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A B S T R A C T

Soft tissue sarcomas (STSs) represent a group of heterogeneous mesenchymal tumors of which are generally
classified as per the histopathology. Despite being rare in incidence and prevalence, STSs are usually correlated
with unfavorable prognosis and high mortality rate. Early and accurate diagnosis of STSs are critical in clinical
management of STSs. Deep learning (DL) refers to a subtype of artificial intelligence that has been adopted to
assist healthcare professionals to optimize personalized treatment for a given situation, particularly in image
analysis. Recently, emerging studies have demonstrated that application of DL based on medical images could
substantially improve the accuracy and efficiency of clinicians to the identification, diagnosis, treatment, and
prognosis prediction of STSs, and thereby facilitating the clinical decision-making. Herein, we aimed to exten-
sively summarize the recent applications of DL-based artificial intelligence in STSs from the aspects of data
acquisition, algorithm, and model establishment. Besides, the reinforcement of the model by transfer learning and
generative adversarial network (GAN) for data augmentation has also been elaborated. It is worth noting that
high-quality data with accurate annotations, as well as optimized algorithmic performance are pivotal in the
clinical application of DL in STSs.
1. Introduction

Soft tissue sarcomas (STSs) are a rare and highly diverse group of
solid tumors that develop from mesenchymal precursor cells.1,2 It in-
cludes a broad range of malignancies of soft tissues with distinct bio-
logical behavior and clinical outcome.3 Currently, 137 types of STSs have
been annotated,4 but only account for approximately 1% of all new
malignancies in adults.5 The outcome of these patients has been unfa-
vorable despite the development of several novel therapies or combina-
tions of chemotherapy.5,6 It is reported that patients with distant
metastasis have an overall survival less than 16 months.6 Therefore, for
risk assessment and management strategies, early and accurate diagnosis
of STSs and stratification of tumor grades are crucial.

Recently, As a field of artificial intelligence (AI), deep learning (DL)
has emerged as a powerful statistical tool for dealing with a range of real-
dics, The Second Xiangya Hospit

hihong@csu.edu.cn (Z. Li).

orm 18 February 2024; Accepted

s by Elsevier B.V. on behalf of KeA
-nd/4.0/).
life problems,7 including computer vision,8 speech recognition,9 natural
language processing (NLP),10 reinforcement learning11 and others.12,13

Currently, multiple DL models have been developed based on radio-
graphic images, such as X-rays,14,15 CT,16 and MRI.17 Besides, DL appli-
cations have also been observed in diagnostic pathology involving
histopathological images.18,19 Emerging studies were designed specif-
ically for HE-stained images and demonstrated a profound impact on
diagnoses.17,20,21 Notably, the application of DL is evolving in all areas of
medicine, including electrocardiographic,22,23 brain disease,24,25

traumatology,23,26–28 and drug discovery.29 Recently, DL-based AI is
emerging in tumors, including breast cancer,30,31 lung cancer,32,33

colorectal cancer,34 gastric cancer,35 prostate cancer,36 cervical cancer,37

thyroid cancer,38 and bone tumor. For instance, it has been shown that
DL can distinguish benign bone lesions from malignancies, thus assisting
in bone tumor differentiation.39
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Though being relatively rare compared to other tumors, STSs have
shown a steady increase in occurrence in the past decade and are asso-
ciated with a high mortality rate.40–42 Of note, young people are at risk
especially for certain subtypes of STSs, which may contribute to a sig-
nificant portion of the deaths.43 It is pivotal to classify these tumors
accurately due to their unique biological properties, prognosis, and
treatment strategies. Medical images are important in the management of
STSs, but the diagnostic expertise requires a long learning curve and is
often limited to a few medical centers.40 More recently, several methods
of AI and configurations have been applied to STSs as well,40,44 indi-
cating DL in the identification, diagnosis, treatment, and prognosis of
STSs could greatly improve the accuracy and efficiency of clinicians, as
shown in Fig. 1. Herein, this review aimed to summarize the recent
advancement in the application of DL-based AI in STSs and hope to shed
light on the research in this emerging field.

