
Received: 15 November 2023; Accepted: 25 February 2024; Published: 18 March 2024; Corrected and Typeset: 1 May 2024
© The Author(s) 2024. Published by Oxford University Press on behalf of Nanjing Agricultural University. This is an Open Access article distributed under the
terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and
reproduction in any medium, provided the original work is properly cited.

Horticulture Research, 2024, 11: uhae070

https://doi.org/10.1093/hr/uhae070

Article

Genome-wide variants and optimal allelic combinations
for citric acid in tomato
Wenxian Gai 1, Liangdan Yuan1, Fan Yang2, John Kojo Ahiakpa 1, Fangman Li1, Pingfei Ge1, Xingyu Zhang1, Jinbao Tao1, Fei Wang1, Yang Yang1 and
Yuyang Zhang1,3,4,5,*

1National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
2College of Horticulture, Northwest A&F University, Yangling 712100, China
3Hubei Hongshan Laboratory, Wuhan 430070, China
4Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
5Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics
Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
*Corresponding author. E-mail: yyzhang@mail.hzau.edu.cn

Abstract

Citric acid (CA) plays a crucial role as a fruit flavor enhancer and serves as a mediator in multiple metabolic pathways in tomato fruit
development. Understanding factors influencing CA metabolism is essential for enhancing fruit flavor and CA-mediated biological
processes. The accumulation of CA, however, is influenced by a complex interplay of genetic and environmental factors, leading to
challenges in accurately predicting and regulating its levels. In this study, we conducted a genome-wide association study (GWAS)
on CA, employing six landmark models based on genome-wide variations including structural variants, insertions and deletions,
and single nucleotide polymorphisms. The identification of 11 high-confidence candidate genes was further facilitated by leveraging
linkage disequilibrium and causal variants associated with CA. The transcriptome data from candidate genes were examined, revealing
higher correlations between the expression of certain candidate genes and changes in CA metabolism. Three CA-associated genes
exerted a positive regulatory effect on CA accumulation, while the remaining genes exhibited negative impacts based on gene cluster
and correlation analyses. The CA content of tomatoes is primarily influenced by improvement sweeps with minimal influence from
domestication sweeps in the long-term breeding history, as evidenced by population differentiation and variants distribution. The
presence of various causal variants within candidate genes is implicated in the heterogeneity of CA content observed among the
tomato accessions. This observation suggests a potential correlation between the number of alternative alleles and CA content. This
study offers significant function-based markers that can be utilized in marker-assisted breeding, thereby enhancing their value and
applicability.

Introduction
The acidity levels in mature tomato fruits play a pivotal role in dis-
cerning the flavor profile and their nutritional composition, which
are predominantly malic and citric acids (organic acids) [1, 2].
Citric acid (CA) is dominant in many fruits and contributes to fruit
acidity [3, 4]. CA has a marked influence on consumers’ prefer-
ences [5]. The sensation induced by CA demonstrates a prompt
initiation momentarily, concurrently modulating the thresholds
for perceiving sweetness, sourness, astringency, and bitterness [6].
The CA content in fruits has a direct impact on their quality. A high
concentration of CA can effectively inhibit the dehydration and
granulation of oranges, prevent browning in fruits and vegetables,
and enhance overall taste and flavor [7]. CA also serves as a
mediator of key metabolism pathways in the mesocarp cells of
fleshy fruits, including tricarboxylic acid (TCA) and glyoxylate
cycles [2, 3]. Therefore, understanding the factors influencing CA
metabolism is crucial for enhancing fruit flavor and its role in
tomato fruit quality.

The content of CA in fruit is determined by a complex and
stable enzymatic regulatory system that controls its synthesis,

degradation, and transport [3, 8]. The conversion of CA from
malate and oxaloacetate can occur via two metabolic pathways,
namely the TCA and glyoxylate cycles, facilitated by NAD-malate
dehydrogenase and citrate synthase (CS) [9, 10]. Again, citrate can
be converted into dicarboxylates via acetyl-CoA catabolism, TCA
and glyoxylate cycles, and gamma-aminobutyric acid pathway [3,
8]. In this process, the enzyme aconitase (ACO) directly facilitates
the reversible conversion of citrate to isocitrate. Mitochondrial
ACO is involved in the TCA cycle [11], while cytosolic ACOs func-
tion via the gamma-aminobutyric shunt [12]. The majority of CA
content in fruit is predominantly located within the vacuole, and
the transport of CA into the vacuole appears to occur readily
once its cytosolic concentration reaches a sufficient level [13].
The transport rate of CA and its precursors within fruit cells
determines the extent of CA accumulation in the vacuole, as their
synthesis and metabolism necessitate movement between differ-
ent cellular compartments. For example, the Arabidopsis tonoplast
dicarboxylate transporter AttDT is involved in the transport of
citrate into the vacuole [14], while overexpression of the SlTDT
gene significantly reduces CA content in tomato fruit [15]. The
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citrate transporter protein and the dicarboxylate-tricarboxylate
carrier also play a crucial role in mediating the transport of CA
within mitochondria [3]. The concentration of CA in fruit cells
can be directly altered by these influencing factors. Transcription
factors play an important role in the regulation of CA concen-
tration in fruit. The synergistic action of CitNAC6 and CitWRKY1
was found to modulate the accumulation of CA degradation by
up-regulating the expression of CitAco3 [16]. ACO promoters are
also regulated for CA accumulation by bHLH35, NAC7, HLH113,
and TRY transcription factors through their interactions [17]. In
tomato, the suppression of the MADS-Box transcription factor
gene led to an up-regulation of CA degradation-related gene [18].
Additionally, certain candidate genes have also been proposed to
govern the accumulation of CA. The overexpression of PpTST1,
a tonoplast sugar transporter in peach, results in a decrease
in CA content in both peach and tomato [19], and the P-type
proton pump gene, CsPH8, plays a pivotal role in the differential
accumulation of CA in citrus fruits [20].

The metabolic accumulation of CA in fruits is regulated by
both genetic and environmental factors [3, 21], with an estimated
heritability of 0.54 [22]. The estimated broad-sense heritability
for the content of malic acid ranged from 0.19 to 0.66 [4, 23,
24]. Although the mechanism of CA metabolism is relatively
well understood, there exists a significant research gap regarding
its genetic underpinnings. GWAS offers significant insights into
comprehending the genomic-level natural variation and genetic
development of CA metabolism in tomatoes [4, 22, 24, 25]. In
certain studies, no variation sites were identified to be associated
with CA content [24], or the yield of significant variant sites
associated with CA content limited to only one [25]. The statistical
power of GWAS is impeded by several factors, including incom-
plete detection of genomic variants, selection bias in association
models, phenotypic values in specific environments, as well as
genetic heterogeneity among causal variants. The environmental
factors exert a substantial influence on the contribution to vari-
ance of associated loci for quantitative traits [23]. The heritability
of molecular traits in GWAS analyses is influenced by variants in
single-nucleotide polymorphisms (SNPs), insertions and deletions
(Indels), as well as structural variants (SVs) [26]. However, GWAS
were primarily conducted utilizing SNPs to identify significant
associations in the majority of prior surveys [4, 5, 23, 24]. The
significant SNP variants associated with tomato CA concentration
have been identified using single models mixed linear model
(MLM) [5,22] and multiple loci mixed model (MLMM) [24, 25]. The
number of identified significant association loci, however, varied
significantly across studies, ranging from no associated SNP to
several dozen associated SNPs, indicating a genetically diverse
and complex foundation underlying tomato CA content.

