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A B S T R A C T

Microfossil classification is an important discipline in subsurface exploration, for both oil & gas and Carbon
Capture and Storage (CCS). The abundance and distribution of species found in sedimentary rocks provide
valuable information about the age and depositional environment. However, the analysis is difficult and time-
consuming, as it is based on manual work by human experts. Attempts to automate this process face two key
challenges: (1) the input data are very large - our dataset is projected to grow to 3 billion microfossils, and
(2) there are not enough labeled data to use the standard procedure of training a deep learning classifier. We
propose an efficient pipeline for processing and grouping fossils by genus, or even species, from microscope
slides using self-supervised learning. First we show how to efficiently extract crops from whole slide images
by adapting previously trained object detection algorithms. Second, we provide a comparison of a range of
self-supervised learning methods to classify and identify microfossils from very few labels. We obtain excellent
results with both convolutional neural networks and vision transformers fine-tuned by self-supervision. Our
approach is fast and computationally light, providing a handy tool for geologists working with microfossils.
1. Introduction

1.1. Motivated by microfossil digitalization

Stratigraphic correlation, matching corresponding strata between
different sites, wells or outcrops, is the foundation for building an
understanding of the broader subsurface (Wheeler, 1958). Many tech-
niques exist (Smith and Waterman, 1980; Baville et al., 2021), but the
utilization of fossil species and assemblages of them is uniquely pow-
erful, since apparitions, acmes and extinctions can be almost globally
simultaneous on a geological time scale.

Microscopic organic remains, known as palynomorphs, are fossils
that are routinely recovered and cataloged in oil & gas exploration.
Analyzing palynological preparations under the microscope has his-
torically been a manual and time-consuming process, that may be
underutilized at reservoir-scale due to high expense and turnaround
time. In the future, manual work will also be unsuited to low economic
margin subsurface businesses such as Carbon Capture and Storage
(CCS), where the understanding of reservoir connectivity and trap
definition gained from determining presence/absence of stratigraphic
remain crucial factors.

Recently microscope slide scanners have reached the resolution
and speed needed to digitalize palynological slides. This opens an
opportunity for a degree of automation in the field of palynology to
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those who can facilitate close collaboration between domain special-
ists and computer vision experts. The Norwegian Offshore Directorate
(NOD) is scanning their entire slide archive, covering all exploration
wells in the North Sea, Norwegian Sea and Barents Sea. These include
sediments from Triassic-Neogene (and, rarely, Permian), originating in
largely shallow/deep marine environments with some fluvial in the
Jurassic/Triassic. The archive is estimated to number 150,000 slides
- each containing on average 20,000 palynomorphs and phytoclasts. A
total of 3 billion individual fossils and unavoidably extreme sparsity of
labeling are challenges for applying computer-vision. In this paper, we
present our methods to tackle both the huge volume of data and the
lack of labels.

1.2. Deep learning and self supervised learning

Classifying or grouping images based on content using automatic
algorithms is, in general, a challenging task. Even if an image clas-
sification task is conceptually simple and the subject of the photo
is well defined, the placement of the subject in an image will often
vary from one image to another. In addition to this, images also carry
redundant information stored in the pixels surrounding the object of
interest. To address these challenges, deep learning models (Goodfellow
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Fig. 1. From left to right: from a microscope slide, an object detection algorithm is adapted to detect individual crops (shown in with red bounding boxes). The detected crops
are then used to train a feature extractor self-supervised (SSL stands for Self-Supervised Learning). Finally, the feature extractor is used on a small dataset of labeled samples to
train a lightweight classifier supervised. This final classifier is trained with the features coming from the feature extractor and not directly with the images.
et al., 2016) have proven to be particularly efficient. There is a highly
nonlinear relationship between images and the labels of their content,
and deep learning is a framework which excels at modeling complex re-
lationships in data. Among deep learning models, convolutional neural
networks (CNNs) are designed specifically to extract useful information
from images. CNNs have evolved greatly the last 10–15 years, and
has until recent been the state-of-the-art in image modeling, with
studies reporting excellent results (He et al., 2015; Chollet, 2017)
on classifying labeled image data such as natural images from the
ImageNet dataset (Deng et al., 2009). In addition to CNNs, vision
transformers (ViTs (Dosovitskiy et al., 2021)) - which are inspired by
large language models, have emerged as a competitive model design for
image classification. Today, both CNNs and ViTs are commonly used for
image classification, and there is no clear winner or best architecture
for this task (Guo et al., 2022; Raghu et al., 2021). Hence, it is standard
to test and compare both architectures, and that is what we do here.

