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Abstract

Background Optimizing resuscitation to reduce inflammation and organ dysfunction
following human trauma-associated hemorrhagic shock is a major clinical hurdle. This is
limited by the short duration of pre-clinical studies and the sparsity of early data in the clinical
setting.
Methods We sought to bridge this gap by linking preclinical data in a porcine model with
clinical data from patients from the Prospective, Observational, Multicenter, Major Trauma
Transfusion (PROMMTT) study via a three-compartment ordinary differential equation
model of inflammation and coagulation.
Results The mathematical model accurately predicts physiologic, inflammatory, and
laboratorymeasures inboth theporcinemodel andpatients, aswell as theoutcomeand time
of death in the PROMMTT cohort.Model simulation suggests that resuscitationwith plasma
and red blood cells outperformed resuscitation with crystalloid or plasma alone, and that
earlier plasma resuscitation reduced injury severity and increased survival time.
Conclusions This workflow may serve as a translational bridge from pre-clinical to clinical
studies in trauma-associated hemorrhagic shock and other complex disease settings.

Traumatic injury accompanied by hemorrhagic shock (T/HS) remains the
leading cause of preventable death in both military and civilian trauma
patients1. In these patients, death occurs early (within one hour)2, and for
early survivors hemorrhage and trauma induce an acute inflammatory
response that ultimately drive multiple organ dysfunction and death much
like sepsis. This response promotes a coordinatedmobilization of numerous
circulating mediators and inflammatory cells, precipitating a cascade of
generally deleterious effects on numerous organ systems3,4. Some immune
mediators, such as tumor necrosis factor-α (TNF-α), appear to be necessary

in responding to injury andpromoting survival inblunt traumapatients and
experimental animals5. However, elevated IL-66 and IL-107–9 in trauma
patients are statistically associatedwith highermorbidity andmortality, and
recent studies employingmachine learning have implicated the type 3/Th17
response in these adverse outcomes10–12. These immune-inflammatory
effects, in turn, likely cause or exacerbate multiple organ dysfunction syn-
drome (MODS) and other complications such as nosocomial infections
following hemorrhagic shock13. However, the link between inflammation
and clinical outcomes is not linear, and it is difficult, despite statistical
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Plain language summary

Research to improve survival in patients with
severe bleeding after major trauma presents
many challenges. Here, we created a
computer model to simulate the effects of
severe bleeding. We refined this model using
data from existing animal studies to ensure
our simulations were accurate. We also used
patient data to further refine the simulations to
accurately predict which patients would live
and which would not. We studied the effects
of different treatment protocols on these
simulated patients and show that treatment
with plasma (the fluid portion of blood that
helps form blood clots) and red blood cells
jointly, gave better results than treatmentwith
intravenous fluid or plasma alone. Early
treatmentwith plasma reduced injury severity
and increased survival time. This modelling
approach may improve our ability to evaluate
new treatments for trauma-associated
bleeding and other acute conditions.
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association, to link the actions of individual inflammatory mediators to
clinical outcomes in the setting of T/HS3.

An integral part of treatment for acute hemorrhage has recently been
termed “damage control resuscitation” (DCR)13. This approach seeks to
identify hemorrhagic shock at the earliest possible time, replace shed blood
with hemostatic blood products and intravenous medications, and stop the
spiral of coagulopathy and ongoing hemorrhage as quickly as possible14. A
recent study demonstrated that prehospital plasma resuscitation improves
survival following trauma15. It is hypothesized that early plasma resuscita-
tion maymodulate inflammatory and endothelial cell responses to injury16,
and recent work has associated survival with the necessity to normalize key
coagulation protein concentrations17. Yet the complexity of T/HS-induced
immune-inflammation and MODS, combined with the emergent and
sporadic nature in which trauma often presents, makes clinical trial design
both challenging and costly thus presenting a major translational barrier18.

Mechanistic computational models based on ordinary differential
equations (ODE) calibrated with data on trauma patients have yielded
individual- and population-level insights into human T/HS and have
enabled the assessment of novel therapies in silico19. Given that the devel-
opment and regulatory approval of such therapeutics is not done in silico
but typically involves studies in large animals that imperfectlymimichuman
disease, a core remaining challenge centers on linking granular pre-clinical
data to data from patients20, especially given the massive dimensionality of
the response space of critical illness predicted by mechanistic models21–23.

In the present study, we seek to utilize mechanistic computational
modeling to bridge physiologic, inflammatory, and clinical aspects of T/HS
in large-animal pre-clinical studies (in which early responses to experi-
mental perturbations are assessed in very granular detail under controlled
conditions but outcomes are limited to several hours after the insult) with
human clinical studies (in which early data are sparse and inter-individual
variability is high). Our model accurately predicts physiologic, inflamma-
tory, and laboratory measures in large animals and humans with T/HS. In
humans with T/HS our model correctly categorizes outcomes (survival vs
death) and time of death. Further in silico simulation suggests resuscitation
with plasma and red blood cells outperforms resuscitation with crystalloid
or plasma alone, and that earlier plasma resuscitation reduces injury severity
and increases survival time.Mechanistic mathematical modelingmay serve
as a translational bridge from pre-clinical to clinical studies in trauma-
associated hemorrhagic shock and we suggest this represents a generalized
approach to complex diseases.

Methods
Ethics and data analysis
Study oversight and ethical approval was provided by the Human Research
Protection Office of Research Protections of the U.S. Army Medical
Research and Materiel Command. A Cooperative Research and Develop-
ment Agreement enabled sharing of animal and de-identified human data
among participants for analysis. Statistical analysis was performed using R
4.0.3 (R Foundation for Statistical Computing, Vienna, Austria. https://
www.R-project.org/).