The primary objective of this study was to identify the asso-
ciated loci with CA content in mature tomato fruits and eluci-
date the polygenic architecture governing its regulation. We con-
ducted a comprehensive identification of genetic variants (SNPs,
Indels, and SVs) across the entire genome and performed a GWAS
on CA using six landmark-mapping models. The GWAS analysis
revealed a series of associated natural variants, and subsequently,
high-confidence annotated genes were identified based on the
potentially causal variants. The genetic parameters of popula-
tion differentiation were utilized to identify potential signals of
selective sweeps on CA during the processes of domestication
and improvement. An assessment of superior alleles that regulate
the accumulation of CA was undertaken for their potential value
in tomato breeding. Our study offers novel genetic insights and
identifies potential functional genes associated with tomato CA,

thereby presenting a valuable resource for enhancing tomato crop
improvement.

Results
GWAS detection of multiple loci underlying
tomato citric acid
The present study revealed a wide phenotypic range for CA con-
tent in tomato germplasm resources (Fig. 1A and B), indicating
significant genetic variants in the genetic loci controlling CA
content among these accessions. Heritability estimate for CA
content was 0.35 with a standard error of 0.11. The individual
heterozygosity of the tomato accessions did not exceed 0.6, with
most germplasms exhibiting a heterozygosity ranging from 0
to 0.1 (Fig. S1A, see online supplementary material). The phe-
notypic values exhibited a normal distribution pattern in their
frequency distribution (Fig. 1C and D). The distributions of CA
content within various tomato accessions were evaluated (Fig. 1E).
The CA content exhibited no significant difference between PIM
and CER, whereas the content in BIG accessions was statistically
lower compared to that in PIM and CER. The phenotypic data were
utilized to dissect complex traits through association analyses,
taking into account the population structure and size within
each phenotypic class. Subsequently, all tomato accessions were
genotyped. After applying a filtering process, we obtained a high-
density genotyping subset consisting of 4 353 430 variants, which
included 4 063 982 SNPs, 234 331 Indels, and 55 117 SVs (Table S1,
see online supplementary material). The distribution of genome-
wide variations across 12 chromosomes is illustrated in Fig. S2 (see
online supplementary material). The distribution of most of the
variants minor allele frequency (MAF) ranges from 0.05 to 0.15
(Fig. S1B, see online supplementary material).

The GWAS analysis involved the utilization of six distinct
association mapping models to investigate the association
between phenotypes and genotypes. About 26 significant variants
(P < 4.52 × 10−7) were identified from the GWAS results (Table S2,
see online supplementary material). While all six models were
based on the same thresholds (Table 1; Table S2 and S3, see online
supplementary material), they respectively discovered different
sets of suggestive variants linked with CA content, which may be
due to the differing statistical power of the GWAS models. More
than one suggestive linked variant was identified with any model.
Especially, the single-locus models detected a greater number
of variants compared to the multiple-locus models, surpassing
the suggestive threshold of -Log10 (P) > 6.34. The point worth
highlighting is that the single-locus models failed to identify
any sites, when a significant threshold of -Log10 (P) > 7.65 was
applied. The number of significant loci identified by single loci
models was obviously more than that by multiple-loci models
(Table S2, see online supplementary material). The single-locus
model, MLM and GLM (general linear model) yielded a greater
number of variants due to the fact that one variant within
these peaks exhibited the highest correlation with CA content,
while the other variations within the given peak were in strong
linkage disequilibrium (LD) with the peak variants (Table S4, see
online supplementary material). These findings suggest that the
diversity of GWAS results significantly varies depending on the
employed types of association mapping models, emphasizing the
importance of the inherent characteristics of the model itself
when selecting candidate genes.

The GWAS results were analysed through the construction
of Manhattan and QQ plots (Fig. 2). QQ plots of multiple-locus
models exhibited a line with a strongly deviated tail, which might
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Figure 1. The phenotype of CA content in GWAS population. The accumulative density (B), frequency distribution (C), and density (D) of the CA
content among tomato individuals (A). (E) Distributions of CA content among different tomato accessions. Different lowercase letters indicate
significant differences at P ≤ 0.05 by t test.

indicate that these models increased the false positives associated
variants. The distributions of CA content were analysed in differ-
ent genotypes with respect to the lead variants, and seven false
positives variants were detected (Fig. S3 and Table S5, see online
supplementary material). The findings are in line with those of the
QQ plots, as six out of the seven false-positive variants were iden-
tified by multiple-locus GWAS. The variants resulting from certain
models’ MLM and CMLM (compression MLM) exhibited a close
alignment with the 1:1 straight line, indicating that these associ-
ated variants could potentially be identified as false negatives. For
example, the variant SV_chr9_62761281 was detected from mod-
els BLINK (Bayesian information and linkage-disequilibrium itera-
tively nested keyway) and FarmCPU (fixed and random model cir-
culating probability unification), whereas no signal was observed
at this site using the single-locus model (Table 1; Table S2, see
online supplementary material). The variants SV_chr2_33658501
and SNP_chr6_51511965 were consistently identified in all GWAS
results, demonstrating a remarkably robust association across
multiple models. In the MLM-model GWAS, they account for
13.66% and 12.40% of the phenotypic variance explained, respec-
tively. The evidence indicates that quantitative trait loci (QTLs)
SV_chr2_33658501 and SNP_chr6_51511965 may serve as the pri-
mary loci associated with CA content. Utilizing a multiple-model
GWAS approach based on high-density variant markers could
yield accurate and effective predictions of CA regulatory genes.

Candidate genes with variants for tomato citric
acid
The CA content varied across different genotypes; therefore, we
examined the CA content across diverse genotypes of 21 lead
variants (Fig. S3 and Table S5, see online supplementary mate-
rial). The genotypic analyses of 21 lead variants indicate that all

reference genotypes (the genotypes corresponding to the refer-
ence genome) were associated with low CA level, suggesting that
the reference accession (Solanum lycopersicum cv. Heinz) may be
lacking in CA content. Seven variants showed no difference in CA
content between different genotypes, indicating that they are not
effective in distinguishing between high and low CA accessions,
and also could not be used to predict candidate genes (Fig. S3, see
online supplementary material). The various genotypes of 11 vari-
ants (seven SNPs, two Indels, and two SVs) exhibited significant
differences in CA content (Fig. 3, Fig. 4D, and Fig. 5D). However,
no candidate genes were identified from the three variants based
on the variation position and LD block of associated variants
(Fig. S4 and Table S5, see online supplementary material). Finally,
the 11 variants were ultimately utilized with success in directly
predicting causal genes.