Most of the deep learning literature has up until recently been
focused on classification tasks with labeled data (supervised learning).
However, real-world applications often involve data in which the num-
ber of labels and expert annotations is small compared to the sample
size of the data. Motivated by this, self-supervised learning (SSL) is
a learning paradigm that has gained popularity in recent years. In
contrast to supervised learning where the aim is to map an input to
its label, SSL incorporates a different learning objective that does not
require any labels. Instead, SSL methods construct a task that a network
should solve (a ‘‘pretext’’ task) based solely on the samples. The main
idea is to take each sample in the dataset, modify it in some way that
does not remove the important information and teach the deep network
to identify both the original and the modified sample as (close to)
identical in its inner representation. Examples of pretext tasks used for
SSL include adding noise (Vincent et al., 2008) or masking areas in
images (He et al., 2021). The inner representation, also called latent
representation or embeddings, is a vector of values that contain valu-
able information for discriminating the samples. In a second step, this
inner representation is used for unsupervised classification of the data
or classification with a simple method such as logistic regression or k-
nearest neighbors. The latent representation concentrates the important
information contained in samples and makes the classification task
easier, requiring much fewer labels for training. The SSL deep network
becomes a ‘‘feature extractor’’ for the downstream task of classification.

In our work, we have focused on methods that incorporate
augmentation-based strategies, which is a family of SSL methods that
have been shown to be particularly promising for images. We make use
of the popular SimCLR (Chen et al., 2020a) and DINO (Caron et al.,
2021) strategies.
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1.3. Our contribution

We propose an automatic pipeline for microfossil extraction and
classification from raw microscope pictures. The method is fast and
efficient and does not require intensive computing power. We show
that our approach improves the state-of-the-art for fossil extraction. The
identification of individual species with machine learning is new and
promising.

Our approach, outlined in Fig. 1, has two main steps:

1. Microfossils detection. The first challenge is detecting indi-
vidual microfossils from the microscope images. We provide
a comparison of pipelines for automatically detecting individ-
ual microfossil crops from high-resolution whole-slide images
completely without expert annotations.

2. Microfossil identification. The second challenge is to correctly
associate each fossil detected with a genus/species in an ac-
cepted taxonomy. For this task, we evaluate the performance
of SSL methods to train convolutional neural networks (CNNs)
and vision transformers (ViTs), which pass image embeddings
to simple downstream classifiers that may be trained on suitable
taxonomic subsets.

2. Materials and methods

2.1. Data

The digital slides used for analysis were provided by the Norwegian
Offshore Directorate (NOD), accessible through Diskos,1 the Norwegian
National Data Repository for Petroleum data. These consist of 215
whole slide images (WSIs) of palynology slides from a single wellbore
(NO 6407/6-52) in the Norwegian Sea.

The microfossils used in our analysis are produced mainly from
drill cuttings samples and a few from core samples, taken at different
depths covering mainly marine, deltaic/shoreface environments from
Early Jurassic to Early Miocene. The rock samples are crushed into fine-
grained particles, before being exposed to a chemical procedure that
effectively removes any non-organic material (Halbritter et al., 2018).
The organic remains are microfossils that are put on a microscope slide.

1 see https://www.sodir.no/en/diskos/.
2 https://factpages.sodir.no/pbl/wellbore_documents/3921_6407_6_5_

COMPLETION_REPORT.pdf.

https://www.sodir.no/en/diskos/
https://factpages.sodir.no/pbl/wellbore_documents/3921_6407_6_5_COMPLETION_REPORT.pdf
https://factpages.sodir.no/pbl/wellbore_documents/3921_6407_6_5_COMPLETION_REPORT.pdf
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Fig. 2. Microfossil data. A microscope whole slide image of organic microfossils. The
whole slide image is stitched together by multiple tiles. A: Thumbnail of a single
microscopic slide. The non-empty region of the image consists of approximately 40
𝑥 40 = 1600 tiles. B: Single tile (2048 × 2048 pixels) from a microscopic slide.

Typical size of palynomorphs are in the range 5–500 μm.3 Finally,
the microscope slides are digitized using a 3DHISTECH PANNORAMIC
1000 high-resolution scanner, with a pixel size of 0.25μm. The 215
slides correspond to the measured downhole depths of 1200 m to
2760 m. Fig. 2A shows a thumbnail of a single slide which itself consists
of multiple smaller tiles (Fig. 2B). Based on applying our detection
method to many slides from several wells the number of fossils in each
slide is observed to be in the range of 10,000 to 50,000, implying there
will be ∼2–10 million from the slides we have available in this well.
Except for a few labeled images described below, the data is unlabeled
and contains no information about the coordinates or types of objects
(species) present in the slides.