2. Application of DL-based AI in STSs

2.1. Data acquisition and processing

Classification has been performed using DL based on the training
dataset and learning algorithms to discover hidden patterns and struc-
tures.45 The diagnosis of STSs should incorporate clinical manifesta-
tions, radiographic images (X-ray, CT, and MRI), and pathological
examination.46 Given the complexity of tumor biology, sometimes the
data of multi-omics need to be jointly analyzed. Using multi-model
data, including radionics, genomics, transcriptomics, metabolomics,
and clinical factors, to describe a tumor landscape more accurately and
thereby improve the diagnostic accuracy. At present, most researchers
obtain data through multi-center images,47–52 or combined with
Fig. 1. Establishment of CNN model in STSs. (A) Process of deep learning model bu
model for diagnosis and classification, (D) and establishing a deep learning model f
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resources from public databases, such as TCGA,40,53 and SEER (Sur-
veillance, Epidemiology, and End Results), and the clinical data will
also be included in the model establishment.54,55 It should be noted that
the original data (clinical data, image data, etc.) needs a critical data
preprocessing step. Deep learning may benefit from data whitening and
normalization as they reduce the impact of non-normalized data.56 The
preprocessing of image data is complex. Therefore, various methods are
adopted in image processing, including image normalization, augmen-
tation, shape augmentation, color augmentation, annotation, and
segmentation.57

Among these processes, annotation and segmentation are key
steps.58,59 Investigators have observed the following remarkable char-
acteristics in image segmentation: Generally, image segmentation using
one algorithm alone is unsatisfactory, it therefore required a combination
of multiple algorithms to achieve satisfactory results.

Besides, although studies have attempted to automatically identify
and segment lesions or regions of interest (ROI), the results are usually
below expectation, which may be attributed to the complexity of
anatomical structures.60 Since the location of STSs varies in the human
body, which may introduce much difficulty in segmentation and anno-
tation compared with other tumors like brain tumors or lung cancers, it is
still necessary to perform these tasks manually in STSs.

2.2. Deep learning algorithm

DL algorithms are often referred as neural networks, and these al-
gorithms could combine with multiple features into further strategies.61

The successful application of DL algorithms that are trained on large
amounts of data with annotation, has been demonstrated in tumor
detection and classification.62
ilding, (B) access to data sources, (C) flow chart of establishing a deep learning
or segmentation and annotation.
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An artificial neural network (ANN) is formally summarized into three
layers: input layer, hidden layer, and output layer. Many early diagnostic
models used CNN architecture. The full connection layer downstream of
CNN is similar to the ANN, but CNN allows color images to be used as
input data.63 A layer on the input passes information to several hidden
layers which are activated based on the input and feed this information to
the layer on the output, reflecting the class that was assigned.64 Convo-
lution layers, pooling layers, and fully connected layers are usually
included in hidden layers. Convolution layers help extract characteristics
from input data.65 The pooling layers are generally located behind the
convolution layers. The amount of information can be compressed by
reducing the dimension of the input data to avoid overfitting.66 Finally,
these features are fed to some fully-connected layers for classification.66

Different requirements could adjust the structure of CNN accordingly.
For example, only feature extraction is needed for subsequent machine
learning (ML), and the full-connection layer is not needed.44

2.2.1. Development of CNN models
CNN models have undergone many changes. This section mainly in-

troduces the evolution of several models commonly used (Fig. 2).
LeNet was launched in 1998, laying a foundation for future image

classification research using CNNs.67 Although LeNet has achieved good
results and demonstrated the potential of CNN, its computing power and
data volume were insufficient. In 2012, AlexNet was proposed to address
this challenge. It defined the actual classification network framework in
the next decades: convolution, ReLu nonlinear activation, combination of
MaxPooling and Dense layer. Inception V1, proposed in 2014, used a
22-layer structure to break through the limitation of network depth.68

Furthermore, Simonyan K et al. proposed the visual geometry group
(VGG) model in 2015.69 It not only used a deeper network, but also
reduced computing costs while achieving better performance. These
studies demonstrated that further deepening was indeed the right direc-
tion to improve accuracy. Residual neural network (ResNet)was proposed
in the same year, adding a residual block to the output.70 It also borrowed
bottlenecks and batch processing standardization from the Inception
network. In 2016, dense convolutional network (DenseNet) further
expanded the idea of ResNet.71 It not only provided skip connections
between layers, but also had skip connections from all previous layers.