Mathematical model development
A three-compartment ordinary differential equation model was developed
via expansionof apreviousmodelof the inflammatory response to trauma19.
This novel model consists of lung, tissue, and blood compartments, with an
epithelial cell (EC) barrier between blood-lung and blood-tissue (Fig. 1).
Migration occurs only from blood to lung or tissue; there is no reverse
migration back into the blood and no migration from lung to tissue. Our
model also accounts for inflammation and coagulation (Supplementary
Figs. 1-2). Inflammatory mediators include monocytes (Mo), neutrophils
(Nu), and pro- and anti-inflammatory cytokines (TNF-α, IL-1, IL-6, IL-10,
nitric oxide [NO]). An initial trauma, quantified by the injury severity score
(ISS), initiates the model, perturbing it from the healthy steady state.
TraumaactivatesMoandNu in all three compartments, andECson the two
compartmentboundaries.ActivatedMoandNucanmigrate fromtheblood

to the lungs and tissue. Activated cells produce pro or anti-inflammatory
cytokines and NO/iNOS. Pro-inflammatory cytokines promote the acti-
vation of additional cells. Anti-inflammatory cytokines inhibit these acti-
vation processes. IL-10 inhibits iNOS (which produces NO) production via
all cell types. Nitric oxide reduces blood pressure (BP); in the model, NO
levels above baseline result in lower BP, while NO levels below baseline
increase BP. The main clinical output of the model is damage leading to
death. We define damage as a function of BP, O2Sat, IL-6, and the injury
burden:

bpdamage ¼ kdamagebp
� fm max bpdamagethresh

� bp; 0
� �

; xdamagebp ; 2
� �

ð1Þ

O2Satdamage ¼
kdamageO2Sat

�maxðO2Satdamagethresh
� O2Sat; 0Þ

max O2Sat
� � ð2Þ

il6damage ¼ kdamageil6
� fm max il6� il6damagethresh

; 0
� �

; xdamageil6
; 2

� �

ð3Þ

traumadamage ¼
kdamagetrauma

� trauma

max ISSð Þ ð4Þ

Damage ¼ bpdamage þ O2Satdamage þ il6damage þ traumadamage ð5Þ

where fm v; x;Hillð Þ ¼ vHill

vHillþxHill , max(O2Sat) = 98, and max(ISS) = 75.
Damage-associated molecular pattern molecules (DAMPs, a byproduct of
the initial trauma) promote the activation of the tissue-bloodECs.Activated
lung-blood ECs inhibit oxygen transfer from the lung to the blood, resulting
in low O2Sat which feeds into damage.

Themodel was expanded to account for hemorrhage and resuscitation
(Supplementary Fig. 2a-b). The coagulation module includes platelets, red
blood cells (RBCs), inactive and active pro- and anti-coagulation variables,
and clot formation. Trauma initiates the coagulation cascade, which is self-
regulating, and leads to the formation of active coagulation factors (active
procoag), which combine with platelets to form clots. Additionally, trauma
enhances the degradation rate of the clots, as a mechanism to represent
fibrinolysis. Active pro-coagulation factor (active procoag) promotes the
activation of Mo, Nu, and ECs, linking coagulation to inflammation. IL-6
activates coagulation (inactive procoag to active procoag), further repre-
senting the known cross-talk between inflammation and coagulation. This
model accounts for dynamic blood volume and blood pressure: trauma
causes bleeding, which reduces the blood volume and lowers BP. Low blood
pressure reduces the rate of bleeding, while elevated blood pressure, which
can occur due to therapeutic infusions, increases bleeding. Low blood
pressure also contributes to damage.

This expanded model serves as a platform for modeling therapeutic
inputs, including resuscitation fluids and blood products. The model sup-
ports crystalloids and colloids, packed RBCs, platelets, and plasma
(fresh frozen (FFP) and freeze-dried (FDP)).All infusions increase the blood
volume (and thereby blood pressure). Ventilation is crudely represented:
ventilation improves lung function, thereby decreasing O2Sat damage. If a
patient receives ventilation, this begins at hospital admittance. Timeof death
serves as a major clinical output of the model; passing a threshold in the
value of theAUCof damage (276.53) triggers death.Anarrative explanation
of the model, model equations, definitions, parameters, and initial condi-
tions are provided in Supplementary Notes,1-5 and Supplementary Data 1,
and the model code has been made publicly available24. A total of 33
parameterswere fit byminimizing aweighted least squares objective using a
sequential Monte Carlo method. Factors influencing uncertainty during
model fitting included degrees of freedom (range zero to ten for measured
analytes), non-linearity of the model, and parameter estimation on an
individual basis vs cohort basis.
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Porcine T/HS modeling
Datawere obtained fromSpoerke et al. inwhich all experimental procedures
were done in accordance with the guidelines of the Institutional Animal
Care and Use Committee at OregonHealth and Science University and the
US Army Institute of Surgical Research25. Briefly, female juvenile Yorkshire
crossbred swine were subjected to femur fracture with a captive bolt gun,
cooled to 33 °C, then underwent controlled hemorrhage (60% of estimated
blood volume), followed by 30min of shock. Animals were then infused
with isotonic sodium chloride solution, 0.9%, at volumes three times the
controlled hemorrhage volume, to induce acidosis and coagulopathy.
Subsequently, animals were subject to a Grade V liver injury, followed by
30 seconds of uncontrolled hemorrhage. Animals were then randomized to
one of four different treatment arms: FFPonly, FDPonly, FFP+ RBC in 1:1
ratio, or FDP+ RBC in 1:1 ratio (four animals per arm), at rate of 50mL/
min, with an infusion volume equal to the blood removed during the
controlled bleed. Four hours of monitoring took place before the animals
were sacrificed. Laboratory measures were performed using standard
techniques, and cytokine levels were quantified with enzyme-linked im-
immunosorbent assays. Of the 32 animals in the original study, 16 were
monitored with sufficient granularity to qualify for inclusion in this
modeling study.