In addition to the unlabeled whole-slide images, the data also
include a sample of labeled crops drawn largely from shallow marine
settings in the Cretaceous/Paleogene. This relatively tiny subset of fos-
sils (1123 images) was selected and labeled by an expert palynologist,
and the labeled set totaled 246 distinct species. There was, however,
some uncertainty related to the correctness of the species for a number
of the images. We assume that the actual number of species present
in the slides far outnumbers the number of labeled species. The role
of the labeled crops is to be used to evaluate the models trained on
unlabeled slides. Due to the small number of labels for some of the
species, we decided to further merge groups that belonged to the same
genus, resulting in a data set containing 123 different genera (see Fig. 3
for an example). Table 1 shows the 20 most abundant genera in the
labeled set. 45 of the genera contained only a single labeled example
(see Appendix A, Fig. 10 for a bar chart of the total count for each
genus).

2.2. Extracting microfossils from the microscope image

Our approach to microfossil analysis involves the detection of fossils
from the slide and the subsequent classification of the individual crops.
Object detection models such as YOLO (Redmon et al., 2016) and R-
CNN (He et al., 2018) are designed to do this in an end-to-end fashion,
however, they both require annotations for both the object coordinates
and the object label and are thus not suitable for our problem. As our
approach in model training is completely self-supervised, we instead
adopt a two-stage approach where the first step is to construct bounding
boxes for the individual crops in the slide. These crops will be used for
self-supervised training in the second stage. As a first step, we therefore
need to generate rectangular bounding boxes enclosing each fossil in
a slide before extracting the crops thereafter. Due to the vast amount
of fossils in the data, the bounding boxes needs to be obtained in an
automatic fashion. The automatic method needs to be fast, while simul-
taneously ensuring that the crops are enclosed appropriately. For this

3 see https://palynology.org/what-is-palynology/palynomorphs/.
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Fig. 3. Labeled crops. Examples of labeled crops. The description refers to the
original annotation. The genus which was used for the class name is shown in
parenthesis. A: Inaperturopollenites hiatus (Inaperturapollenites). B: Areosphaeridium dikty-
oplokum (Areosphaeridium). C: Glaphyrocysta sp. (Glaphyrocysta). D: Spiniferites manumii
(Spiniferites).

Table 1
Classes The labeled data consists of 1123 fossils from 123 different genera. This table
lists the 20 genera with the most labels. The majority of the labeled crops belong to
one of these genera.

Class Class name #species Class count

0 alisocysta 1 25
1 areoligera 6–7 65
2 areosphaeridium 2 28
3 azolla 1 22
4 bisaccate 1 25
5 cleistosphaeridium 2 26
6 deflandrea 6 43
7 eatonicysta 1 33
8 glaphyrocysta 2–4 26
9 hystrichokolpoma 2–3 23
10 hystrichosphaeridium 2 22
11 inaperturopollenites 1 50
12 isabelidinium 2 23
13 palaeocystodinium 5 69
14 palaeoperidinium 1 39
15 phthanoperidinium 5 62
16 spiniferites 10 or fewer 32
17 subtilisphaera 2–3 25
18 svalbardella 3 30
19 wetzeliella 5 29

application we demonstrate two different approaches. The first method
is based on image analysis techniques used in recent works in geology,
while the second method is based on a machine learning pretrained
object detection method. The methods are compared qualitatively; the
machine learning method shows superior quality in extracting single
fossils.4

Standard image processing approach. The image analysis preprocess-
ing method is based on recent work in geology (Johansen et al.,
2021; Johansen and Sørensen, 2020). The pipeline consists of Gaussian

4 Code available at github.com/IverMartinsen/scampi-preprocessing.

https://palynology.org/what-is-palynology/palynomorphs/
https://github.com/IverMartinsen/scampi-preprocessing
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Fig. 4. YOLO object detector. Crop extraction using a pretrained object detection
algorithm. Left: Original tile. Right: Resulting bounding boxes. (Admittedly, with a
rather sheepish annotation.)

smoothing followed by channel merging, followed by adaptive thresh-
olding using a Gaussian kernel. The thresholded pixels are used to
construct coherent regions, where two pixels are defined to be from the
same region if they are 2-connected. Regions with a pixel area under
a predetermined threshold are discarded. The bounding box for each
region is defined to be the smallest rectangle to enclose the region. An
illustration of the pipeline is found in Appendix B.

Machine learning approach. In our machine learning approach we
aimed to adapt general object detection models previously trained to
locate and classify objects on images that were unrelated to our dataset.
We used freely available open-source code. Note that we are only
interested in good bounding-box proposals at this stage, extracted in
a relatively fast manner. We tested several models to find the best
compromise between accuracy, fast processing, and simplicity. The
model we adopted was an object detection algorithm that was based
on YOLOv5 (Redmon et al., 2016). The model was trained to detect
bright objects on a dark background (sheep), and is openly available.5
Note that a high resolution slide is processed one tile at a time in our
adaptation.

In order to make an unprocessed tile (Fig. 4 (left)) compliable
to the model, we needed to adapt our data by inverting the color
intensities before applying the pretrained YOLO model (Fig. 4 (right)).
We adjusted the resolution of the input tile to ensure correspondence
between the microfossil object size and the expected size for the YOLO
model. This adaptation was only done for the bounding-box proposals,
and the crops were exported with their original RGB values and the
desired resolution.