Nowadays, many other models are still evolving. The algorithms can
be selected according to different purposes. In STSs, most researchers will
compare several improved models and adopt the best one for clinical
application.

2.2.2. CNN models applied in STSs
Algorithms for identifying target features in STSs have been devel-

oped steadily. An overview of the algorithms used in STSs and its ad-
vantages were depicted below (Table 1).
Fig. 2. Timeline for developme
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AlexNet was applied to the classification of rhabdomyosarcoma
(RMS), and ReLU was used as an activation function for the first time.72

In the last layer of softmax classification, the number of output nodes has
changed to improve the accuracy of classification.49 Compared with
Alexnet, ResNet can provide a method to solve the problem of gradient
disappearance by using deep residual network.73 ResNet architecture
with different layers was widely used in soft tissue sarcomas. ResNet18
was used to predict the probability of anoxia in each pixel.74 ResNet34
was used to predict lung metastasis of STS,75 and ResNet50 was used to
automatically extract DL features.76 Moreover, DenseNet has the
advantage of a narrower network and fewer parameters, which is largely
due to the design of this deny block. Accordingly, Navarro et al.51 choose
DenseNet as their DL strategy for tumor grading after comparing with
other architectures, including AlexNet, ResNet, VGGNet, WideResNet,
and CBRNet.

According to Ronneberger et al.77 experience, Holbrook et al. have
implemented a 3D fully convolutional U-net network to segment STSs in
mice.78 U-net is improved based on a full CNN (FCN), and data
augmentation can be used to train some data with relatively few samples.
Furthermore, an approach for predicting gross tumor volume (GTV)
confidence maps was developed by T. Marin et al., which was also based
on U-net. By combining contracting and expanding paths with skip
connections, the U-net architecture captures spatial data.79 Importantly,
several techniques were further used to improve the U-net architecture.
For instance, the use of a 2.5D U-net could minimize memory re-
quirements and make small training data available, and self-taught
attention maps make the proposed network less susceptible to class
inequality. Similar to U-net, fewer parameters are needed and the model
can be computed more quickly by using the InceptionV3 model.80

Interestingly, the detection and localization of objects within images
can be accomplished using few DL architectures at the moment, such as
RCNNs and faster-RCNNs,81 single shot multi-box detectors (SSDs),82 and
YOLO (you're only looking once).83 Due to its excellent performance, T.
Zehra et al. evaluated all object detection algorithms and selected
YOLOv4 as a baseline to detect mitoses automatically in uterine leio-
myosarcoma (LMS). Besides, many other studies also confirmed that
YOLOv4 is superior to other algorithms for detecting objects.84–86

2.3. Establishment of model and clinical application

2.3.1. Recognition and classification
There is a relatively low incidence of STSs, which are characterized by

low-to-high levels of aggression based on its grading scale.87 The
assessment of patient survival risk and the selection of therapeutic op-
tions must therefore be based on tumor grading prior to treatment.88 The
popular databases that can be used in the establishment of STSs deep
learning model are shown in Table 2.
nt of several CNN models.



Table 1
Summary of clinical studies involving deep learning in STSs.

Ref. Tumors Modality Algorithm Performance (metric) Conclusion

49 RMS MRI AlexNet 85% cross validation prediction accuracy Differential diagnosis of embryonal and
alveolar RMS

51 STSs MRI DenseNet-161 The T1FSGd (AUC 0.75) and T2FS (AUC
0.76)

Predicting tumor grading

44 STSs MRI ResNet34 C index� 0.721, median AUC �0.746, and
integrated Brier score �0.159

Predicting STSs recurrence

40 STSs Histopathological slides DenseNet121 AUC 0.97, accuracy, 0.799 Diagnose frequent subtypes of STSs
139 STSs PET-CT Multi-modality

collaborative
learning

AUC 0.8438, accuracy 0.8542, sensitivity
0.9167

Predict the distant metastases of STSs

50 STSs DWI VGG-19 training and validation accuracies were
86.5% and 84.8%.

Predict the pathologic treatment effect
from longitudinal DWI

52 STSs OCT ResNet-50 accuracy 97.1%, sensitivity 94.3% Assist clinicians in detecting the specific
location of a lesion

47 SS Clinical information SNN In fivefold cross validation was 0.87 in the
survival neural network.

Predict survival of patients accurately

55 GU-RMS Clinical information DNN The AUC 0.93 for 5-year overall survival
and 0.91 for disease-specific survival.

Prediction of pediatric GU-RMS survival

102 RMS Histopathological slides InceptionV3 The RMS classification model (AUC >0.92) Subtype classification and prognosis
prediction for RMS

