contain  genes  or  gene  clusters  related  to  SM
synthesis, indicating that endophytes may possess the ability to
synthesize SMs. These microorganisms can potentially be used
for large-scale production of bioactive SMs[50]. Gibberella monili-
formis, a fungal strain from the endophytes of Lawsonia inermis,
can  produce  lawsone  through  in  vitro  fermentation[51].  In  a
study  by  Tanapichatsakul  et  al.[52], Neophyllotiopsis sp.  and
Diabothe sp.  were  isolated  from  the  endophytes  of Cinnamo-
mum  loureiroi. In  vitro  fermentation  experiments  have  shown
that eugenol,  myristaldehyde, lauric acid,  and caprylic acid are
present in the supernatant of  the culture medium[52],  suggest-
ing  that  these  microbes  can  directly  synthesize  SMs.  In  addi-
tion,  certain  rhizospheric  microorganisms  of  medicinal  plants
can  synthesize  SMs.  For  example,  actinomycin  X2,
fungichromin,  thalandin  B,  and  antifungalmycin  have  been
detected  in  the  culture  medium  of Streptomyces SYP-7257
isolated from the rhizosphere of Panax notoginseng[53].

Genomic  studies  have  identified  many  SM  synthesis-related
enzymes  and  pathways  in  microorganisms.  Mining  microbial
genomes is important for studying SM synthesis and discover-
ing  new  natural  products[54,55].  Currently,  numerous  microbial
genomes  have  been  deciphered,  including  those  of  several
rhizospheric  and  endophytic  microorganisms  from  medicinal
plants.  Zhang  et  al  (2021)  found  that treptomyces  netropsis
WLXQSS-4,  isolated  from  the Clematis  manshurica Rupr  rhizo-
sphere,  could  synthesize  alloaureothin.  The  genome  contains
genes  involved  in  alloureothin  biosynthesis,  including  aluA,
aluB, aluC, and aluD[56]. The gene clusters aurA, aurB, aurC, and
aurG  are  related  to  aurovertin  biosynthesis  in  the  genome  of
Calcarisporium  arbuscula NRRL  3705  isolated  from  the  fruit  of
Russulaceae.  They  also  found  that  the  genome  contains  gene
clusters  involved  in  the  synthesis  of  aflatoxins,  alternariol,
destruxin,  citrinin,  and  isoflavipucine[57].  The  genome  of Bacil-
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lus  halotolerans Cal.l.30,  an endophyte isolated from Calendula
officinalis,  encodes  genes  involved  in  the  biosynthesis  of  kali-
mantacin  A,  bacillaene,  fengycin/mojavensin  A,  bacillibactin,
and  subtilosin  A[58].  A  recent  study  by  Su  et  al.  (2023)  showed
that  the  physicochemical  properties  of  soil  regulate  the  accu-
mulation of terpenes by affecting the composition of the rhizo-
sphere  and  endophytic  microorganisms  in  citrus.  They  further
screened for  an endophytic bacterium that could promote SM
accumulation  and  performed  whole  genome  sequencing  of
this strain. Bioinformatics analysis revealed that the genome of
this  bacterium  encodes  gene  clusters  capable  of  synthesizing
terpenes[59].These  microorganisms  have  potential  for  direct
application  in  biological  fermentation  and  provide  a  founda-
tion  for  the  discovery  of  new  and  efficient  SM  synthesis
enzymes.

 Plant hormone-induced SM accumulation
affected by microorganisms

Plant  hormones  are  small-molecule  compounds  that  regu-
late plant growth, development, differentiation, and responses
to  environmental  changes[60].  The  accumulation  or  biosynthe-
sis of SMs is induced by several plant hormones, such as auxin,
salicylic  acid  (SA),  and  ABA[61].  Rhizospheric  and  endophytic
microorganisms  can  regulate  SM  biosynthesis  by  producing
plant  hormones  to  manipulate  host  hormone  levels.  Here,  we
summarize  the  major  plant  hormones  that  are  affected  by
microorganisms and modulate the accumulation of SMs.