The primary objective of GWAS is the precise identification and
effective utilization of candidate genes. The results from multiple-
model GWAS were synthesized and 11 independent QTLs were
obtained, leading to the identification of three distinct types
of associated lead variants (Table 1). Among them, the AM type
variants (the variants identified in the six-model GWAS) exhibited
a remarkably high level of association across multiple models.
The QTL qTFC2.4 (Fig. 4A), classified as an AM type, was identified
through the utilization of six statistical models (Table 1). In
surrounding DNA region of its lead variant SV_chr2_33658501,
no variants exhibiting a stronger LD with lead variant were
detected (Fig. 4B). The lead variant, which underwent an 86 bp
structural mutation, is located 3607 bp upstream of the gene
Solyc02T000684.1 (Fig. 4C). The tomato accessions with deletion
variation exhibited significantly reduced levels of CA content
in comparison to those displaying insertion variation (Fig. 4D).
Among a total of 123 tomato accessions, the candidate gene
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Table 1. Variants associated with tomato CA

Typesa Loci Lead variants Causal variants Model -log10 (P) Candidate genesb

ID Ref Alt Location

AM qTFC2.4 SV_chr2_33658501 SV_chr2_33658501 C Seq1c Promoter BLINK 9.58 Solyc02T000684.1 [27,28]
CMLM 6.85
MLMM 8.35
MLM 7.42
GLM 7.34
FarmCPU 11.60

qTFC6.2 SNP_chr6_51511965 SNP_chr6_51511965 A G Intron BLINK 6.47 Solyc06T002703.1
CMLM 6.66
MLMM 7.73
MLM 7.04
GLM 7.15
FarmCPU 8.01

MM qTFC2.1 SNP_chr2_26821858 SNP_chr2_26854365 T C Promoter MLM 6.39 Solyc02T000402.1
GLM 6.70

qTFC3 SNP_chr3_60265480 SNP_chr3_60265480 C T Intron MLM 6.57 Solyc03T002685.1 [17]
GLM 6.46

qTFC6.1 SNP_chr6_49963005 SNP_chr6_49946335 C T 3’UTR GLM 7.76 Solyc06T002476.1 [5,22]
MLM 7.01

qTFC7 SNP_chr7_60025223 SNP_chr7_60025223 G T Promoter MLM 6.37 Solyc07T001849.1
GLM 7.16

qTFC9 SV_chr9_62761281 SV_chr9_62761281 C Seq2d Promoter BLINK 6.32 Solyc09T002159.1
FarmCPU 8.55

qTFC10.2 Indel_chr10_64281583Indel_chr10_64281583T TA Promoter CMLM 6.60 Solyc10T002661.1
MLM 7.03
GLM 7.05

SM qTFC2.2 Indel_chr2_28280691 SNP_chr2_28265349 A G Intron GLM 6.52 Solyc02T000461.1
SV_chr2_28264521 Seq3e G Intron

qTFC2.3 SNP_chr2_33391697 SNP_chr2_33391697 C T Extron,
D < ->N

MLM 6.53 Solyc02T000662.1

qTFC10.1 SNP_chr10_51854135 SNP_chr10_51758640 C G Extron,
H < ->D

FarmCPU 6.43 Solyc10T001673.1

aAM, the lead variant identified in GWAS results from all six models; MM, the lead variant identified in GWAS results from multiple models (≥ 2); SM, the lead
variant identified in GWAS results from a single model. bLoci or candidate genes, associated with citric acid accumulation found in previous studies have been
labeled. cSeq1: CTTTAATTTTTAATTGATAAATTAATTTCTAATTCATTCATATATCTAATTGATAAATTAATTTTTTGGTTATTAGTGAGCAGGAT. dSeq2: CGTCTTAGGGATC
TTAGCTCGGCCAATATAGGATTTACATGTGCTTATTTTACTTATGAATCGAATTGTCCAGTCACCTCT. eSeq3: GTATTGTACGCGTACTTGTAACCAAATTGAATTATTGATGA
ACTTGGTTAAAACCTAAACAAGATGGATTAATATAAATCAATTAATTAACTTCTCAATTCTAAACAACTAAAATAATTAATCTTAATTATGAACTTATTAATTTAAAAAATAAA
TCTTTTGAGACAATTTTCCGAGATATACTAATTATAGTCAAAATTATATAAAACA.

Solyc02T000684.1, predicted from SV_chr2_33658501, exhibited
relatively low expression levels in the accessions of the Ref
genotype (Fig. 4E). In addition, the alterations in CA content and
the Solyc02T000684.1 transcription were examined during fruit
development (Fig. 4F), showing a significant correlation (r = 0.909)
between them. The data strongly suggest a significant association
between the variant SV_chr2_33658501 and the expression level
of the gene Solyc02T000684.1; thus, indicating the potential role
of AM type variant SV_chr2_33658501 as a causal variation
influencing tomato CA content.

The MM-type variants represent the lead variant identified
in GWAS results from multiple models (≥2), while the SM-
type variants are exclusively identified from a single model
(Table 1). Among all nine lead variants (MM and SM types), no
causal genes were identified based on the four lead variants
(SNP_chr2_26821858, SNP_chr6_49963005, Indel_chr2_28280691,
and SNP_chr10_51854135). However, we identified potential
variants with high LD values (R2 = 0.71–0.81; Table S4, see online
supplementary material) to these lead variants that could be
utilized for predicting candidate genes. The remaining five lead
variants were employed for the identification of candidate genes
(Table 1). Four of the six MM-type variants are located in the
promoter regions of their corresponding candidate genes. The LD
region of MM-type QTL qTFC10.2 was analysed within a span of

158.65 kb (Fig. 5A and B). The lead variant Indel_chr10_64281583
of QTL qTFC10.2 is positioned within the promoter region of
both genes, Solyc10T002660.1 and Solyc10T002661.1 (Fig. 5C). The
tomato accessions carrying the Alt allele of Indel_chr10_64281583
exhibited a significantly high level of CA content (Fig. 5D).
Meanwhile, the transcriptional levels of Solyc10T002661.1 gene
in the tomato accessions with this Alt allele was found to be
low among 286 samples (Fig. 5E). The content of CA showed a
significant correlation with the expression of Solyc10T002661.1
throughout fruit development (r = 0.83) (Fig. 5F). The transcript
of the Solyc10T002660.1 gene, however, was not detected in any
of the 187 tomato fruit samples (Fig. 5E and F). The data from
these results indicate that the variation of Indel_chr10_64281583
may be a causal variant for the differential expression level of
the Solyc10T002661.1 gene, which could potentially be positively
associated with CA content.