106 ULMS Histopathological slides YOLOv4 Model detection for mitosis (0.7462
precision, 0.8981 recall, and 0.8151 F1-
score)

Mitotically active regions can be detected

103 RMS Histopathological slides DeepPATH CNN
software suite

The RMS classification model (AUC
>0.889)

Subtype classification

140 Sarcomas CT U-Net Dice score was 87% and the Hausdorff
distance was 14 mm

Predict accurate contours

76 LPS CT, MRI ResNet50 AUC 0.942, accuracy 0.86, sensitivity 0.95,
specificity 0.77

Differentiate WDLPS from lipomas

75 STSs lung metastasis MRI ResNet34 AUC 0.833 Lung metastasis-status prediction in STSs
133 Solid and hematologic

malignant neoplasms
DNA methylation MethylationToActivity Highly accurate and robust in revealing

promoter activity landscapes
To infer promoter activities based on
H3K4me3 and H3K27ac enrichment

Abbreviations: AUC: Area under curve; CNN: Convolutional neural network; DLRN: Deep learning radiomic nomogram; DNN: Deep neural networks; DWI: Diffusion-
weighted MRI; GU-RMS: Genitourinary rhabdomyosarcoma; LPS: liposarcoma; MRI: Magnetic resonance imaging; PET-CT: Positron emission tomography-computed
tomography; RED_SNN: Risk estimate distance survival neural network; RMS: rhabdomyosarcoma; ROI: Region of interest; SS: Synovial sarcoma; STSs: Soft tissue
sarcomas; ULMS: Uterine leiomyosarcoma; WDLPS: Well-differentiated liposarcoma.

Table 2
Summary of popular databases involving deep learning STS diagnosis and
treatment.

Database Country/Region Data type

The Cancer Imaging
Archive (TCIA)

America CT/MRI/Digital
histopathology

MedPix America CT/MRI
Global Burden of Disease (GBD) America Prevalence of disease
The Surveillance, Epidemiology,
and End Results (SEER)

America Cancer prognosis

Orphanet Europe Medication for rare
diseases

The Cancer Genome
Atlas Program (TCGA)

America Cancer genome
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A CNN model was developed to automatically classify the histo-
pathological subtypes of RMS.49 The model fused MR images from seven
females and fourteen males, which can be used for differential diagnosis
of embryonal and alveolar subtypes of RMS. MR images were classified
according to RMS type, and 85% accuracy was obtained. After testing,
the classification accuracy of the system reached 95%.49 However, this
study had several limitations, one of which was the small number of
cases, which increased the risk of overfitting the model to the training
dataset. However, it is worth noting that transfer learning was applied to
themodel building. Traditional ML assumes that training data and testing
data are sourced from the same domain, but no data is usually available
in this area. Therefore, there is a need to create high-performing learners
trained with data obtainable from different domains, and the method-
ology which addresses this need is called transfer learning (Fig. 3).89 In
addition, MRI and transfer learning technology were also used to
low-grade (G1) and high-grade (G2/G3) STSs non-invasively. The
4

DenseNet 161 architecture was used to develop DL models based on
transfer learning. Overall, AUC values of 0.75 and 0.76 were achieved in
the testing cohort, for the T1 and T2-weighted fat-saturated-based DL
models, respectively.51

Radiation therapy is now well-established as an effective treatment for
STSswith closemargins or those prone to local recurrencebefore surgery.90

It is essential to define the GTV accurately before radiotherapy can be
effective. In certain cases, however, the GTV definition can be
time-consuming and inaccurate, as it depends largely on the quality of the
CT simulation.91,92 Recently, an automatic drawing of GTV contours of
STSs from CT images was developed based on a DL model. In this study,
87%of thepredicted confidencemapsmatched the true confidencemaps in
a continuous Dice test. Accordingly, this methodwas capable of predicting
contours accurately while utilizing variability and can thus improve clin-
ical workflow. Meanwhile, Marin et al. proposed a framework using DL to
automatically segment GTV.93 Moreover, the researchers developed mul-
timodality DenseNet, which could be applied even in radiation therapy of
pan-cancers, including sarcomas and lung cancers.