IAA is an endogenous auxin commonly present in plants that
regulates  multiple  biological  processes,  including  cell  division
and  elongation,  lateral  root  development,  adventitious  root
formation,  fruit  development,  and  senescence[62].  Some  rhizo-
spheric  and  endophytic  microorganisms  of  medicinal  plants
can  synthesize  IAA  to  affecte  SM  accumulation[63]. Bacillus
muralis, Bacillus  megaterium, Pseudomonas sp., Streptomyces
sp., and Pantoea sp. isolated from Withania somnifera can affect
plant  endogenous  auxin  content  by  synthesizing  IAA.  There-
fore,  activating  the  expression  of  the  methylerythritol  phos-
phate  pathway  genes  1-deoxy-D-xylose  5-phosphate  synthase
(DXS)  and  1-deoxy-D-xylose  5-phosphate  reductoisomerase
(DXR)  to increases the synthesis of withanolide and withaferin-
A[64].  The  endophyte Pseudomonas  fluorescens ALEB7B
increases the accumulation of sesquiterpenoids in Atractylodes
lancea by  producing  IAA.  Consistent  with  this,  exogenous  IAA
treatment  also  significantly  increases  the  accumulation  of β-
caryophyllene, zingiberene, and β-sesquiphellandrene[65].

SA  is  a  phenolic  plant  hormone  that  plays  a  crucial  role  in
plant  immunity  and  induces  resistance  to  phytopathogens.  It
also  regulates  plant  growth,  development,  photosynthesis,
transpiration,  ion  absorption,  and  transportation[66,67].  Recent
studies  have  shown  that  endophytes  can  perceive  external
stimuli in their hosts and activate a series of defense responses
by  secreting  SA  or  regulating  the  content  of  endogenous  SA,
thereby  protecting  plants  from  invasion[68,69].  In  addition  to
activating immunity, SA can activate several SM synthesis path-
ways.  The  exogenous  application  of  SA  to Dendrobium  offici-
nale can activate the expression of flavonol synthase (FLS) gene
involved  in  flavonol  biosynthesis  metabolism  pathways,
thereby  significantly  increasing  the  total  flavonol  content  in
Dendrobium officinale[70]. SA and ABA has been detected in the
fermentation supernatant of Sphingomonas paucimobilis ZJSH1,
an endophyte isolated from Dendrobium  officinale[42],  suggest-

ing that  it  may promote SM biosynthesis  by increasing the SA
or ABA levels in host cells. The endophytic fungus Fusarium sp.
E5  from Euphorbia  pekinensis increases  isoeuphpekinensin
content by enhancing host SA levels[71].

ABA  is  an  important  plant  hormone  of  the  isoprenoid
(terpene)  category.  It  plays  a  crucial  role  in  plant  responses  to
abiotic  stresses[72,73].  Several  rhizospheric  and  endophytic
microorganisms  can  synthesize  ABA  or  regulate  host  ABA
levels,  thereby  affecting  the  accumulation  of  SMs  via  ABA-
mediated  pathways[74].  Exogenous  treatment  of Dendrobium
officinale with  ABA  significantly  increases  the  expression  of
genes  involved  in  the  methylethritol  phosphate  pathway,
including DXS and DXR[75].  The  endophyte Brachybacterium
paraconglomeratum strain  SMR20  from Leucojum  aestivum L.
reportedly  regulates  host  ABA  levels[76].  Several  studies  have
showed  that  exogenous  application  of  ABA  on  medicinal
plants,  such  as Glycyrrhiza  uralensis, and Salvia  miltiorrhiza,
significantly  enhanced  the  accumulation  of  bioactive  ingredi-
ents[76−78].  However,  it  still  requires  further  studies  to  investi-
gate whether these microorganisms regulate SM accumulation
in medicinal plants by affecting ABA levels.