Citric acid biosynthesis transcriptionally
associated with selected variants
The gene transcript data from multiple datasets was collected to
investigate the expression patterns of candidate genes in order to
explore whether these candidate genes exhibit specific expression
patterns in fruits (Fig. 6). The dataset unveiled distinct expression
patterns, with transcripts of candidate genes detected in at least
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Figure 2. Manhattan and QQ plots with six-mapping models. -log10 (P) values from the GWAS results are plotted on the y axis. The red lines indicate
genome-wide significant threshold of 7.65, and the green lines indicate suggestive threshold of 6.34. The candidate loci (Table 1) are marked in
Manhattan plots. The QQ-plots are at the right of their corresponding Manhattan plots. The distribution of genome-wide variants across 12
chromosomes are shown below the Manhattan plots. Different colors represent the density of variation of markers within 1 Mb windows. The density
values are represented with the legend color box on the right.

one tomato fruit tissue. The gene, Solyc10T001673.1 exhibited a
transcripts per million (TPM) value of 0 in both Micro-Tom (Fig. 6A)
and Heinz (Fig. 6B), yet its transcripts were detectable in the
tomato septum of M82 (Fig. 6C). Additionally, the transcription
abundance of Solyc06T002703.1 and Solyc10T002661.1 exhibited
high levels across the three tomato cultivars in most tissues.
The gene Solyc06T002476.1 also exhibited a high expression level
in unopened flower buds of the Heinz cultivar (Fig. 6B). The

clustering pattern and heatmap revealed a lack of consistent
categorization of gene expression, indicating complex and intri-
cate pattern of gene expressions. For example, the expression
of Solyc02T000461.1 was found to be significantly upregulated
during the young fruit stage (1–3 cm fruit) in Heinz cultivar
(Fig. 6B), but exhibited high expression levels during the breaker
stage in M82 cultivar (Fig. 6C). It was interesting that the gene,
Solyc07T001849.1 exhibited moderate expression throughout the
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Figure 3. Comparative analyses of CA content in tomato accessions with different lead variants. The distributions as a function of genotypes at the
lead variants are analysed, shown as box plots. Different uppercase or lowercase letters represent significant differences at P ≤ 0.0001or 0.001 by t test,
respectively. Ref represents reference allele; Alt represents alternative allele.

total pericarp (Fig. 6C), but the expression was predominantly
observed in the outer epidermis of the pericarp, particularly in the
equatorial region of mature fruits. Obviously, the variation in gene
expression patterns is clearly attributable to genetic differences.

The CA synthesis and degradation pathway is well under-
stood [3, 8]. The identification of gene clusters was performed
by utilizing 40 CA metabolic pathway genes, including malate
dehydrogenase, CS, ACO, isocitrate dehydrogenase (IDH), malate
synthase, and isocitrate lyase in conjunction with CA-associated
genes (Fig. 7A; Tables S6–S8, see online supplementary material).
The genes were organized into six clusters, wherein each clus-
ter exhibits consistent expression patterns across various time-
points. The gene expression patterns in cluster 3 exhibit a consis-
tent trend that aligns with the changes in CA content throughout
the fruit growth cycle. The cluster exclusively contains genes
encoding CS, ACO, and IDH enzymes, with their respective posi-
tions in CA metabolism (Fig. 7C). We performed correlation analy-
sis to ascertain the association between the seven genes in cluster
3 and CA-associated genes, as well as CA content (Fig. 7B). The

analysis revealed an intricate correlation network among the gene
clusters.

Interestingly, the expression levels of genes involved in the CA
metabolic pathway were found to be positively correlated with
CA. Three citrate synthase encoding genes, CS, directly control the
synthesis of CA. The enzymatic reactions mediated by ACO and
IDH in CA metabolism are bidirectional, with a clear preference
for CA synthesis rather than degradation. The genes associated
with CA exhibited a robust correlation only with the content of
CA, but also with the genes involved in the metabolic pathway of
CA. The CA content displayed a correlation with the CA metabolic
pathway genes, with an r value ranging from 0.36 to 0.85. The CA-
associated genes (Solyc02T000684.1) showed a strong correlation
of up to 0.91 r value. The transcription levels of Solyc02T000402.1,
Solyc02T000684.1, and Solyc10T002661.1 presented a positive
correlation with the CA metabolic pathway genes and CA content,
whereas Solyc02T000662.1, Solyc09T002159.1, and Solyc07T001849.1
expression demonstrated a negative correlation with them.
These results infer that Solyc02T402.1, Solyc02T000684.1, and
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Figure 4. Identification and analyses of the locus qTFC2.4. The vertical line denotes the location of structure variation SV_chr2_33658501. (A) Detailed
plots selected from representative GLM-GWAS result in region 33.64–33.67 Mb (24 kb) on chromosome 2 (x-axis). The dotted lines indicate the
significance threshold of P-value (4.52 × 10−7). (B) The heatmap LD depicts the LD block in the 24 kb genomic region corresponding to (A). (C) The
structural model of candidate gene. Green block, exon; Blue block, UTR; Gray line, intron; Black dotted line is the promoter. The black arrow represents
the direction of gene transcription. (D) Distribution of CA content as a function of genotype at the lead variation. (E) Expression of candidate gene
Solyc02T000684.1 in tomato accessions with different genotypes (n: number of accessions). Different uppercase letters represent significant differences
at P ≤ 0.0001 by t-test. Ref represents reference allele; Alt represents alternative allele. (F) The correlation between CA content and the transcriptional
level of candidate gene Solyc02T000684.1 during the development of tomato fruits. Pearson’s correlation coefficients r and statistically significant
correlation value (P) are shown.

Solyc10T002661.1 exert a positive regulatory effect on CA
accumulation, while the remaining eight CA-associated genes
exhibit a negative impact on CA accumulation in tomato fruits.

Selective sweeps of citric acid associated variants
during tomato improvement
A recent study proposed a two-step evolution of fruit mass, involv-
ing the domestication of PIM (Solanum pimpinellifolium) to CER (S.
lycopersicum var. cerasiforme) and the subsequent improvement of
CER to BIG (S. lycopersicum) [29]. Whether the regulatory genes
or loci of CA content in tomato fruits have been selected during
domestication or improvement, the GWAS analysis enabled us
to determine how CA faired or selected during domestication.
Thus, the GWAS analysis allowed us to ascertain whether the
candidate genes or loci governing tomato CA content were
subjected to selection during domestication or improvement,
thereby elucidating the impact of domestication on CA content.
The subsequent objective was to analyse the selective sweeps
of the regions encompassing 11 candidate gene-association
variants that underlie the processes of domestication and
improvement.