Mathematical model assumptions and set-up
The mathematical model assumptions and set-up for the porcine T/HS
protocol are illustrated in Fig. 1. The following assumptions were made for
the ISS for the pig procedures: Line placement (ISS = 1), femur fracture/
controlledblood (ISS = 15), and liver injury (ISS = 9).The tinitialparameter is

assumed to be 10min prior to the femur fracture triggered by the placement
of themonitoring lines. The rationale for this time period is that at baseline,
the model sits at a healthy, steady state, where pro-inflammatory cytokines
must have an initial condition of zero. However, the baseline pro-
inflammatory cytokines do not have initial values of zero in the animal data
set. This 10-minute buffer period, with a very small ISS of one representing
line placement, allows the model to maintain a healthy initial steady state,
but still reach the first reported cytokine data points by rising during the
first 10min.

Spoerke et al. 25 found little difference betweenFFPandFDP; so, for our
purposes, we considered FFP and FDP both as “plasma” thereby collapsing
the unique treatment arms from four down to two (Fig. 2). The 1:1 dosage in
the packed RBC arms is replicated in the model by giving 1/4 of the total
dose as packedRBC, then 1/4 as plasma, then 1/4 as packedRBCagain, then
the last one as plasma again. In the plasma-only arms, a single plasmadose is
applied. However, note that in the mathematical model, the FFP and FDP
infusions provide an identical amount of coagulation proteins. This is
supported by published data26. For this model, we assume that the coagu-
lation factors are reduced by 15% in both FFP and FDP due to the freeze/
thaw or lyophilization process, respectively25.

Coagulation factor data
The mathematical model contains generalized species for pro-coagulation
and anti-coagulation (inactive/active for each). Therefore, the data for pro-
(FII, V, VII, VIII, IX, X, XI, XII) and anti- (ATIII, PC) coagulation species
were compiled into groups, by taking the average value across pro- (FII, V,
VII, VIII, IX, X, XI, XII) and anti- (ATIII, PC).We assume that the available

Fig. 1 | Three-compartment ODEmodel.The ordinary differential equationmodel
used in Brown et al. 19 was modified to include aspects of the coagulation pathway.
This model captures both the physiologic and biochemical response to trauma and
predicts outcomes at the individual patient level. Black arrows signify an increase
in effect, while red bars indicate an inhibitory effect. AntiCyt, anti-cytokine

(anti-inflammatory) effect; DAMP, damage-associated molecular patterns; ECL,
epithelial cell in the lung compartment; ECT, epithelial cell in the tissue compart-
ment; Mo/Nu, monocyte/neutrophil; NO, nitric oxide; ProCyt, pro-cytokine
(pro-inflammatory) effect.
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data represents the active and inactive forms of these factors summed
together.

Simulating bleeding
In the controlled bleed step of the actual animal experiments, the bleed rate
was theoretically fixed, x/min (though x was unique per pig). However, in
the mathematical model, the bleed rate is dynamic. Bleeding rates were
tuned to blood loss volume targets from the animal data: heuristics were
used in fitting to request that roughly the same amount that is bled in the
experiment is also bled in the simulation, with similar timing to the real
experiment. Thus, the reported bled volume is achieved in the model,
however it is via a dynamic rate. The rationale is that in humans, in a trauma
setting, the rate of bleedingwill not befixed or controlled, and the volume of
blood lost is generally unknown. Having a fixed bleeding rate in the model
would rob themodel of its chance to tune the bleeding parameters, which is
critical for moving on to the human patients, where the bleed rate is not
constant or controlled.

Fitting and verification with porcine data
Measured parameters for the animal model included TNF-α, IL-6, Mo, Nu,
platelet, RBC, BP, and generalized variables for pro- and anti-coagulation.
We fit to six out of eight pigs per arm (n = 12 total with n = 6 plasma-only
and n = 6 plasma+RBC); two pigs per arm was reserved for verification
(n = 4 total with n = 2 plasma only and n = 2 plasma+RBC). Data from all
pigs were fit simultaneously, with the fit parameters divided into a large set
of global parameters for all test subjects, and a small set of local parameters
specific to individual subjects to elicit the differences observed among
individuals. The types of parameters involved here include the following: 1)
Fixedparameters directly fromthepig data (such as initial bloodvolume), 2)
fixedparameters from literature (such as cell death rates), 3) parameters that
should be globally fit (includesmost parameters), and 4) a small set is fit per
pig, for per pig variability.Global parameters for death anddamagewere not
fit in this stage (there is no death during the pig experiment, and death and
damage do not feed back into the model). Model performance was verified

using two animals in each treatment arm that were not included in the
modelfitting stage. The intervention schedule andbaseline characteristics of
the individual pigswereused, and local parameterswerefit,while the analyte
trajectories were predicted using the locked global parameters from the fits.