Due to varying shapes and sizes of the fossils, the crop resolution
naturally varies from fossil to fossil. As a deep learning model in general
requires that all inputs are of equal shape, all the crops were resized to
the same square image resolution. The aspect ratio was not preserved in
this step. We used both 96-by-96 and 224-by-224 as target resolutions
for the crops to allow for model differences in training. The 96-by-
96 resolution crops were used for lightweight training of the CNN,
while we used the 224-by-224 resolution for ViT training as this is the
standard resolution in ViTs.

Comparison. Fig. 5 shows a comparison of the two approaches. As the
slides do not contain any bounding boxes, the comparison is purely
qualitative. Both methods work satisfactory for a large part of the data,
however, the figure shows that the pretrained YOLO model did a better
job overall, particularly at detecting overlapping objects. When utiliz-
ing a GPU, the YOLO model were also much faster with a processing
time of approximately 5 min per slide compared to 30 min for the image
processing method. Other methods such as the Segment Anything
Model (SAM) (Kirillov et al., 2023) were too slow for our purposes.

5 https://huggingface.co/keremberke/yolov5m-aerial-sheep.
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Fig. 5. Comparison of methods. Comparison of methods. Left: Machine learning
approach. Right: Pipeline of standard image processing methods. More fossils are
separated with the machine learning approach.

Fig. 6. A: A model is trained self-supervised to extract useful features from fossils. B:
The trained model is used to extract features from fossils. The extracted features are
used as inputs to a classifier. Only the classifier is trained at this stage.

When employing the machine learning approach, our exact count were
3,386,209 non-overlapping crops for the 215 slides of well NO 6407-
6-5. This count includes all detected objects (i.e. palynomorphs and
phytoclasts), except for objects that were part of clusters and thus were
difficult to separate and isolate.

2.3. Microfossil identification

Our end goal is to train a model to classify microfossils, which is a
non-trivial task. Conventional supervised training using image-to-label
mapping is not feasible for our problem, as the number of labeled fossils
in the data is limited. In addition, our data contains a vast amount
of unlabeled data which supervised methods are unable to utilize.
Therefore, we propose a two-step approach where, in the first step,
we train a self-supervised model which serves as a foundation for any
downstream task of interest, for instance classification or clustering of
fossils (Fig. 6A). The self-supervised model is trained on unlabeled data
with the underlying assumption that self-supervised training will teach
the model how to extract relevant features from fossils. When applied
in classification (Fig. 6B), the self-supervised model serves as a feature
extractor which transforms an image (e.g. with resolution (224, 224, 3))
to a feature vector of a much smaller dimension (e.g. with length 376).
After completing the self-supervised training, the self-supervised model
is applied to the labeled data, where the extracted features are used
to train a classifier in a supervised manner, utilizing the fact that the
feature vectors now contain dense information about the image.

For the self-supervised model training we focus on SimCLR (Chen
et al., 2020a) and DINO (Caron et al., 2021), which are two
augmentation-based SSL methods. SSL using augmentations is a
paradigm in self-supervised learning where synthetic input variations
are used to construct useful learning objectives. For images, this trans-
lates into creating two different views of the same input by applying
image transformation. The SSL objective is to force the network to
create the same feature vector for both views (map both views to the
same representation) by using a suitable loss function.

https://huggingface.co/keremberke/yolov5m-aerial-sheep
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Fig. 7. Outline of both frameworks used in our training. In both frameworks, two
views of the same input are mapped to the same latent space representation. Left
(SimCLR): SimCLR training outline. Image taken from Chen et al. (2020a), license CC-BY
4.0. Right (DINO): DINO training outline. The purpose of the centering stage is to
stabilize training (see Caron et al. (2021) for details). Image taken from Caron et al.
(2021), license CC-BY 4.0.

2.3.1. SSL using SimCLR
A frequently applied method in SSL is SimCLR (Chen et al., 2020a),

a framework for contrastive learning for CNNs that has achieved ex-
cellent results on SSL classification benchmarks. An outline of the
framework is illustrated in Fig. 7 (left). SimCLR consists of several oper-
ations, where the first step of the pipeline is to convert a batch of input
images 𝐱 into two variations (or views) 𝐱̃𝑖, 𝐱̃𝑗 using a set of chosen image
transformations (a data augmentation pipeline). The two views are then
processed by a CNN 𝑓 (⋅) to produce latent space representations (𝐡𝑖,𝐡𝑗)
for the views. Finally, the two latent representations are projected onto
a lower-dimensional space by a projection head 𝑔(⋅). Note, that while
we are primarily interested in the latent space representations, the loss
is calculated on the two lower-dimensional representations (𝐳𝑖, 𝐳𝑗) to
maximize the similarity between the two views.