The fixation Index (FST) (Table S9, see online supplementary
material) and nucleotide diversity (π) (Table S10, see online
supplementary material) values were compared among PIM,
CER, and BIG accessions in the regions of 11 associated loci,
and the visualization of two genetic parameters (Fig. 8A; Figs S5
and S6, see online supplementary material). The FST values at
QTL qTFC2.2 did not surpass the thresholds when comparing

the genetic differentiation between PIM and CER accessions,
whereas there was a high level of differentiation observed
between CER and BIG accessions. The π was calculated for the
comparison between PIM and CER (πPIM/πCER), as well as for the
comparison between CER and BIG accessions (πCER/πBIG). The
genomic regions of qTFC2.2 exhibited a significant improvement
sweep signal (πCER/πBIG), while no domestication sweep signal
(πPIM/πCER) was detected. The selective sweeps of an additional 10
regions containing association variants were also investigated
(Fig. 8B; Table S10, see online supplementary material). Only
qTFC10.2 exhibited significant domestication sweep signals, as
indicated by the significant πPIM/πCER values (Table S10, see
online supplementary material). The genetic diversity ratios of
some variant regions do not exceed the threshold value (8.443)
between groups CER and BIG; however, certain variant regions
exhibit elevated ratios, such as qTFC2.1 (6.762), qTFC2.3 (7.809),
and qTFC7 (5.528).

The detailed distributions of alleles for 11 association vari-
ants were analysed in three subpopulations of tomatoes (Fig. 8B).
The distribution of alleles exhibited distinct characteristics. The
findings clearly indicate a significant decrease in Alt distribu-
tions from PIM to CER for the majority of alleles across 11 vari-
ants. Additionally, there were two variants, SNP_chr6_49963005
and SNP_chr7_60025223, where the Alt allele frequency showed
improvement during this progression. During the improvement
stage, the distribution of Alt was observed to exhibit a substantial
decrease in most genotypes. Moreover, no discernible differences
were found in the Alt allele distribution of SV_chr2_33658501
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Figure 5. Identification and analyses of the locus qTFC10.2. The vertical red line denotes the location of Indel variation on chr10_64281583. (A) Detailed
plots selected from representative GLM-GWAS result in region 64.22–64.38 Mb (158.65 kb) on chromosome 10 (x-axis). The pairwise R2 values among
all variations are represented with the color legend. The red dotted lines indicate the significance threshold of P-value (4.52 × 10−7). (B) The heatmap
LD depicting the LD block in the 158.65 kb genomic region corresponding to (A). The R2 values are marked with the color legend. (C) The structural
model of candidate genes. Green block, exon; Blue block, UTR; Gray line, intron; Black dotted line, promoter. The black arrows represent the direction
of gene transcription. (D) Distribution of CA content as a function of genotype at the lead variation. (E) Expression of associated genes,
Solyc10T002660.1 and Solyc10T002661.1 in tomato accessions with different genotypes (n: number of accessions). Different uppercase or lower letters
represent significant differences at P ≤ 0.0001 or P ≤ 0.05 by t-test, respectively. Ref represents reference allele; Alt represents alternative allele. (F) The
correlation between CA content and the transcriptional levels of candidate genes, Solyc10T002660.1 and Solyc10T002661.1 during the development of
tomato fruits. Pearson’s correlation coefficients r and statistically significant correlation value (P) are shown.

Figure 6. Expression patterns of candidate genes. The expression patterns of candidate genes in tomato fruits from (A) Solanum lycopersicum MicroTOM
(TS-7), (B) S. lycopersicum Heinz (Reference genome), and (C) S. lycopersicum M82 (TS-3/228) at different developmental stages were heat mapped. The
expression is log2-transformed normalized value. Genes are clustered according to their expression patterns.

and Indel_chr10_64281583 between CER and BIG, suggesting that
these two alleles were not selected during the improvement pro-
cess. In BIG tomato accessions, the frequency of all Alt alleles

was extremely low. The data suggest that the high proportion of
Ref alleles associated with high CA content may be attributed to
breeding selection.
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Figure 7. Gene clustering and correlation analyses of the fruit development and ripening. (A) The gene cluster identification. The red lines depict the
mean trend for each cluster. The average expression trend is highlighted in each cluster. (B) The correlation between the variables. The numerical
value in each cell denotes the correlation coefficient r. (C) Pathway module of CA synthesis and metabolism. The probable direction of reversible
reactions is indicated by the one-way or two-way arrows.

Optimal allelic combinations for citric acid
content in tomato fruit
The diverse tomato accessions exhibited a high level of allelic
diversity and displayed distinct allele combinations. The CA-
content distributions (Figs 3, 4D, and 5D) indicate that the com-
bination of alleles from 11 candidate-gene-associated variations
contributes to the CA content in each accession. The complete
genotypes of 106 accessions were determined by counting the
presence of 11 variants. The tomatoes with the top 5% CA content
exhibited a high abundance of alleles A, which were associated
with elevated CA concentration (Fig. 9A). Conversely, the tomatoes
with the bottom 5% CA content displayed a significant prevalence
of alleles R, linked to low CA concentration (Fig. 9A). The genotype
AAAAAAAARRA, which possesses nine alleles with high CA
content (allele A), exhibited the highest CA content among all
accessions in the GWAS population. The genotype RRRRRRARRRR,
despite possessing one A allele, was classified as the low-CA
tomato due to incongruences. With the increase in the total
number of genotype A at the 11 variation loci combinations, the
CA content was maintained at a relatively high level (Fig. 9B;
Table S11, see online supplementary material).

The presence of fewer individuals in certain genotypes resulted
in inadequate statistical power for high proportions, yet there
existed a strong correlation (r = 0.574, P < 0.0001) between the
allele A count and CA content. Based on the comparison of tomato
CA content among different genotypes with variations (Fig. 9), it
can be inferred that the putative genotype for high CA content
is AAAAAAAAAAA (11A) and low CA accessions should possess
RRRRRRRRRRR (11R) genotype. In fact, the genotype 11A was not
present in our population, and only a small number of individuals
possessed more than seven alleles of A. The Type R alleles of
associated variants exhibited the highest frequency of distribu-
tion (Fig. 9B), resulting in a substantial proportion of individuals

with the 11R-genotype. The prevalence of low CA-content tomato
accessions in this population could potentially be attributed to
this phenomenon (Fig. 1A).