Simulating virtual porcine populations
In silico experimentswereperformed toassess theoutcomeswith alternative
resuscitation strategies (Fig. 2). We sampled uniformly from the range of
values found for locally fit parameters to generate virtual populations for
different theoretical arms (protocols). The experimental protocol was not
followed as closely on a persubject basis as in the individually tailored pig
scenarios from the data, in that infusion volumes are not calculated basedon
bloodvolumehere. Instead, all valueswere chosen fromthe range seen in the
fitting. All experimental populations were generated to have 100 unique
members to sample a meaningful portion of the state space with these
simulations balanced against using a number of animals in which our
findings could reasonably be verified. Seven virtual populations were
grouped by pre-liver-injury protocol: 1. Administer the pre-liver-injury
fluids protocol from the original experiment, then after liver-injury,
administer: a) Fluids instead of plasma (volume equal to that of the original
plasma infusion); b) Plasma-only (from the original experiment); or c) RBC
+ Plasma (from the original experiment). 2. Replace initial fluids with one
unit (approximately 300mL) of plasma, then after liver-injury, administer:
a) Plasma-only (from the original experiment); b) RBC + Plasma (from
original experiment). 3. Replace initial (nonleaked) fluids with an equal
volume of plasma (approximately 1250mL), then after liver injury,
administer: a) Plasma-only (from the original experiment) or b) RBC +
Plasma (from the original experiment).

Human trauma modeling
The Prospective, Observational, Multicenter Major Trauma Transfusion
(PROMMTT) study was an observational study designed to analyze the
relationship between the timing of transfusions during active resuscitation
and patient outcomes in ten Level 1 trauma centers in the United States27. It

Fig. 2 | Overview of model calibration and verification. A Porcine data were
obtained from Spoerke et al.25. B Human data were obtained from the Prospective,
Observational, Multicenter, Major Trauma Transfusion (PROMMTT) Study27.

C Trauma simulations for 7 virtual animal populations (100 animals in each group).
D Experimental infusion protocols for 5 virtual human populations (10 in each
group). RBC, red blood cells.
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was registered as ClinicalTrials.gov Identifier: NCT01545232, and Institu-
tionalReviewBoardwas obtainedat each study sitewith second-level review
and approval provided by the US Army Human Research Protections
Office. All relevant ethical regulations were followed. Waiver of informed
consent was requested based on 1)minimal risk for this observational study
and 2) high risk of refusal based on prior work. All participating sites
approved this request except for the University of Washington, which
required delayed consent from survivors. Additional data analysis was
requested as part of the initial IRB application and was approved at all sites.
Adult trauma patients surviving for 30min postadmission, were transfused
with at least one unit of RBCwithin six hours of admission and at least three
total units of RBC, plasma, or platelets within 24 hours (n = 905). Detailed
data were collected for RBC, plasma, and platelet infusions (timing and
amount). Of these patients, we identified a cohort with complete, physio-
logically plausible data for all parameters of interest for use in our mathe-
matical model (n = 68).

Fitting, verification, and validation with PROMMTT data
Of the 68 PROMMTTpatients suitable formodeling, 35 individual patients
were selected for model training: nine of whom die in the first six hours,
26 survive at least 6 hours. The model was fit to the first 6 hours of patient
data. tinitial, which is less than zero, is the time of injury, t = 0 is hospital
admission, and the simulationproceeds to amaxof t = 360min if thepatient
survives that long. The fits are 1:1, with each virtual patient designed to fit to
one real patient, with the actual reported infusion protocol for the real
patient applied to the respective virtual patient. Fit data include O2Sat (a
single data point at the start of hospital care), blood pressure (mean arterial
pressure; zero to four data points are available per patient), platelets (a single
data point at the start of hospital care), and time of death. Heuristics
(assessed until death is triggered or the 6-hour cut-off) were also applied:
Cytokine (α) peaks <10,000 pg/mL; BP min/max of 20/250mmHg; NO
max of 1000 µmol/L, minimum bleed of 30% of healthy state blood volume
(calculated per patient). Scenario definitions were created for the time of
injury, ISS, initial blood volume, and interventions (mechanical ventilation,
vasopressors, crystalloids, RBC, platelets, and plasma). Known baseline
characteristics and intervention schedules were locked for each individual
patient. Global parameters (other than damage/death) were locked, having
been set via the pig fits. There is one exception to this rule: there was noNO
data in the pig study fits, and all pigs were subject to the same trauma
protocol. Given the possible differences in initial conditions between
humans and pigs, it was unclear how this system would react to the varia-
bility introduced by the human data. Therefore, we re-tuned the following
parameters as new global parameters, to be locked during validation/pre-
dictions:Kno−ma, rate of activemonocytesmakingNO;Kno−ep, rate of active
EPs making NO; Kno−inos, rate of iNOS making NO; Kbloodpressure−no,
strength of NO on affecting blood pressure. Individual patient parameters
were open for fitting. Damage and death parameters were open to fitting;
these were fit globally and are locked from this fit. The model was fit to
O2Sat, BP, platelets, and timeof death (or lack of deathwithin the time frame
of interest).

As in the pig-data fitting,model verification used a half-fit-half-predict
approach: the global parameters from the fit stage were locked in verifica-
tion, but the local parameters were still allowed to vary to fit the data. Again,
intervention scheduleswere known, and local parameterswerefit, but global
parameters (this time including death and damage) were locked. 17 patients
(eight die, nine survive) - separate from thefitting group -were initially used
in verification. There were 16 additional patients (seven die, nine survive)
who were subsequently used for final model validation in a “true hold-out”
approach - no changes could be made to the model at this point.

Death parameter
High IL-6, low O2Sat, low BP, and trauma all contribute to the damage
parameter. Cumulative damage is tracked by the AUC_DAMAGE para-
meter. A global death threshold is set in fitting, and when AUC_DAMAGE
exceeds this threshold, death is triggered.However, even if death is triggered,

the model simulation continues out to 6 hours although the trajectory after
death is triggered remainsmoot. Read the final value of themodel trajectory
for the time-of-death analyte to know the final time to consider. When
“predicting” death, it is important to note that we are still fitting to last time
alive (LTA), this is not a pure prediction.