The loss function used in SimCLR is called the normalized and
temperature-scaled cross entropy (NT-Xent) loss function and is closely
related to the commonly used cross-entropy loss function, though
slightly more involved. The NT-Xent loss 𝑙𝑖,𝑗 between the 2 variations
𝐱̃𝑖, 𝐱̃𝑗 is given in the following equation:

𝑙𝑖,𝑗 = − log
exp(sim(𝐳𝑖, 𝐳𝑗 )∕𝜏)

∑2𝑁
𝑘=1 𝐼{𝑘 ≠ 𝑖}exp(sim(𝐳𝑖, 𝐳𝑘)∕𝜏)

, (1)

where sim is the cosine similarity, 𝜏 is a chosen sharpening parameter
to improve training (see Chen et al. (2020a)), 𝑁 is the batch size,
and 𝐼{⋅} is an indicator function equal to 1 if 𝑘 ≠ 𝑖. It penalizes
a low cosine similarity between feature vectors originating from the
same input image. The loss is only computed for positive pairs, and
can be interpreted as a classification task with 2𝑁 − 1 possibilities (N
being the batch size). For this reason, the batch size is an important
hyperparameter which should be set high (Chen et al., 2020a).

We apply our own Python implementation of SimCLR in our work,
utilizing the TensorFlow library (Abadi et al., 2015). As shown previ-
ously, the transformations applied to create the two views are critical
to produce good results (Chen et al., 2020a). Our data augmentation
pipeline consists of translation, zoom, color jittering, and blurring (see
Appendix C for details). We use the Xception (Chollet, 2017) without
the final classification layer as our CNN, which is an efficient model
that utilizes depthwise separable convolutions with a moderate number
of parameters. We also apply a MLP projection head consisting of a fully
connected layer with 128 units followed by ReLU activations followed
by a linear fully connected layer with 128 output units. We used the
Adam optimizer (Kingma and Ba, 2017) with an inverse time decay
learning rate schedule with an initial learning rate of 0.001 and a decay
rate of 0.05. We also used a temperature parameter of 0.1 as in the
original paper (Chen et al., 2020a). The training length was set to 100
epochs. The batch size was limited by GPU memory and was set to 128.
We used a resolution of 96 by 96 when training the model to increase
training efficiency. The source code is available at

https://github.com/IverMartinsen/simclr.
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2.3.2. SSL using DINO
DINO (Caron et al., 2021) is a self-supervised learning framework

that has emerged as a ViT counterpart to CNN-based frameworks. In
DINO (Fig. 7 (right)), two views 𝑥1, 𝑥2 of the same input are created by
a data augmentation pipeline, before being processed and aligned to the
same point in a latent space. The two views are processed by a student
and a teacher network (𝑔𝜃𝑠 , 𝑔𝜃𝑡 ), which are two networks of similar
architecture that produce two latent representations (not shown in the
figure). The latent representation is further processed by a projection
head (sub-model of the encoder, not shown in figure) to create two
K -dimensional output vectors 𝑝1, 𝑝2. The output vectors are scaled by a
temperature parameter 𝜏, and normalized by the softmax operator. The
following equation gives the output 𝑃𝑠 of the Student 𝑖th component as
a probability:

𝑃𝑠(𝑥)(𝑖) =
exp(𝑔𝜃𝑠 (𝑥)

(𝑖)∕𝜏𝑠)
∑𝐾

𝑘=1 exp(𝑔𝜃𝑠 (𝑥)
(𝑘)∕𝜏𝑠)

, (2)

given the input 𝑥. A similar calculation is done for the teacher (𝑡) out-
put. Note that as both the student and the teacher output vectors sum
to one, the final outputs can be interpreted as representing parameters
of two categorical distributions where the uniformity is controlled by
the temperature parameter. The loss is computed as the cross-entropy
of 𝑝1 with respect to 𝑝2:

Loss(𝑋, 𝜃) =
∑

𝑥∈𝑋
𝐻(𝑃𝑡(𝑥), 𝑃𝑠(𝑥)), (3)

where 𝑋 is the set of all images, and thus encourages the student
to produce outputs (𝑝1) to match the teacher (𝑝2). The cross entropy
between two categorical distributions 𝑝 and 𝑞 is defined as follows:

𝐻(𝑝, 𝑞) = −
𝐾
∑

𝑖=1
𝑝(𝑖) log 𝑞(𝑖). (4)

It is important to note that during training, only the student weights
are optimized by gradient descent. The teacher weights are considered
constant in the loss calculation and are instead updated using an
exponential moving average (ema, Fig. 7 (right)) of the updated student
weights and previous teacher weights. This is similar to the approach
in BYOL (Grill et al., 2020) and SimSiam (Chen and He, 2020), and
helps prevent collapsing solutions.