Discussion
The focus of breeders has been on enhancing the commercial
traits of tomatoes, including but not limited to increased yield,
resistance to pests and diseases, longer shelf life, and fruit color
[30–32]. However, the weight of tomato fruit exhibits a negative
correlation with major flavor substances, including acids (such as
CA and malic acid), sugars (fructose and glucose), as well as vari-
ous volatile compounds [24, 29]. Consequently, modern commer-
cial tomato breeding prioritizes high yield at the expense of fla-
vor [22]. Presently, breeders are directing their attention towards
the optimization of taste and nutritional value in fruits. The
advancement of genetic engineering of major crops to improve
commercial traits has been bolstered by technological innova-
tions, albeit impeded by the limited genetic variability inherent
in cultivated crops. The assessment of the genetic underpinnings
of flavor profiles constitutes an indispensable prerequisite for
the advancement of variety development. CA not only serves as
a mediator in a series of metabolic pathways, but also plays a
crucial role as an essential flavor acid in fruits [3, 33]. The accu-
mulation of CA is determined by a complex regulatory network [3,
7, 8, 20]. The genetic enhancement of key crops for improved traits
has been facilitated by technological advancements, yet impeded
by the limited genetic diversity within cultivated crops. GWAS has
become a classical genetic approach utilized to identify associated
loci and causal genes linked to breeding traits in crops [5, 22, 26]. In
the present study, we conducted a genome-wide association study
to investigate the loci associated with fruit CA content based on
SNP, Indel, and SV, as well as predicting causal genes based on the
identified variants.
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Figure 8. Evolution of CA-associated variations during tomato domestication and improvement. (A) Visualization of FST and π ratios for qTFC2.2
flanking region. The thresholds are labeled with black dotted lines. The two genetic parameters of other 10 loci associated with CA were analysed and
shown in Table S9 and S10 (see online supplementary material). (B) Distribution of 11 alleles among PIM, CER, and BIG accessions.

Benefit of multi-model GWAS utilizing
genome-wide variations
Previous studies using GWAS have explored the association
between natural variation and CA metabolism in tomatoes [4,
24]. Unfortunately, the yield of significant variant sites associated
with CA content was limited to zero or only one [24, 25].
The outcomes of GWAS analyses are influenced by various
factors, including the association model, population structure,
phenotype, and environmental influences [23]. The detection
of variations associated with CA in tomato fruits content was
comprehensively conducted through genome-wide variant-based
GWAS in this study. The primary concern in model selection
lies in the management of false positives or false negatives
[34]. This study employed six multiple/single-locus models to

establish associations between variants and phenotypes of
varying complexity, thereby ensuring comprehensive analyses.
The statistical power of GWAS is further impeded by genomic
variants. Findings from earlier studies have demonstrated that
SVs account for the largest proportion of the overall heritability
explained by SNPs, Indels, as well as SVs [26], while Indels
contribute to explaining certain phenotypic variations [35].

Two SVs and two Indel lead variants associated with CA content
were detected in the present study. As a subset of high-density
variations, consisting of 4 353 430 variants (4 063 982 SNPs Indels
and 55 117 SVs), was sufficiently comprehensive to enable the
detection of GWAS signals using multiple mapping models in our
study. We identified 11 promising candidate genes with associated
causal variants, which can be categorized into three types: AM,
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Figure 9. Combinations of the alleles for tomato CA content. (A) Genotypes (combinations of 11 candidate gene-associated alleles) with the highest or
lowest 5% CA content. The distribution order of the 11 variations position includes SNP_chr2_26821858, Indel_chr2_28280691, SNP_chr2_33391697,
SV_chr2_33658501, SNP_chr3_60265480, SNP_chr6_49963005, SNP_chr6_51511965, SNP_chr7_60025223, SV_chr9_62761281, SNP_chr10_51854135, and
Indel_chr10_64281583. The CA content of accessions for this genotype is indicated above the column. R represents reference allele; A represents
alternative allele. (B) Correlations between the number of alternative allele A in the combination of 11 variation loci and CA content. The number of
accessions for this genotype is indicated above the column. Pearson’s correlation coefficients r and statistically significant correlation value (P) are
shown.

MM, and SM (Table 1). The presence of AM-type loci was observed
in all models, demonstrating a consistent signal for identifying
candidate genes. The presence of a TFM6 locus associated with
malic acid has consistently been observed across various GWAS
models within a single study (25), establishing this QTL as a
prominent genetic factor influencing malic acid accumulation
in tomato [4, 29, 36]. Also, MM-type SNPs were obtained from
the GWAS results with several models, indicating a moderate
level of confidence. Previous studies have demonstrated that QTL
qTFC6.1 is a genetic locus associated with the content of CA
[5, 22]. Moreover, another two models, ECMLM (Enriched CMLM)
and SUPER (Settlement of MLM Under Progressively Exclusive
Relationship) were carried out to test lead variants (Fig. S7, see
online supplementary material). The repeated detection of several
loci, such as qTFC2.4, qTFC6.1, and qTFC10.2, is evident. Our data
suggest that multi-model GWAS utilizing variations across the
entire genome is highly advantageous in capturing additional
heritability for CA content in tomato. In order to comprehensively
decipher the genetic basis of complex quantitative traits, it is
imperative to place greater emphasis on the variant types of
Indels and SVs, rather than exclusively focusing on SNPs.

High confidence in identification of citric acid
regulatory genes
The identification of candidate genes is a primary objective of
GWAS, by which candidate genes with loci serving as central
regulators for CA metabolism are expected to be identified [37].
The study has convincingly shown that genome-wide variation
possesses a capability to identify causal variants in complex
traits of CA accumulation. The AM-type loci qTFC2.4 suggests
Solyc02T000684.1 as a potential candidate gene, with its causal
variant SV_chr2_33658501 occasioning an SV variation in its
promoter region that triggers differential transcriptional expres-
sion (Fig. 4). The gene Solyc02T000684.1 encodes a phospholipase
D protein, and the functional significance of its gene family
member phospholipase C in living organisms has long been
recognized, with its crucial role in cell signal transduction being
widely acknowledged [27, 28]. The phospholipase C signaling
pathway transmitted by the Al3+ signal may be involved in the
stimulation of citrate transport by activating transcription and