Simulated experimental infusion protocols
Each simulated experimentwas runusing tenof the patients from thefitting
set (five survivors and five non-survivors, all of whom received at least one
plasma infusion), and compared per patient to their original trajectory,
which used their true in-hospital infusion schedule (Fig. 2). There is no
clinically meaningful distinction between FDP and FFP in the model as
supportedby literature (i.e., the principal benefit of FDP is logistic in that it is
immediately available without cold storage); so all plasma infusions were
considered equivalent for these experiments26.

Experiment 1. Administer an additional plasma infusion at an earlier
time. The infusion was given 15min postinjury (while still in the
ambulance/in-transit) for all patients in this set. The volume and dura-
tion of this infusion was calculated using selected patients’ average real
first plasma infusion.

Experiment 2. Administer plasma infusion very early in the hospital-
based resuscitation by shifting all infusion times to 30 min before baseline
resuscitation start time (Tresus−30).

Experiment 3. Administer plasma infusion early in the hospital-based
resuscitation by shifting all infusion times to 10 min before baseline
resuscitation start time (Tresus−10).

Experiment 4. Delay the plasma infusion by 10 min after baseline
resuscitation start time (Tresus+10).

Experiment 5. Delay the plasma infusion by 30 min after baseline
resuscitation start time (Tresus+30).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Study overview and process flow
We generated a three-compartment ODE model, modified from prior
work19, consisting of lung, blood, and tissue components with variables for
inflammatory cells andmediators, coagulation factors, fibrinolysis, trauma,
hemorrhage, and dynamic blood volume and blood pressure. The ODE
model also contains therapeutic inputs for resuscitation fluids and blood
products (Fig. 1). Supplementary Figs. 1-2 depict the key influences on the
“damage” parameter and provide greater detail on the key modules of, and
interactions in, the ODEmodel. Model outputs informed tests of simulated
therapy strategies on virtual animal populations and a subset of the human
patient data from which the model was developed. To generate virtual
animal populations,we sampledparameters uniformly fromvalues found in
fitting and then tested variations in the trauma resuscitation in silico (Fig. 2).
For the human simulated experimental protocols, data from n = 10 patients
(five survivors and five non-survivors all of whom received at least one unit
of plasma) were fit on a 1:1 basis (Fig. 2).

Model calibration and verification: linking porcine and
human data
Model parameters were tuned to data from pigs subjected to femur
fracture and controlled hemorrhage followed by hemodilution and a
severe liver injury (Fig. 2A). The model was calibrated on data from
animals (n = 12) resuscitated with plasma alone or plasma and red blood
cells (RBC). In this portion of the study, model parameters were tuned to
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data for blood pressure, circulating TNF-α, IL−6, monocytes, neu-
trophils, platelets, RBC, and coagulation factors. Additionally, compu-
tational heuristics were used tomatch the known blood loss volumes and
to stay within a realistic physiologic range for IL-1β and IL-10. Primary
simulated outcomes included blood loss and a composite “damage”
metric in survivors that was composed of components including trauma,
high IL-6, low oxygen (O2) saturation (O2Sat), and low BP (see Supple-
mentary Figs. 1-2). Supplementary Fig. 3 depicts the results of the model
calibration process in which data on hemodynamic, physiological, and
inflammatory parameters from pigs subjected to T/HS and treated with
FFP or FDP with or without packed RBC were used to tune model
parameters. In agreement with the literature26, resuscitation with plasma
alone or plasma with packed RBC was essentially equivalent with respect
to physiological and inflammatory parameters.

Model performance was verified by comparing model outputs to
known results in holdout data from additional animals (n = 4). For these
verification studies (Fig. 2A), global parameters from themodel fitting stage
were locked and known intervention schedules were applied. To maintain
an initial healthy steady state with non-zero initial pro-inflammatory
cytokine levels, local initial conditions were allowed to vary over the span of
ranges observed in the fitting data set. Other locally fit parameters varied
over the same ranges as in the animals used for fitting. Themodel predicted
these fit targets accurately in the verification cohort based on visual
inspection, regardless of the resuscitation strategy employed (Fig. 3).

A similar model calibration/verification approach was then
applied to human data from the Prospective, Observational, Multi-
center, Major Trauma Transfusion (PROMMTT) study27 (Fig. 2b). For
this part of the work, the model was trained using data from 35

Fig. 3 |Model fit verification for porcine subjects. A–IComparison of different resuscitation strategies in an animal model (n = 2 in each group). Experimental data shown
as symbols, lines represent model fitted means, and shaded areas represent the standard error of the fitted mean.
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patients (Supplementary Fig. 4), with verification in an additional 17
patients (Supplementary Fig. 5 followed by validation/prediction using
data from 16 holdout patients (Fig. 4). The demographics, injury
characteristics, and key outcomes of this PROMMTT sub-cohort are
described in Supplementary Table 1 and survival probability is shown
in Supplementary Fig. 6. The model calibration stage included an
assessment of goodness-of-fit for data associated with survivors vs.
non-survivors of T/HS. This analysis suggested that neither the mea-
sured physiological analytes and their predicted trajectories, nor the
model-predicted trajectories for inflammatory mediators, clearly dis-
tinguished non-survivors from survivors during the calibration stage
(Supplementary Figs. 4 and 5). Despite this, the calibrated model
accurately categorized all survivors (n = 10) vs. non-survivors (n = 6) in
the validation cohort based on differences in the damage (DAMAGE),
trauma-specific damage (TRAUMA_DAMAGE), and cumulative
damage (AUC_DAMAGE) variables (Fig. 4, Table 1); furthermore, for
the non-survivors, the model predicted the time of death to within one
minute (0.67 ± 0.82 minutes). The final model was re-parameterized to
best reflect both porcine and human data and was fit within 9.8% of
the original goodness of fit score.