We use the official DINO implementation in our work. Thus, we
train our ViTs for 100 epochs using the default hyperparameters when
training ViTs from scratch on our data (see Caron et al. (2021) for
details). In addition to training ViTs from scratch, we also employ
fine-tuning of pretrained ViTs. When fine-tuning, the teacher and stu-
dent weights are initiated with the pre-trained ImageNet weights ob-
tained in Caron et al. (2021), where the model was trained in a
self-supervised fashion on the ImageNet dataset with 1000 classes
containing 1,281,167 training images. Our fine-tuned model is trained
for 10 epochs with default hyperparameters. We use an input resolution
of 224-by-224 as in the original DINO implementation when training
our models.

2.3.3. Classifying labeled microfossils
After finalizing SSL model training, it is common to use a simple

model such as a logistic regression model or a k nearest neighbors
classifier for the final classification (e.g. Chen et al., 2020a; Grill et al.,
2020; Chen and He, 2020; Caron et al., 2021). We evaluate our self-
supervised models using both a logistic regression model and a k
nearest neighbors (kNN) classifier. These models are easy to implement
and should perform well if the self-supervised model does a good job in
the feature extraction. Other possible classifiers include a single layer
perceptron and support vector machines (SVMs).

Due to the class imbalance caused by very few labels for the major-
ity of the genera in the labeled dataset, we decided to select only the 20
most abundant genera for classification, resulting in 20 classes of 697

crops in total. Table 1 shows the final classes. The resulting data set was

https://github.com/IverMartinsen/simclr
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Table 2
Results Performance metrics for our trained models compared to pre-trained benchmarks. We tested 3 different models, Xception which is a convolutional neural network, ViT-T
the ‘‘tiny’’ version and ViT-S the ‘‘small’’ version of the ViT Vision Transformer model. With SimCLR, we are able to quickly train an encoder that is better than the ImageNet
model that is trained supervised on ∼1M images of resolution 224 × 224. The ViT-S ImageNet benchmark is better than the supervised Xception model, and the model is further
improved when fine-tuned on our data. The kNN classifiers were trained for a range of values for k. Results corresponding to the optimal k are reported in the upper half, while
results for all tested values are reported in the lower half of the table. All evaluation was done with a resolution of 224-by-224 on the labeled data.

Framework Architecture Res. Param. Data k nearest neighbors Logistic regression

k Av.R Av.P Acc. Av.R Av.P Acc. log loss

Benchmark Supervised Xception 224 21M ImageNet 9 0.56 0.64 0.60 0.72 0.76 0.74 0.78
Trained SimCLR Xception 96 21M Microfossils 5 0.65 0.70 0.69 0.79 0.80 0.80 0.70

Trained DINO ViT-T 224 6M Microfossils 5 0.60 0.64 0.63 0.72 0.73 0.73 0.91
Trained DINO ViT-S 224 22M Microfossils 5 0.62 0.67 0.65 0.75 0.76 0.76 0.83
Benchmark DINO ViT-S 224 22M ImageNet 9 0.82 0.84 0.83 0.88 0.89 0.89 0.41
Fine-tuned DINO ViT-S 224 22M Microfossils 5 0.84 0.86 0.84 0.89 0.91 0.91 0.38

1 nearest neighbors 3 nearest neighbors 5 nearest neighbors 7 nearest neighbors 9 nearest neighbors

Av.R Av.P Acc. Av.R Av.P Acc. Av.R Av.P Acc. Av.R Av.P Acc. Av.R Av.P Acc.

0.55 0.59 0.58 0.52 0.58 0.56 0.55 0.61 0.59 0.56 0.63 0.60 0.56 0.64 0.60
0.64 0.67 0.67 0.65 0.70 0.68 0.65 0.70 0.69 0.64 0.70 0.68 0.63 0.69 0.67

0.59 0.63 0.63 0.58 0.62 0.61 0.60 0.64 0.63 0.58 0.62 0.61 0.58 0.62 0.62
0.61 0.64 0.63 0.63 0.67 0.64 0.62 0.67 0.65 0.61 0.66 0.64 0.60 0.64 0.63
0.78 0.81 0.80 0.82 0.85 0.83 0.81 0.84 0.82 0.82 0.85 0.83 0.82 0.84 0.83
0.82 0.84 0.83 0.81 0.84 0.82 0.84 0.86 0.84 0.82 0.85 0.83 0.81 0.85 0.83
h
s
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e
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further split into a training set (80%, 557 images) and a test set (20%,
140 images) using stratified sampling to ensure that the frequency of
occurrence was approximately the same for all classes for both sets.
This resulted in a class-wise sample size in the range of 4 to 14 for
the test set. All classifiers were fitted to the same training partition of
the labeled subset (80% of images) and evaluated on the test partition
(remaining 20%). The logistic classifier was numerically optimized
using a weighting of samples to account for the class imbalance, while
the kNN classifier was fitted using 1, 3, 5, 7 and 9 neighbors.