anion channels in the plasma membrane [27]. Phospholipase
C-mediated pathways modulate CAMTA2 and WRKY46 to
regulate the Al-inducible Al-ACTIVATED MALATE TRANSPORTER
(ALMT) expression [28]. Meanwhile, the overexpression of ALMT
leads to a substantial elevation in the levels of CA [36]. The
tomato carrying the high allele in SV_chr2_3365850 exhibited
relatively elevated expression of Solyc02T000684.1 and higher CA
content (Fig. 4D and E). The CA content and the transcription
level of Solyc02T000684.1 exhibited an extremely significant
correlation throughout the process of fruit development (Fig. 4F).
Additionally, the expression of Solyc02T000684.1 showed a strong
positive correlation with the content of CA and the transcription
of genes encoding enzymes involved in the CA metabolic pathway,
namely CS, ACO, and IDH (Fig. 7) [3, 8]. The data strongly suggests
a positive correlation between the phospholipase protein and CA
content. The detection of three ubiquitylation pathway proteins in
GWAS, namely ubiquitin family member (Solyc02T000662.1), F-box
protein (Solyc10T001673.1), and RING/U-box superfamily protein
(Solyc09T002159.1), suggests the involvement of ubiquitination
degradation process in regulating the CA metabolic process in
tomato. The involvement of ubiquitin-protein in the dynamic
modulation of citric acid accumulation has been demonstrated
in citrus fruits [38]. The transcription factor plays a crucial role
in the accumulation of CA in citrus [39]. This study identified a
basic Helix–Loop–Helix (bHLH) DNA-binding transcription factor,
Solyc03T002685.1, associating with tomato fruit CA content. The
bHLH transcription factor has been demonstrated to regulate the
expression of ACO genes, thereby controlling the accumulation of
CA [17]. The weight of tomato fruit was significantly and inversely
correlated with CA content than other flavor metabolites, leading
to a decline in the sensory perception of tomato fruit taste
[24, 29]. Thus, the replacement of low CA alleles is expected
to significantly enhance consumer preferences [22]. The novel
genes from this study may offer valuable insights into the genetic
enhancement of CA accumulation in tomato.

Decreased citric acid level in fruits attributable to
tomato improvement stage
The CA content exhibited diverse variations consistent with pre-
vious studies [5]. It is intriguing to speculate on the impact of
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selection during domestication on CA content in tomato breeding.
In our study, no discernible phenotypic difference was observed in
the CA content between PIM and CER accessions (domestication),
but the BIG accession showed a lower CA content compared to
PIM (improvement) or CER accession (Fig. 1E). Based on the genetic
parameters of population differentiation, a significant sweep sig-
nal was identified, and the genomic regions of 10 other variations
exhibited high πCER/πBIG ratio values during the improvement
stage (Fig. 8A; Table S10, see online supplementary material). In
addition, the distribution of Alt was observed to exhibit a sub-
stantial decrease across most genotypes in this breeding stage
(Fig. 8B). The above observation has been reported in other studies,
demonstrating a significant difference in CA content between CER
and BIG accessions [4, 22].

During domestication, a significant decrease in Alt distribu-
tions was observed. However, the Alt allele frequency of two vari-
ants exhibited an increase during this progression, which could, at
least partly, explain the absence of any discernible phenotypic dif-
ference. The comparison of PIM and CER in another study revealed
a significant difference in CA content [22]. We speculate that the
contribution to phenotype differences can be attributed to both
environmental and genotypic variations. The regulation of fruit
secondary metabolism is significantly influenced by environmen-
tal factors [40]. Genetic background determines the CA concentra-
tions of PIM, CER, and BIG tomato fruits, whereas environmen-
tal factors may account for prominent quantitative changes to
CA levels. Temperature, nutrient availability, water supply, light
exposure, biotic and abiotic stresses have been demonstrated to
impact the biosynthesis of secondary metabolites in fruits [41, 42].
In sum, these findings are suggestive of an improvement event
that CA content in tomato is more influenced by improvement
sweeps with minimal influence from domestication sweeps.

Efficient tools to improve citric acid in tomato
with multiple loci
The techniques of genotyping, marker-assisted selection, and
genomic selection can be employed for expedited breeding [37].
The application of marker-assisted selection has proven to be
successful in the field of crop breeding. The utilization of whole-
genome high-throughput genotyping platforms, array-based
genotyping, and PCR-based markers is indispensable in marker-
assisted breeding [43]. The primary challenge in genotyping,
however, lies in its exorbitant cost. Next-generation sequencing
technologies continue to be prohibitively expensive, while PCR-
based markers remain a labor-intensive and time-consuming
method of genotyping. Moreover, the application of molecular
marker-assisted breeding in crop improvement is limited by
the presence of complex traits controlled by multiple small-
effect loci.

Array-based genotyping platforms offer a flexible solution for
customized probe detection, making them an essential tool in this
regard. Currently, high-density SNP genotyping arrays have been
developed and utilized extensively in marker-assisted breeding
of crops [43, 44]. The presence of numerous variants with low
effects significantly impacts the breeding for complex traits, such
as CA [4, 24, 26, 45, 46]. It is crucial to identify variations asso-
ciated with CA at the whole genome level in order to facilitate
targeted breeding for CA improvement. If the variants are located
within annotated genes or promoter regions, the candidate genes
selected for CA genotyping analysis will be those with high-
confidence annotation [43]. Additionally, the number and percent-
age of SNP variants located within gene intervals and associated
genes are important indicators for evaluating the quality of SNP

chips [37, 47]. In the present study, we identified 11 candidate
gene-association variants related to CA content, which can be
utilized for the development of precise function-based markers
in the selection and breeding of CA-rich tomato varieties. Thus,
gene function-based markers for CA content are essential for
marker-assisted breeding, and our study provides crucial variant
information for the development of breeding tools such as SNP
arrays.

Materials and methods
Tomato genetic resources and genomic data
The GWAS population was derived from a classically natural
population, which outlines the historical processes of tomato
domestication and improvement [29]. In our study, this natural
population, including 18 S. pimpinellifolium (PIM), 91 S. lycopersicum
var. cerasiforme (CER), and 131 S. lycopersicum (BIG), was utilized for
the identification of genome-wide variants and for conducting the
GWAS. The genomic information of 240 tomato accessions can
be accessed via the National Center for Biotechnology Informa-
tion Sequence Reads Archive (SRA), with the accession number:
SRP045767 [29].

Phenotypic assessment
The materials were cultivated in the greenhouse of Huazhong
Agricultural University, Wuhan, China, with a temperature of
25 ± 2◦C, relative humidity of 70%, and a photoperiod of 16 hours
light and 8 hours dark during the growth period. Each sample con-
sisted of a minimum of three plants, each bearing at least three
fully matured fruits. The samples were lyophilized with liquid
nitrogen and subsequently stored at −80◦C for the quantification
of CA levels. The CA content was quantified using the method
previously described [36]. Reliable phenotypic data from the 240
accessions were obtained for constructing association mapping
panels.

Detection of genetic variants
To perform a variant calling on the tomato accessions using
short reads sequencing, all paired-end sequence reads were
first cleaned using a FASTQ preprocessor [48]. The high-quality
cleaned reads were then aligned to the tomato Graph pangenome
TGG1.1 (SL5.0 serving as the backbone, https://solgenomics.net)
[49] with giraffe function implemented in variation graph toolkit
(vg) [50]. The reads files aligned to graph for SNP calling were
filtered according to the parameters: -r 0.90, −fu, −m 1, −q
15, and -D 999. The alignment reads with low quality, defined
as mapping qualities and positions with base quality less than
5, were subsequently excluded using the ‘vg pack’ tool with
the parameter ‘-Q 5’. The variant calling for each sample was
executed utilizing vg call.