According  to  these  reports,  rhizospheric  or  endophytic
microorganisms  can  synthesize  plant  hormones,  thereby
promoting  SM  accumulation  in  the  host.  However,  current
research  on  the  mechanisms  by  which  microbe-derived
hormones  directly  or  indirectly  regulate  SM  accumulation  in
medicinal  plants  is  largely  unknown.  The  majority  of  studies
have  reported  that  microorganisms  can  synthesize  hormones
and that  the exogenous application of  hormones can increase
the  accumulation  of  plant  SMs.  We  hypothesized  that
hormones synthesized by microorganisms enter host cells and
activate multiple downstream signaling pathways mediated by
hormones,  including  pathways  related  to  the  biosynthesis  of
SMs,  ultimately  affecting  the  accumulation  of  SMs  (Fig.  2).
Future  research  is  needed  to  elucidate  the  molecular  mecha-
nisms  by  which  microorganisms  regulate  SM  synthesis  by
manipulating  host  hormone  levels.  To  treat  plants,  hormones
that  can  enhance  the  accumulation  of  SMs  in  plants  can  be
directly  applied,  or  microorganisms  that  can  synthesize
hormones can be used, thereby promoting the accumulation of
SMs.

 Promoting SM accumulation by activating plant
immunity

Plants  and  microorganisms  reside  in  a  common  environ-
ment, and plants can perceive the presence of microorganisms
and  respond  accordingly.  Plant  cell  surface-localized  pattern
recognition  receptors  (PRRs)  recognize  conserved  molecular
features, such as fungal cell wall components, chitin, and bacte-
rial  flagellin,  and  initiate  innate  immune  responses  against
microbes.  These  conserved  microbial  features  are  called
microbe/pathogen-associated  molecular  patterns
(PAMPs/MAMPs)[79].  Upon recognition of PAMPs/MAMPs, plant
cells  activate  a  series  of  immune  responses,  including  the
production  of  reactive  oxygen  species  (ROS),  calcium  influx,
activation  of  mitogen-activated  protein  kinase  (MAPK)  and
calcium-dependent  protein  kinase  cascades,  and  transcrip-
tional  reprogramming[80].  Note  that  the  PRR-mediated  immu-
nity can be triggered by MAMPs from most microbes, not only
by  pathogens.  The  activation  of  immune  responses  may  acti-
vate  the  expression  of  genes  related  to  SM  synthesis,  thereby
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affecting  SM  accumulation[81].  For  example,  the  activation  of
plant  immunity  affects  the  metabolism  of  flavonoids,  lipids,
phenolic  acids,  and  amino  acids  in Arabidopsis  thaliana[82].
Fungi-derived  MAMP  Chitin  and  bacterium-derived  MAMP
flg22  can  induce  ROS  bursts  and  MAPK,  which  then  regulate
the accumulation of phenylpropanoids, flavonoids, and linoleic
acid derivatives  in  rice  (Oryza  sativa)[83].  Similarly,  treatment  of
plants  with  chitosan,  a  fungus-derived  MAMP,  activates  the
production  of  immune  signaling  molecules  ROS  and  NO  and
promotes the accumulation of lignin and the primary metabo-
lites galactose and melibiose in chickpea (Cicer arietinum. L.)[84].
Some SMs, such as monoterpenes, can induce the activation of
plant immunity and improve plant adaptability to environmen-
tal changes[85].

In  medicinal  plant  studies,  scientists  have  found  that  rhizo-
spheric  and  endophytic  microorganisms  regulate  the  expres-
sion  of  genes  related  to  the  synthesis,  metabolism,  and  accu-
mulation of SMs by activating plant immunity. The endophytic
fungal  strain Penicillium  oxalicum significantly  enhances  the