To cross-validate the classification results, the evaluation in the last
aragraph was repeated 10 times with 10 different train/test splits that
ere sampled randomly using different seeds. We report the average

core across the 10 runs.

.3.4. Related methods
We also considered other SSL frameworks, in particular BYOL (Grill

t al., 2020) and SimSiam (Chen and He, 2020). Preliminary results
sing our own implementations of BYOL and SimSiam showed worse
erformances compared to SimCLR.

.3.5. Data used for training
To reduce resource requirements when training and comparing

ultiple models, we only used a subset of the available data for
raining. The data used for training consists of 100,000 crops taken
rom 22 different slides (selected arbitrarily from the 215 slides). We
iscarded crops with overlapping bounding boxes to ensure a high-
uality training data set without overlapping objects. The 100 K crops
sed for training are published and openly available (Martinsen et al.,
024).

Although poor generalization and memorization can also be an issue
n self-supervised training (Meehan et al., 2023), the 22 selected slides
sed in the self-supervised training contained only 28 labeled fossils
n total. These fossils may or may not be part of the self-supervised
raining but contribute too small a fraction to have an impact on the
est results.

. Results

Table 2 shows metrics that summarize the performances of all our
rained models and benchmark models. In addition to accuracy (Acc.),
e report the average recall (Av.R) and precision (Av.P) for both kNN
nd the logistic classifiers. The average recall and precision are com-
uted using the arithmetic mean over all classes and are not affected by
6

lass imbalance. These are useful metrics, as the accuracy alone might t
be misleading when reporting results for imbalanced datasets. We also
report the negative log-likelihood (log-loss) for the logistic regression
model (not relevant for kNN).

Description of models We use three different architectures in our ex-
periments; a single CNN and two different ViTs. The CNN we use is
identical to the Xception architecture described in Chollet (2017), and
contains approximately 21 million trainable parameters. We compare
the Xception model trained self-supervised using SimCLR on our data
against the Xception model pretrained supervised on ImageNet.6

The two ViT architectures follow the design described in Dosovitskiy
et al. (2021) and Caron et al. (2021). Both ViT-T (tiny) and ViT-S
(small) has a depth of 6 transformer layers. The two models differ in
the embedding dimension (192 for ViT-T and 384 for ViT-S) and the
number of attention heads (3 for ViT-T and 6 for ViT-S), resulting in
approximately 6 and 22 million trainable parameters, respectively. We
compare using four different weights for the ViTs: ViT-S pretrained
self-supervised on ImageNet (see Caron et al. (2021)), ViT-T and ViT-S
trained self-supervised on our data, and ViT-S fine-tuned on our data.
The scores for ViT-S fine-tuned are reported for the best model, which
was trained for 6 epochs.7

Discussion Comparing CNNs only, Table 2 shows that the best model is
obtained using self-supervised training on our data. The SimCLR model
outperforms the ImageNet benchmark in all metrics, especially when
comparing the metrics for the kNN classifiers. For both models, the
classification is clearly better with a logistic classifier compared to kNN,
owever the difference in performance between the two classifiers is
maller for the SimCLR model compared to the ImageNet model.

When comparing ViTs only, the best performing model is the ViT-
pretrained on ImageNet and fine-tuned on our data. This model

erforms slightly better than the ImageNet benchmark model on all
etrics and performs much better than the ViT-S and ViT-T models,
hich were trained from scratch using our data only. The ViT-S is

arger than the ViT-T, and as expected performs better since self-
upervised training is known to benefit from larger models (Chen et al.,
020a,b; Caron et al., 2021). Note that both the ViTs that were trained

6 The Xception model was trained supervised on the ImageNet dataset with
000 classes (Deng et al., 2009) containing 1,281,167 training images.

7 We fine-tuned the ViT-S for 10 epochs and evaluated the model after
ach epoch. Although the best model was obtained after 6 epochs, the
valuations for all the 10 training steps showed an improvement compared

o the pretrained model.
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),
Fig. 8. Confusion matrix The matrix entries are the number of microfossils crops
(labeled samples) in the test set. Our best model was obtained with a logistic classifier
trained on top of a fine-tuned ViT-S. On average 13 out of 140 test examples were
misclassified across each fold (in total 133 out 1400 test examples).

from scratch performed worse than the SimCLR model. ViTs lack the
inductive bias of CNNs and are thus known to demand more data
in training (Dosovitskiy et al., 2021). We believe that by increasing
our dataset for training along with increasing the training time, we
would be able to train a ViT from scratch with a substantial increase
in performance, perhaps on par with or better than the ImageNet
model. Models trained self-supervised are known to benefit from larger
training sets, bigger architectures and longer training time with little to
no risk of overfitting (Meehan et al., 2023; Chen et al., 2020a; Caron
et al., 2021; Grill et al., 2020).