In silico experiments in porcine and humans suggest individually
variable responses to distinct resuscitation strategies
The final re-parameterized model was then used to conduct exploratory
in silico studies in both animals (Fig. 2c) and humans (Fig. 2d) to assess
the performance of plasma resuscitation timing and volume. Seven
virtual animal populations (n = 100 animals each) were developed to
examine the effect of fluid type, dose, and timing of plasma and RBC
administration (Fig. 2c and Supplementary Fig. 7). These virtual simu-
lations underscored the risks of under-resuscitation when pre-hospital
time is prolonged (~45 min in this case) and predicted increased cir-
culating inflammatory markers at four hours with large-volume pre-
hospital resuscitation. Conversely, plasma and RBC resuscitation was
predicted to result in increased clotting and reduced bleeding (Supple-
mentary Fig. 8).

Subsequently, five in silico human experiments assessed the impact
of giving plasma pre-hospital (Exp 1), starting the resuscitation in the
hospital sooner by either 30 min or 10 min (Exp 2 and 3, respectively), or
delaying resuscitation in the hospital by 10 or 30 min (Exp 4 and 5,
respectively) (Figs. 2d and 5). Each in silico experiment was carried out
using 10 of the patients from the calibration set (using all five non-

Fig. 4 | Model validation in humans. Comparison of survivors (n = 10) and non-
survivors (n = 6) using models fit to human data from the PROMMTT Study27 for
systolic blood pressure (C) and oxygen saturation (O2Sat, E). All other parameters

including bled volume (A), EPAL (G) and all damage values (B, D, F, H, I, J) are
derived values. Experimental data shown as symbols, lines represent model fitted
means, and shaded areas represent the standard error of the fitted mean.

Table 1 | Clinical measures and model performance

Measure Survivor n = 10 Non-Survivor n = 6 p*

Model Error 0.94 ± 0 1.01 ± 0.12 0.175

SBP (mm Hg) 96 ± 15 93 ± 29 0.827

O2Sat (%) 93 ± 6 95 ± 5 0.646

Bled Volume (mL) 2,733 ± 1,047 1,718 ± 295 0.015

EPAL 1.82E+ 06 ± 1.27E+ 06 5.02E+ 06 ± 9.23E+ 06 0.436

SBP Damage 0.04 ± 0.05 0.07 ± 0.08 0.470

O2Sat Damage 0.07 ± 0.11 0.04 ± 0.06 0.517

IL-6 Damage 0.18 ± 0.13 0.50 ± 0.36 0.077

Trauma Damage 0.23 ± 0.11 0.45 ± 0.15 0.011

Total Damage 0.51 ± 0.15 1.06 ± 0.36 0.011

AUC Damage 215 ± 57 442 ± 138 0.009

AUC area under the receiver-operator curve, EPAL count of active epithelial cells in the blood-lung barrier, O2Sat, oxygen saturation, SBP systolic blood pressure, SD standard deviation
All values shown as mean ± SD
*two-sided t-test
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survivors who received at least one plasma infusion to reflect the high
mortality in this population and five matched survivors). These simu-
lations (Fig. 5b-f) were compared per patient to the original baseline
(Fig. 5a), which used each patient’s true in-hospital infusion schedule.

In silico human experiment 1: prehospital plasma resuscitation
In the PROMMTT study, plasma was administered, on average, more
than an hour post-injury27.With this experiment, we assessed the effects
of very early plasma resuscitation at a time designed to coincide with
pre-hospital transport to test the potential benefits of the logistical
planning required to deliver pre-hospital FFP or FDP15,26,28. Patients in
this simulation (Fig. 5b) received an infusion of plasma 15 min post-
injury, and the volume and duration of this infusion was calculated
using the selected patients’ average actual first plasma infusion. This
experiment suggests that giving the first plasma infusion earlier (15 min

postinjury) increased bleeding by 5.2% ± 1.2% (mean ± standard
deviation) over baseline bled volumes on a per-patient basis, but also
increased survival time for non-survivors and decreased AUC_-
DAMAGE for survivors (4.7% ± 4.5% and 2.7% ± 1.9%, respectively). In
a clinical setting, the additional bleeding would be expected with the
improved blood pressure that resulted in our modeling, and although
the improved survival time and decreased damage were modest, these
incremental benefits are consistent with recent clinical studies indi-
cating early plasma has the greatest benefit for combat casualties29 and
polytrauma patients with TBI15,30. Our findings also suggest that a single
intervention alone is unlikely to result in widespread, improved clinical
outcomes for all patients at risk. Instead, we suggest this approach can
allow us to refine the optimal target patients for each intervention while
also assessing the effect of combination therapies, all warranting further
exploration.

Fig. 5 | In silico experimental infusions in humans. A Baseline represents the
model predictions for survivors (n = 5 patients) and non-survivors (n = 5) without
modification to the resuscitation algorithm. In silico experiments represent pre-
dicted outcomes with variations in the resuscitation approach as detailed in Fig. 2D
in the rows below baseline: B pre-hospital plasma given in addition to baseline

resuscitation; C in-hospital resuscitation started 30 min earlier than baseline; D in-
hospital resuscitation started 10 min earlier than baseline;E in-hospital resuscitation
delayed by 10 min from baseline; F in-hospital resuscitation delayed by 30 min from
baseline.
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In silico human experiments 2 and 3: early in-hospital plasma
administration
Wenext simulated the administration of each plasma infusion earlier in the
hospital course to assess the benefits of rapid recognition of hemorrhagic
shock and immediate access to blood products in the Emergency
Department31. We tested two cases by shifting infusion times by 30 or
10min earlier (Figs. 5c and 5d, respectively). These experiments indicate
that early pre-hospital resuscitation prolongs survival by several min
without increasing blood loss among non-survivors. This prolonged sur-
vival would potentially allow non-survivors to proceed to operative inter-
vention sooner, resulting in improved survival32. Furthermore, for survivors,
early resuscitation decreases AUC_DAMAGE by a small amount. Based on
analysis of these simulations, these benefits were mediated through lower
levels ofBP_DAMAGEand IL-6_DAMAGEbyboosting blood volume and
diluting IL-6 earlier.