2.3.2. Pathological diagnosis
Currently, the pathology practice is still heavily reliant on analog

technologies such as conventional benchtop microscopes, glass slides,
and written reports, while other disciplines have already experienced
almost complete digitalization.40 A commercially available scanning
solution allows scanning H&E-stained microscopical slides to create
digital histopathology.94 Therefore, automation of diagnostic systems
may be possible through the development of DL models based on digital
histopathology. Recently, the effectiveness of DL algorithms in identi-
fying patterns in whole-slide images (WSI) of STSs has also been
demonstrated as well.95–98



Fig. 3. Schematic diagram of transfer learning.
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RMS is the most frequent malignant STSs in children,99 which has
several histological subgroups that influences patients’ treatment and
prognosis.100,101 Pathologists need assistance with histological classifi-
cation, biomarkers of IHC, or even next-generation sequencing (NGS)
data to make better predictions. Through the use of digital pathological
images, a model has been performed that can accurately classify RMS
histological subtypes for auxiliary diagnosis.102 The training data and
testing data included 10,658 and 1674 patches, respectively, showing an
accuracy of 87.9% for the RMS classification. Additionally, a prognostic
model was further developed by enrolling embryonal RMS patients,
which could distinguish high-risk from low-risk patients with significant
differences in event-free survival outcomes (p ¼ 0.02) in the testing data
set. Similarly, another study used DeepPATH software to create a CNN
model to distinguish alveolar RMS, embryonal RMS, and clear-cell sar-
coma tumor.103

As a common invasive uterine sarcoma, uterine LMS often has a poor
prognosis and can be difficult to diagnose.104 The current methodology
used by pathologists for diagnosing and grading uterine LMS is mainly
based on mitosis count, necrosis, and nuclear atypia.105 A biomarker of
importance and challenge is the mitosis count. Recently, a DL-based
automated mitosis detection algorithm for uterine LMS was presented
by T. Zehra et al.106 The training set contained 240 mitoses, while the
testing images contained 108 mitoses. Based on the experimental results,
the precision, recall, and F1 score of the test were 0.7462, 0.8981, and
0.8151, respectively. Based on these preliminary results, DL may be a
promising approach for detecting mitotically active regions in uterine
LMS.

More recently, Foersch S et al. conducted a multicentered study using
506 histopathological slides from 291 STSs patients,40 including a TCGA
cohort (240 patients) and a multicenter cohort (51 patients) in several
centers. The former served as a training set, while the latter serves as a
testing set. With a DLmodel based on standard DenseNet121, ROC values
and diagnostic accuracy for the five most common STSs subtypes,
including dedifferentiated liposarcoma (DDLPS), LMS, myxofi-
brosarcoma (MFS), synovial sarcoma not otherwise specified (SS), and
undifferentiated pleomorphic sarcoma (UPS), averaged 0.97 and 0.799,
respectively. A significant improvement was noted in the accuracy of
pathologists from 0.46 to 0.84, implicating that DL can accurately
5

diagnose frequent subtypes of STS and assist clinicians to make faster and
more precise decisions.40

Importantly, a pathologist can also determine patients’ response to
chemotherapy by evaluating resected tumor specimens after adjuvant
therapy to identify the risks of individuals to improve their outcomes.107

However, this process can be time-consuming. The combination of DL
with WSI may offer a promising and valuable strategy for this issue.
However, several questions should be addressed before automating the
analysis of histology images. Due to the complexity and diversity of
image data, and the large size of individual histology slides, computing
tasks can be pretty complex and require more computation power.108

Meanwhile, the problem of overfitting is also challenging.17

2.3.3. Prognosis prediction
In addition to the assessment and classification of STSs, some studies

adopted the DL model to study prognosis and recurrence as well.
To target anti-hypoxia-resistant habitats, hypoxia-activated prodrugs