All individual variants were merged and normalized using
the BCFtools software [51]. A comprehensive genomic variant
dataset was acquired, encompassing SNPs, Indels (1–50 bp) as
well as SVs (>50 bp). The high-quality variants were subjected
to further filtering based on the following criteria: a MAF of
≥5% for indels and SNPs, or ≥2.5% for SVs, and a missing rate
per site of ≤50%. Finally, a subset of 4 353 430 variants across
the 240 tomato accessions was selected and utilized for further
analyses. PLINK was used to calculate the heterozygosity for
each individual accession [52]. The plot depicting the distribution
and density of variants was generated utilizing the R package
CMplot [53].
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Variant-based heritability estimation
The GREML method [54] was used to estimate the proportion
of variance in a phenotype explained by all variants with GCTA
tool [55].

Genome-wide association study
Based on detected genome-wide variants, the correlation between
variant loci and CA trait were assessed with six association map-
ping models, including MLM [56], GLM [57], CMLM [58], MLMM
[59], FarmCPU [60], and BLINK models [61]. Models GLM, MLM,
and CMLM are single-locus models, while models MLMM, Farm-
CPU, and BLINk are multi-locus models. Within the category
of single-locus models, CMLM is superior to MLM, and MLM is
superior to GLM. Within the category of multiple-loci models,
BLINK is superior to FarmCPU, while FarmCPU is superior to
MLMM [62].

GWAS was performed using the R package GAPIT (version 3),
employing the association mapping models as described above
[62]. For all six models, the first three principal components
were utilized to account for population structure correction.
The genetic relatedness was determined by the VanRaden
kinship matrix [63]. The thresholds for genome-wide significance
were established at suggestive (1/n, where n represents the
effective number of independent variants, 4.52 × 10−7) and
significant (0.05/n, 2.26 × 10−8) P-values to identify variant
loci with statistically significant associations. The effective
number of independent variants determined using Genetic
type 1 Error Calculator software (http://grass.cgs.hku.hk/gec/
download.php) [64]. The R package CMplot was utilized for the
visualization of GWAS results, including Manhattan plots and
QQ plots [53].

Identification of causal variants and linked
candidate genes
Comparative analyses of CA content in tomato accessions with
different lead variants, suggestive variants (P < 4.52 × 10−7), were
used to exclude inaccurate false positive variants. The verified
variants were recognized as associated variants with CA, and
utilized to ascertain potential candidate genes that regulate the
accumulation of CA. The associated variants were classified into
independent QTLs based on LD analysis using PLINK software [52],
and the correlation coefficient (R2) was calculated to determine
pairwise LD decay. Variants exhibiting high LD levels with the peak
variant (R2 = 0.6–1) were deemed to be located within an LD region.
Visualizing LD and haplotype blocks were constructed using the
LDBlockShow software [65].

The physical locations and mutation types of associated
variants were determined using the snpEff tool [66] based on the
tomato reference genome (version SL5.0), and candidate genes
were annotated according to their corresponding annotation
information (http://solomics.agis.org.cn/tomato/). If there were
potential causative relationships between the significant variants
and the candidate genes, these variants were considered as
causal variants, and their corresponding genes identified as
candidate genes. If not, the prediction of candidate genes was
based on the linkage disequilibrium region where the peak
variant is located. The peak variants or the variants in high LD
with the peak variant are directly co-localized with annotated
genes (resulting in amino acid mutations) or situated within
the promoter regions (2 Kb upstream of the gene). In this case,
these variants and corresponding genes were considered to have
a causal relationship with CA.

Expression profiles of candidate genes
Data from RNA-seq were filtered by FASTQ [48], and the
transcript abundances were quantified (https://solgenomics.
net/ftp/genomes/TGG/cds/) using the Kallisto software (v.0.46.2)
[67]. The TPM values obtained from the output were utilized for
quantifying gene expression levels. The expression of genes in
various organs and fruits at different stages was crosschecked
in three genomic backgrounds of tomato, namely S. lycopersicum
Micro-Tom [68], S. lycopersicum Heinz 1706 [69], and S. lycopersicum
M82 [70]. The RNA-Seq data from 526 samples (483 samples from
M82, 27 samples from Micro-Tom, and 16 samples from Heinz)
were quantified.

The transcriptional levels of candidate genes in tomato fruits
were analysed in tomato accessions with diverse genotypes. The
RNA-seq data from fruit pericarp tissue with diverse genotypes
was obtained from the SRA PRJNA396272 database [4]. The corre-
lation between the CA content and the expression level of candi-
date genes during tomato fruit development was also examined.
The CA content values for nine developmental stages of tomato
fruits (S. lycopersicum Micro-Tom) were obtained from previous
study [68]. The RNA-seq datasets for gene expression profiles can
be accessed at the Genome Sequence Archive at the Big Data
Center with the accession number: CRA001723 (http://bigd.big.ac.
cn/gsa). The gene expression patterns were visualized using the
TBtools software with Heatmap plugin [71].

Gene cluster identification and correlation
analysis
The metabolic pathway genes of CA were accessed from the
Kyoto encyclopedia of genes and genomes (KEGG) database
(https://www.kegg.jp/pathway/map00020). The TPM values of the
genes encoding six key enzymes, namely malate dehydrogenase,
CS, ACO, IDH, malate synthase, and isocitrate lyase, were
utilized for gene cluster identification in conjunction with CA-
associated genes. The RNA-seq data of 27 samples from nine
developmental stages of tomato fruit were downloaded from
the Big Data Center (http://big.big.ac.cn/gsa) using the accession
number: CRA001723. Normalized TPM values of genes were
clustered into six groups using Hiplot (https://hiplot.cn) with
default parameters. The correlation between the expression of
cluster 3 and CA-associated genes, as well as the content of
CA, was analysed based on the r value of Pearson’s correlation
coefficient [72].

Detection of domestication and improvement
sweeps
The π was employed as a metric to quantify the extent of genetic
variation within our GWAS population [4, 29]. The FST was utilized
to validate regions of molecular diversity that exhibit high levels
of differentiation [36]. The selective sweeps signals related to
CA content during tomato evolution were identified through the
application of π and FST analyses at two crucial stages, namely
domestication and improvement [29]. The parameters were cal-
culated using the VCFtools package [73] with a 100 kb sliding
window and a step size of 10 kb for genome-wide scanning in PIM,
CER, and BIG. The windows exhibiting the top 5% of genetic diver-
sity ratios between PIM and CER (πPIM/πCER) as well as between
CER and BIG (πCER/πBIG) (2.367 and 8.443 for domestication and
improvement, respectively), along with population-differentiation
ratios, FST (PIM vs CER) and FST (CER vs BIG) (0.514 and 0.129 for
domestication and improvement, respectively) were identified as
regions undergoing selective sweeps.
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