In silico human experiments 4 and 5: late in-hospital plasma
administration
The last in silico experiments were designed to test the effect of delayed
plasma intervention to simulate prolonged transport to the hospital or
delayed recognition of hemorrhagic shock. These results showed minimal
difference in outcomes: shifting the plasma infusions 10 to 30min later
(Figs. 5e and f, respectively) had a small detrimental effect on AUC_-
DAMAGE and survival time parameters but no effect on bleeding.

Overall, the five in silico experiments suggest that clinical outcomes
following T/HS are sensitive to the timing of early infusions, consistent with
recently published clinical trials33. Rapidly reversing hypoperfusion and
maintaining healthy blood pressure appears to be themost critical aspect in
mitigating overall damage and is evenbeneficial at the cost of extra bleeding.
Our results support the benefit of early DCR with blood products and
highlight the potential for personalized care in T/HS using this modeling-
based strategy.

Discussion
Trauma is the leading cause of death and disability for individuals under the
age of 55 years in the United States34. Hemorrhage represents the leading
cause of potentially preventable death in both civilian and military trauma
patients in both the prehospital and in-hospital environments35. The sub-
tleties of hemorrhagic shock and the effect of very slightly different levels of
hemorrhage on the ultimate outcome of the individual have been appre-
ciated for nearly a century13. Thus, identifying patients with occult
hemorrhage at risk for hemorrhagic shock and initiating life-saving treat-
ment like plasma and whole blood resuscitation early has become a major
emphasis in trauma research. Early intervention in these cases is paramount
to avoid the spiral of coagulopathy, acidosis, and hypothermia that carries a
mortality of approximately 50%36,37. However, rapidly and accurately
identifying patients in hemorrhagic shock who can be salvaged with timely
intervention remains an unsolved clinical conundrum13,14. Scoring systems
and statistical predictive models based upon early vital signs have been
described38–41. Although these approaches are effective at identifying more
obvious cases of profound shock, they generallymiss those patients in shock
whose compensatory mechanisms mask their otherwise tenuous physio-
logic state.

Mechanisticmodeling, in contrast with pure data-driven and statistical
models, may be able to tease out these subtleties at both the individual and
population level42–44. Mechanistic computational models can represent the
current state of biomedical knowledge at cellular and molecular scale
appropriate for clinical translation44,45. Thus, we hypothesize that
mechanisticmodeling can accurately and reliably identify patients at risk for
hemorrhage and death given limited initial data, thereby facilitating those
patients at high risk of death from hemorrhage, even before shock becomes
clinically apparent.However, there is a need to unify pre-clinical and clinical
studies in order to realize the full promise of mechanistic computational
modeling, which includes the potential for patient-specific simulations (i.e.
“digital twins”) and simulated populations (i.e. in silico clinical trials)18,44,46.

While there have been successful prior demonstrations of data-driven
modeling as a means of linking pre-clinical and human-level data47, prior
efforts utilizing mechanistic models of T/HS have focused solely on
inflammation19 or coagulopathy48,49. We have suggested previously that
mechanistic computational modeling may hold certain advantages due to
the explicit representation of biological mechanisms50. We therefore
undertook the present study to demonstrate the value of stepwise devel-
opment and refinement of mechanistic models as a means of linking pre-
clinical and clinical data.

We based the present study on the mechanistic model of human
trauma described previously19. This model was designed to recapitulate the
inflammatory response toblunt injury and the effect on thewhole organism.
To include an assessment of the effect of severe hemorrhage, we added
elements of the coagulation system to thismodel.We also allowed for inputs
of different resuscitation fluids including crystalloid and various blood
products.We retained themortality prediction element of the formermodel
using an integrated outcome termed “damage”19, wherein small amounts of
damage represent morbidity while unresolved damage indicates death.

We then examined this enhanced model in the context of an animal
study with tightly controlled experimental conditions and reasonable initial
conditions25. Modeling these animal experiments allowed us to tune the
model to reflect various biomarker trends. After verifying appropriate
performance of the model, we assessed outcomes in terms of damage and
blood loss with different resuscitation strategies. This analysis (700 virtual
subjects in seven different arms) demonstrated that the combined outcomes
of blood loss and damage were minimized using a hemostatic resuscitation
approach, whereas a crystalloid-only approach increased both blood loss
and damage. This is consistent with recent prospective and secondary
analyses,whichdemonstrate the additive benefits of early blood-component
resuscitation15,51,52.

Our model demonstrates that the plasma and RBC infusion results in
increased clotting and reduced bleeding as compared with crystalloid fluid
resuscitation. Crystalloid appears to have a dilutional effect. A previous in
silico model built to study the dilutional effects of conventional component
therapy versus whole blood in the management of massively bleeding adult
trauma patients also demonstrated that prehospital blood product trans-
fusion in place of crystalloid resulted in higher hemoglobin and fibrinogen
concentrations and a lower international normalized ratio throughout the
resuscitation regardless of the resuscitation strategy used53. While neither
modeling approach assessed the effect of crystalloid on endothelial damage,
it is possible that crystalloid resuscitation may also exacerbate the endo-
theliopathy of trauma16. Future mechanistic modeling work should also
examine these possible effects.