expression of immune-related genes, such as the genes encod-
ing the PRR protein FLS2 and calmodulin like protein, in Gastro-
dia  elata Bl.  f.  glauca  S.  chow  tubers.  Immune  activation  regu-
lates  the  biosynthesis  of  flavonoids,  diterpenoids,  and  phenyl-
propanoids in Gastrodia elata Bl. f. glauca S. chow[86]. Alternaria
panax Whetzel  is  a  pathogen isolated from Panax  notoginseng
that  can  activate  ROS  production  and  the  MAPK  cascade,
enhance the expression of PAL, 4CL, CAD,  and POX,  and signifi-
cantly  increases  the  accumulation  of  p-hydroxyphenyl  lignin,
guaiacyl  lignin,  and  total  lignin[87].  It  was  reported  that
pathogenic microbes activate MAPKs,  AP2/ERFs,  and WRKYs in
Syringa Pinnatifolia Hemsley., which enhance the expression of
key  enzyme  genes  in  the  biosynthesis  pathways  of  sesquiter-
penes  and  ligans,  leading  to  the  accumulation  of  SMs  such  as
diterpenes, alistolane, aromadendrane, bisabalane, cadine, and
ligans[88].  Collectively, plant immunity and metabolic pathways
are closely related,  and microorganisms or  PAMPs/MAMPs can
induce immune activation to promote SM accumulation (Figure
2).

 
Fig.  2    Microorganisms  regulate  the  accumulation  of  SMs  in  medicinal  plants  in  multiple  manners.  Medicinal  plants  reside  in  a  common
environment with rhizosphere and endophytic microorganisms. While some rhizospheric and endophytic microorganisms directly synthesize
SMs[106],  others may promote the biosynthesis of  SMs in medicinal  plants by secrete plant hormones,  such as IAA, SA and ABA into the host
cells  or  activate  host  immunity-related  pathways  (e.g.  MAPK)  pathways[76,107−109].  In  contrast,  some  SMs  may  promote  host  resistance  or
affected the microbial composition[110].
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Several  studies  have  reported  that  rhizospheric  and  endo-
phytic  microorganisms  enhance  SM  accumulation,  likely  by
activating  the  plant  immunity.  However,  the  majority  of  stud-
ies have found, through multi-omics analyses, that SM accumu-
lation  is  highly  correlated  with  genes  or  pathways  related  to
plant  immunity,  suggesting  that  microorganisms  promote  SM
accumulation  by  activating  host  immunity.  There  are  few
reports  on  the  molecular  mechanisms  by  which  microorgan-
isms  regulate  SM  accumulation  through  the  host  immune
system. In the future, PAMPs/MAMPs derived from microorgan-
isms could be directly used to enhance the quality of medicinal
plants  by  activating  the  host  immune  system.  This  approach
avoids  the  potential  microbial  invasion  to  the  host.  Consider-
ing  production  costs,  weak  or  non-virulence  microorganisms
that expressing the PAMPs or MAMPs may have better applica-
tion prospects.

 Regulation of rhizospheric and endophytic
microorganisms by plant SMs

During  plant-microbe  interactions,  microorganisms  may
promote the accumulation of various SMs in plants, enhancing
their  adaptability  to  environmental  stresses.  Some  plant  SMs
can protect plants from pathogenic microbe infections by acti-
vating  the  expression  of  resistance  related  genes.  Maize  root
exudates  can  recruit Bacillus  amyloliquefaciens OR2-30,  which
secretes  a  lipopeptide  called  iturins  to  inhibit  the  formation
and  germination  of Fusarium  graminearum conidia,  inducing
the  production  of  ROS  and  causing  hyphal  cell  death[89].  Taxi-
folin  is  a  flavonoid  compound  secreted  by  the  root  system  of
potatoes and onions. The tomato rhizosphere treated with taxi-
folin is enriched in Bacillus sp. B56, which inhibits the growth of
Verticillium  dahliae and  reduces  the  incidence  of  verticillium
wilt[90].  Many  medicinal  plants  are  able  to  synthesize  some
triterpenes compounds, such as Astragalus membranaceus Bge.
var. mongolicus (Bge.)  Hsiao  and Nigella  sativa[91,92].  Research
has  reported  that  triterpenoids,  such  as  thalianyl  palmitate,
myristate  and  laurate,  can  selectively  enrich Rhizobium sp.,
Hydrogenophage sp.  and Herbaspirillum sp.  in  plants[93].
Tangereti is a component rich in medicinal plants, such as citrus
sinensis and citrus  reticulata.  It  was  reported  that  tangeretin
treatment  of  rice  can  enhance  its  resistance  to  rice  blast
disease[94]. Phenolic acids are also one of the main active ingre-
dients in many medicinal plants, such as Salvia miltiorrhiza and
Lycium  ruthenicum Murray[95,96].  Researchers  have  found  that
reducing  the  concentration  of  phenolic  acids  significantly
inhibits the enrichment of pathogenic bacteria Ilyonectria in the
rhizosphere of Panax notoginseng, while promoting the growth
of  beneficial  bacteria Sphingomonas, Lysobacter, Massilia and
Burkholderia,  thereby  reducing  the  occurrence  of  root  rot
disease[97].  However,  whether  these  components  can  activate
plant  immunity  in  medicinal  plants  themselves  remains  to  be
further studied.