(HAPs) have been developed.109 Sarcoma preclinical and early clinical
trials have been performed to demonstrate the efficacy of HAP evo-
fosfamide (TH-302).110 However, TH-302 was found not successful in
improving survival in phase III clinical trials when combined with
doxorubicin (DOX),111 which may be attributed to the absence of eval-
uation for stratification of hypoxic status. Thus, a DL model was devel-
oped by BV Jardim-Perassi et al. to identify hypoxia in patients so that
HAPs could be better prescribed to them.74 Interestingly, a strong cor-
relation was found between the true hypoxia score in histology and the
predicted in multiparametric pre-therapy MRI images using the DL
model. Besides, in the hypoxic patient-derived xenograft model, TH-302
monotherapy or combined with DOX prolonged survival, suggesting DL
models based on MRI can be used to monitor HAPs therapy response and
forestall the occurrence of resistance.

Besides, in order to predict the response of STSs to radiotherapy by
longitudinal diffusion-weighted MRI (DWI), Gao Y et al. used DL and
generative adversarial network (GAN)-based data augmentation to
develop a novel prediction framework for response prediction.50 GAN is a
type of deep learning model that consists of two parts: a generator that
learns to generate plausible data, and a discriminator that learns to
distinguish between real and fake data. The generator takes as input a
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fixed-length random vector and learns to produce samples that mimic the
distribution of the original dataset, while the discriminator then classifies
the generated samples as “real” or “fake”. When there is a limited amount
of training data available or when the dataset is imbalanced, by training
the generator and discriminator together, GAN can generate realistic
synthetic data that can be used to improve the performance of deep
learning models (Fig. 4). Because in some classification targets, the
number of rare disease subtypes in training set may be small or even
missing, which is very unfavorable for training DL models. Despite per-
forming well in most disease detection tasks; DL techniques are less
successful when categorizing rare disease subtypes. Due to the poor
generalization ability of the techniques, they have difficulty in fitting the
model. In order to increase the training data for DL-based computer--
assisted diagnosis systems, GAN-based data augmentation is a solution to
the data hunger of this kind of training set.112,113 GAN can be used in a
wide variety of medical applications in image synthesis. In addition to
conventional MRI and CT images,114 other medical images, including slit
lamp images,115 fluoroscopic images,116 and photos of skin lesions, could
also be incorporated in GAN for data analysis.117

To augment the data size, an auxiliary classifier GAN (ACGAN) was
trained on 20 patients.50 Training the model using synthetic data was
followed by verification and testing with samples from five patients. The
average accuracy of training and verification exceeded 84%, indicating
that the generated samples could represent the original patient data. In
the testing dataset, the accuracy of layer-by-layer prediction was greater
than 80%. One round and six rounds of patient-based prediction resulted
in 80% and 100% accuracy, respectively.50 It should be noted that there
have been a growing number of studies on the application of this novel
method of generating images by DL to train models in diseases such as
fractures and joint degenerative diseases,118,119 but there are few studies
concerning the STSs. More studies on application of GAN in STSs may be
explored in near future.

In large patient data sets, ML offers the ability to identify patterns that
would otherwise be unintuitive, which allows for the analysis of complex
data.54 An effective survival model, Cox proportional hazard regression
(CoxPHR) has been shown to predict the survival time of multiple tumors
accurately. However, conventional prediction models perform poorly at
predicting rare malignancies.47 Recently, a new DL-based prediction
Fig. 4. Generative adversarial network
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model based on 242 patients was developed. After comparing with
traditional CNNs and Cox regression models,47 the AUC of the survival
neural network reached a median value of 0.87 in fivefold
cross-validation, which is significantly higher than 0.792 for the simple
neural network. In addition, SEER database was also used to develop a
deep survival neural network model to predicting the survival rate of
patients with spine-pelvic chondrosarcoma.54 80% of patients were used
as training sets and the rest as testing sets. To interpolate missing values,
k nearest neighbor was used. This model was based on the idea that
events and time should be viewed as two distinct dimensions and that the
CNN used a multimodal algorithm to learn these two objectives simul-
taneously. Similarly, an algorithm for predicting the 5-year survival rate
of children with genitourinary RMS was also based on SEER database,
including 277 patients55 An 8/2 split of the dataset was used for training
and testing deep neural networks (DNNs) as part of a five-fold cross--
validation method. According to the DNN models, AUC was 0.93 for
overall survival and 0.91 for disease-specific survival, both outperformed
than those of the Cox proportional hazards (CPH) models, indicating that
DL may provide better prognosis prediction for patients with rare ma-
lignancies than multivariable CoxPHR models.55 Collectively, these
studies suggest that DL approaches may help to predict patient outcomes.