These results informed our model for predicting outcomes in pro-
spectively collected clinical data onpatients at risk for death frombleeding27.
In the PROMMTT study, which included 905 patients, there was a 25%
mortality rate. Of the non-survivors, 42% had hemorrhage reported as a
cause of death27. Our model demonstrated a high degree of accuracy in
predicting both survival and time of death.

Finally, we varied the time and type of resuscitation in five separate in
silico human experiments. In this integrated analysis, we demonstrated that
moving resuscitation to the earliest time possible prolongs survival in
nonsurvivors and decreases damage in known survivors. Thus, early
resuscitation on a large scalemay allow sufficient time toperform life-saving
surgical hemostasis and may also lessen morbidity in survivors as has been
seen in prehospital clinical studies15.

Several limitations of the current model and our findings must be
recognized. First, the coagulation system, the adaptive and maladaptive
physiologic responses to hemorrhage, and the interplay of resuscitative efforts
on all these systems represent a dynamic system of vast complexity. Thus, any
attempt to model these incompletely understood and highly variable systems
will necessarily represent an abstraction that, at best, approximates reality. As
an example, the animal phase of model development assumed that subjects
were relatively hyper-coagulable based on the literature54. However, the degree
of hyper-coagulability and the necessary adjustments to the model for use in
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humans were both unknown, potentially compounding inaccuracies due to
partial quantification of the various elements of the coagulation system and
the lumping of all coagulation factor levels into an aggregate measure. Fur-
thermore, this iterative model assumes the fundamental importance of the
lung, blood, and tissue elements of themodel developed in our previous work.
This model, however, does not account specifically for the neuroendocrine
response to trauma and hemorrhage or for large endothelial surfaces like that
of the small intestine that may contribute substantially to irreversible shock13.
Furthermore, our approach to parameter fitting carries multiple potential
limitations, including the use of some parameters from literature sources that
may or may not apply, intrinsic non-identifiability of the real and model
systems with associated uncertainty about the parameter estimates obtained
by this process, uncertainty regarding possible outputs of the system, and the
existence of additional, equally plausible model structures and/or parameter
regimes that would fit the data equally well. The initial animal data used for
model development did not include any early deaths from hemorrhage; thus,
the ability of the model to accurately predict early death was not able to be
specifically assessed at this stage of model development. The human data are
also sparse (e.g., a single data point for platelets and for O2Sat, and between
zero and four-time points for BP). This does not account for the dynamics of
these variables. There are many factors that affect BP in a clinical setting that
are not accounted for in our model (e.g., stress/pain, surgery, medications,
and others). Patients reported to have zero infusions were excluded, as it was
assumed that the data was in fact missing. However, it is possible that there is
partially missing infusion or maintenance fluid data, which will affect our
accuracy. The current model is based in part on the assumption that the
Injury Severity Score (ISS)55,56 is a reasonably accurate marker of the level of
injury. Because some outlier results were observed in the dataset (e.g., a
patient with ISS of two who died, or an ISS of 75 who lived), we excluded
patients with ISS < 5 or >70 to remove outliers. Finally, we did not assess the
effect of humanmodeling results with andwithout the benefit of initial model
development and training/verification on animals.

These limitations notwithstanding, our work demonstrates the
value of an iterative, mechanistic approach to linking pre-clinical and
clinical data via mechanistic computational modeling, leading to
accurate predictions of uncertain physiologic outcomes and to testing
different interventions in silico. Future applications of this approach
should assess the generalizability of this approach. This will require
collecting highly granular physiologic, laboratory, and interventional
data on a relatively small number of subjects with a wide range of
initial conditions (including injury mechanism, rates of hemorrhage,
and time to initial treatment) and subsequent outcomes57–60. This
modeling approach also has the capacity to evaluate outcomes from
hemostatic medication interventions such as prothrombin complex
concentrate61,62 or vasopressin supplementation63.

To further develop this capacity for performing in silico clinical trials,
we suggest that the same sequence of steps used herein should be followed
(Fig. 2). As noted previously20,43,50, the performance of the computational
model should be assessedwith existing data froma small number of animals
(ideally with a range of outcomes) after which any model adjustments are
made before adapting it to human application. Then, data from a small
number of human subjects can be fed into the model for validation, after
which a full-scale interventional in silico trial can be conducted to determine
population-level outcomes. Multiple iterations of the trial could be run to
determine the ideal candidates for therapy as well as treatment specifics,
such as the optimal dosing and timing for the therapy. Also, harmful or
unnecessary therapies could be identified rapidly and eliminated from
further consideration for clinical testing. Ultimately, we suggest that this
workflow holds the potential to integrate pre-clinical and clinical data not
only in the context of T/HS but is also applicablemore generally to complex
disease settings.

Data availability
Large animal data for this study is from Spoerke et al.25. supplied to the
corresponding author by Oregon Health & Science University, Portland,

OR, USA.Human data is from the Prospective, Observational,Multicenter,
Major Trauma Transfusion (PROMMTT) Study27 supplied to the corre-
sponding author by University of Texas Health Science Center at Houston,
Houston, TX, USA. The data used for model training, verification, and
validation and the modeling output reported in this study are not openly
available due to reasons of sensitivity. Data are stored under controlled
access at the University of Pennsylvania and are available from the corre-
sponding author on reasonable request. All figure source data is publicly
available in the Dryad Digital Repository at https://doi.org/10.5061/dryad.
f4qrfj733.

Code availability
The model code is available at https://doi.org/10.5281/zenodo.10595453.24
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