SM  are  also  known  to  affect  the  composition  or  abundance
of  the  rhizospheric  or  endophytic  microbial  communities  in
crops[98−100].  For  example,  researchers  have  found  that  SMs  in
tobacco  can  regulate  the  composition  of  microbial  communi-
ties.  Nicotine  is  the  primary  alkaloid  in  tobacco  leaves  that
defends against insects[101]. Benzoxazinoids synthesized in corn
are  indole-derived  compounds,  which  can  significantly  inhibit
pathogenic  fungi  such  as Blumeria, Ramularia, Puccinia,  and

Filobasidium in  the  buds  through  their  accumulation  in  the
body[102].  In  tobacco,  isoquinoline  alkaloids  can  significantly
reduce  the  number  of  pathogenic  bacteria Ralstonia
solanacearum in  soil,  thereby  reducing  the  occurrence  of
tobacco wilt disease[103]. However, there are still few studies on
the  impact  of  medicinal  plant  SMs  on  the  composition  of
microbial  community,  and  the  mechanisms  remain  to  be
further investigated.

 Conclusions and perspectives

Microorganisms  play  essential  roles  in  SM  accumulation  in
medicinal plants. These microorganisms promote plant growth
and development  by  establishing symbiotic  relationships  with
plants  or  suppressing  pathogen  infection.  Many  rhizospheric
and endophytic microorganisms can promote SM biosynthesis
in various manners, including the direct synthesis of SMs, secre-
tion  of  plant  hormones,  and  activation  of  host  immunity  (Fig.
2).  In  constrast,  SMs  may  regulate  the  composition  and  abun-
dance  of  microorganisms.  Interactions  between  microbes  and
medicinal  plants  provide  an  important  perspective  for  under-
standing  the  accumulation  of  bioactive  SMs  in  medicinal
plants. However, the precise mechanisms through which plant
SMs  and  microbes  regulate  each  other  remain  unclear.  Future
research will require in-depth analyses of the molecular mecha-
nisms underlying these interactions. In recent years, Salvia milti-
orrhiza and Echinacea purpurea are known to have good medic-
inal  effects,  rich  medicinal  ingredients,  and  relatively  mature
experimental research systems. They have been proposed to be
model  plants  for  studying  medicinal  plant-microbe  interac-
tions[104,105].  Future  studies  on  the  microbiomes  of  these  two
medicinal  plants  may  facilitate  new  breakthroughs  regarding
the  interactions  between  medicinal  plants  and  microorgan-
isms.  Future  studies  should  also  focus  on  the  development  of
efficient  and  high-quality  microbial  fertilizers  to  improve  the
yield and quality of medicinal plants. Multiple microbial strains
be  combined  to  develop  microbial  fertilizers  that  can  simulta-
neously  promote  the  growth,  accumulation  of  active  ingredi-
ents, and disease resistance of medicinal plants. The accumula-
tion  of  certain  SMs  is  induced  by  microbially  derived
PAMPs/MAMPs,  which  can  be  produced  through  large-scale
fermentation.
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