2.3.4. Combination of DL and radiomics
The combination of traditional radiomics and DL is also a field worth

exploring, through which we could benefit from both advantages.120

Feature extraction is one of the key steps of the radiomic process.121

Combining the features extracted by DL with those by radiomics to
establish a prediction risk model is a method adopted by some
researchers.44,122

The model was successfully established to predict the tumor grade
and clinical outcome by combining manually extracted the features of
radiomics and automatically extracted the characteristics of DL.122 When
compared with other prediction models, these models showed superior
prognostic capabilities with diminished errors. Remarkably, this study
also compared prediction models, and the DL radiomics nomogram
(DLRN) has been shown to be a useful tool for predicting STSs recurrence.

As mentioned above, patients with STSs who have distant metastases
have a poor prognosis.123 The DLRN model was designed to predict lung
(GAN)-based data augmentation.
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metastases in STSs patients prior to surgery.75 This study retrospectively
enrolled 242 patients with STSs who underwent MRI. Handcrafted
radiomics extracted 949 features from T1WI and 772 features from
FS-T2WI, and DL extracted 54 parameters from T1WI and 50 features
from FS-T2WI, which were used to construct the model. As compared to
the clinical and radiomics models with the external validation set, the
AUC value of DLRN model was the best (0.833).

Liposarcomas are common in STSs, and well-differentiated lip-
osarcoma (WDLPS) accounts for the largest proportion, characterized by
local aggressiveness and amplificatory MDM2 mutations.4 In order to
distinguish between WDLPS and lipoma (a benign lipomatous tumor),
researchers constructed a prediction model using multimodal imaging
with 127 patients, of which 89 underwent model training and 38 under-
went external validation.76 Bymanually analyzing radiomics, 851 features
are extracted, whereas DL extracts 512–2048 features automatically. The
clinical radiological model developed for WDLPS and lipoma identifica-
tion was based on the combination of features and clinical factors. Based
on the ResNet50 algorithm, a multimodal DL model was constructed. In
external validation, the AUC, accuracy, sensitivity, and specificity reached
95.00%, 92.11%, and 88.89%, respectively. An external validation AUC of
0.942 was found in the comprehensive clinical radiology model. Taken
together, the above studies have proved the feasibility and credibility of
the combination of radiomics and DL. However, there are still many
technical issues worthy of further exploration.

2.3.5. Gene and pathway analysis
Of note, in addition to conventional medical images, some re-

searchers combined the genome profile with in-depth AI to explore tumor
mechanisms and precision medicine.124–128 Transcriptome sequencing
data can be a valuable source to understand differences between and
within entities by AI. The random forest algorithm was performed to
Fig. 5. Application of de

7

promote novel diagnostic markers for STSs, and that was validated by
qRT-PCR in an independent series. Recent studies attempted to adopt ML
to identify differences between and within STSs using openly available
expression data derived from STSs.53 The more novel approach is to use
DL to improve the previous bioinformatics methods to increase the
credibility and accuracy of the results.

Recently, A DL model-dgMDL used deep belief networks (DBNs) to
predict disease-gene associations.129 Besides, Y Chen et al. also devel-
oped a multi-task multi-layer feedforward neural network that was
capable of inferring gene expression data.130 STSs are more strongly
associated with epigenetic deregulation than other tumors.131,132 More-
over, it is difficult to interpret DNA methylation patterns at the gene
level, which hinders our understanding of their biological signifi-
cance.133 Accordingly, J Williams et al. developedMethylationToActivity
that used CNNs for predicting promoter activities based on enrichment of
H3K4me3 and H3K27ac from DNAmethylation patterns.133 As a result, it
performed accurately, robustly, and with generalizability in a wide range
of cancers including RMS.