Table 2 also show that the ViT-S ImageNet baseline performs better
than the SimCLR model, even if the ViT is trained on completely dif-
ferent data. We do believe, however, that with more training, a bigger
model and more data we would significantly improve the performance
of our SimCLR model.

Training time All models were trained on a single GPU.8 Training the
Xception model using SimCLR for 100 epochs with 100 K images with
a resolution of 96 × 96 resulted in a training time of 5-10 h. The ViT-
S was fine-tuned for 10 epochs with a similar training duration. Note
that training a ViT from scratch for 100 epochs is much more resource
intensive, and the training duration was approximately 50 h.

Analyzing the best model Fig. 8 shows the confusion matrix for the
best performing model (ViT-S fine-tuned). The model performs well for
the majority of the classes, with 100% precision and recall for class 2
(Areosphaeridium), 4 (Bisaccate), 5 (Cleistosphaeridium), 6 (Deflandrea),
10 (Hystrichosphaeridium), 11 (Inaperturopollenites), 14 (Palaeoperidinium
16 (Spiniferites), 18 (Svalbardella) and 19 (Wetzeliella). Class 17
(Subtilisphaera) had the lowest F1 score9 (0.8) and was confused with
class 15 (Spiniferites) on two occasions. Using t-distributed stochastic
neighbor embedding (t-SNE), we are able to visualize how crops from
different species and genera are distributed in the embedding space
(Fig. 9). Alisocysta, Azolla, Eatonicysta, Inaperturopollenites and Isabeli-
dinium form clusters around small neighborhoods, and achieves recall

8 GeForce RTX 3090 24 GB RAM or similar.
9 The F1 score is computed as the harmonic mean of precision and recall.
7

Fig. 9. t-SNE Visualization: the figure shows a projection of the latent space into a
2-dimensional representation for our best performing model. A selection of species is
highlighted with color in this figure. The t-SNE representation shows that (1) crops from
the same genera are grouped together in the embedding space, (2) species from the
same genus (Isabelidinium in different shades of orange and Svalbardella in different
shades of green) are closer.

scores of 100%, 90%, 93%, 99% and 90%, respectively (computed from
Fig. 8). The three species from the Svalbardella genus are scattered to
a larger extent, which is reflected by a lower recall score of 82%. For
clarity, only six classes (6 genera covering 9 species) are shown in the
plot. This provides evidence that the self-supervised model has a similar
representation in its latent space for images of the same classes.

4. Conclusion

Our work provides an efficient pipeline for extracting microfossils
from whole slide images by combining image processing techniques
and deep learning. By utilizing state-of-the-art deep learning methods,
we are able to efficiently train an encoder that extracts features useful
for other tasks such as identification, grouping and counting of micro-
fossils. We show that our approach needs only a reasonable amount
of compute resources for both training and inference. The results we
obtain on a labeled dataset show that self-supervised training of deep
learning models on microfossils results in a significant improvement
compared to existing benchmark models. This approach can be gen-
eralized to other applications where the task is to extract millions
of patterns or shapes from large images and identify them, such as
foraminifera and other microfossils from the geological record.
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Appendix A. Labeled data

See Fig. 10.

Fig. 10. Bar chart of genera counts. The genera are ordered by abundance. Genus 0
corresponds to the genus with the most labeled examples, while genus 121 corresponds
to the genus with the least.

Fig. 11. Obtaining bounding boxes using image analysis. A pipeline for obtaining
bounding boxes using classical image analysis methods. A: Original image. B: Image
after applying Gaussian smoothing to even out background color. C. Image after
discarding the red channel and merging the others. D. Image converted to binary format
by thresholding the intensity values. E. Image after using connected components to turn
connected regions into objects. F. Image with bounding boxes enclosing the objects.
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Appendix B. Extracting microfossils using image processing meth-
ods

Fig. 11 shows an outline and a description of how to automatically
extract crops from an image by applying classical image processing
techniques.

Appendix C. SimCLR implementation details

The following set of augmentations was used in our SimCLR imple-
mentation:

• Random horizontal flip.
• Random translation with lower/upper bound of ±25% both hori-

zontally and vertically.
• Random zoom with an upper bound of 50%. The zoom factor is

drawn independently for each axis, and as a result the aspect ratio
is not preserved.

• Random scaling of pixels with a factor between 0.4 and 0.6
(random brightness adjustment).

• Random color jitter drawn from a uniform distribution with range
±0.2. Jitter is added to the pixel values.

• Smoothing/blurring with a probability of 0.5 using a Gaussian
kernel with kernel size of 9 pixels (10% of height/width). The
sigma parameter is drawn uniformly from the range [0.1, 2.0].

Preliminary analysis showed that Gaussian blurring and color drop (not
used in our training) did not have a big effect on model performance.
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