In tumor diagnosis, circulating cell-free DNA (cfDNA) in peripheral
blood is typically analyzed via liquid biopsy.134 The presence of
tumor-derived DNA in blood has been associated with clinical outcomes
in pediatric tumors as well.135 Currently, there has been emerging studies
on ML to identify cfDNA biomarkers,136,137 it may be possible to inte-
grate DL model to further validate the diagnostic capacities of cfDNA in
near future.

Pathway analysis is another important aspect in tumor research that
has proven to be a useful technique for gaining insight into the processes
underlying tumorigenesis. Recently, researchers proposed a stacked
denoising autoencoder multi-label learning (SDaMLL) model to investi-
gate the effects, if any, that gene multi-functions may have on cancer
pathways in the Kyoto encyclopedia of genes and genomes (KEGG).138
ep learning in STSs.
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The results on eight KEGG cancer pathways revealed that SdaMLL was
not only much better than classical multi-label learning models such as
K-nearest neighbors and decision trees but can also function on a wide
range of genes related to important cancer pathways.

To sum up, DL can participate in the screening of key genes and
subsequent pathway analysis, which merits in-depth exploration.

3. Conclusions and perspectives

DL applications are rapidly emerging in STSs. Considering the ex-
amples of DL in STSs described above, the development and integration
of DL systems in daily practice can bring about several benefits in tumor
recognition and grading, pathological diagnosis, prognosis prediction,
and gene analysis (Fig. 5). Nowadays, diagnostic, prognostic, and treat-
ment of STSs face multiple challenges. Computational methods such as
deep reinforcement learning, and DL may be able to help. First of all,
accurate diagnosis and classification are the most critical step in the
process of medicine. DL models have shown excellent diagnostic ability
and more refined classification ability, which is very helpful to guide
clinicians’ follow-up treatment. Secondly, precision treatment is the core
means. DL models can help guide the use of highly sensitive drugs and
avoid the emergence of drug resistance. The application prospect is very
attractive. Finally, the prediction of clinical outcomes is something cli-
nicians and patients are keen to know, as it can be used to guide early
clinical intervention. In this respect, DL models can obtain very accurate
results by analyzing clinical data and image data.

It Is believed that the use of DL in conjunction with standard practices
within radiology, pathology, and clinical parameters has the potential to
improve the speed and accuracy of diagnostic testing while human re-
sources are no longer required to perform time-consuming tasks due to
offloading. Aside from that, DL systems are subject to some of the same
pitfalls as human-based diagnoses, such as inter- and intra-observer
variation. Academic research settings can benefit from DL, as it can at
least match, and sometimes exceed, the performance of humans.

The orthopaedic surgeons, radiologist and pathologist are expected to
play a leading role in ongoing discussions about how to utilize DL in
clinical practice. With the development of DL and the increase of medical
data, more STSs could be annotated and further explored in-depth.

However, because of the particularity of STSs, the number of patients
and the corresponding data are much less than those of other tumors,
which may introduce potential limitation of DL in training models in
STSs. Thus, adapting a DL framework using transfer learning and data
augmentation may be an alternative approach in STSs.

Besides, as DL models play an increasingly vital role in many medical
scenarios, the interpretability of models is vital since it determines
whether the clinicians can make decisions based on these models. To
increase the reliability and transparency of the DL model, it is necessary
to explain the prediction results of the DL model from the perspectives of
interpretability and integrity. In conclusion, we should not only focus on
the efficacy of the model, but also put emphasis on explanation of the
underlying logic as well.

What's more, a comprehensive and comprehensible explanation of the
medical condition to the patients is also necessary for a better STS
treatment. In this field, artificial general intelligence (AGI) or large lan-
guage models (LLMs) such as GPT4 from OpenAI have shown a great
transformative potential. Leveraging public data, these models get
remarkable language understanding and generation capabilities. By
using LLMs to translate complex medical information into more under-
standable terms, patients can get a greater understanding of their own
illness, while the doctors can also get greater interpretive skills. Espe-
cially in complex diseases like STS, LLMs will unleash their full potential.
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