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Abstract: Three-dimensional (3D) phenotyping is important for studying plant structure 

and function. Light detection and ranging (LiDAR) has gained prominence in 3D plant 

phenotyping due to its ability to collect 3D point clouds. However, organ-level branch 

detection remains challenging due to small targets, sparse points, and low signal-to-noise 

ratios. In addition, extracting biologically relevant angle traits is difficult. In this study, 

we developed a stratified, clustered, and growing-based algorithm (SCAG) for soybean 

branch detection and branch angle calculation from LiDAR data, which is heuristic, 

open-source, and expandable. SCAG achieved high branch detection accuracy (F-

score=0.77) and branch angle calculation accuracy (r=0.84) when evaluated on 152 

diverse soybean varieties. Meanwhile, the SCAG outperformed two other classic 

algorithms, the support vector machine (F-score=0.53) and density-based methods (F-

score=0.55). Moreover, after applying the SCAG to 405 soybean varieties over two 

consecutive years, we quantified various 3D traits, including canopy width, height, stem 

length, and average angle. After data filtering, we identified novel heritable and 

repeatable traits for evaluating soybean density tolerance potential, such as the average 

angle to height (AHR) and the ratio of average angle to stem length (ALR), which showed 

greater potential than the well-known ratio of canopy width to height (CHR) trait. Our 

work demonstrates significant advances in 3D phenotyping and plant architecture 

screening. The algorithm can be applied to other crops, such as maize and tomato. Our 

dataset, scripts, and software are public, which can further benefit the plant science 

community by enhancing plant architecture characterization and ideal variety selection.

Keywords: Soybean; LiDAR; branch angle calculation; phenotype; ideal plant type.
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Introduction

Soybean is a major source of plant oil and protein used for human consumption. The 

burgeoning global population demands a significant increase in soybean production (Guo 

et al., 2022). Increasing soybean productivity is, therefore, a long-term breeding demand. 

Because the area of arable cropland is limited, increasing crop productivity per unit of land 

area is a widely recognized breeding target. Therefore, it is urgent to screen density-tolerant 

soybeans, discover new genes controlling plant architecture, and design/breed elite density-

tolerant soybeans.

Plant architecture is a comprehensive trait that characterizes crop production potential 

and is widely recognized as the main direction of high-yield breeding (Gao et al., 2017). 

Plant architecture refers to the three-dimensional (3D) organization of a plant, including 

stem height, branching pattern, and the shape and position of leaves and reproductive 

organs (Huang, X et al., 2021). The success of the “Green Revolution” for rice and wheat 

inspired us to improve yield by designing a semidwarf plant architecture. Unlike grain 

crops that have panicles/heads above the canopy, soybean is a typical pod crop whose yield 

organ grows throughout the plant (Liu et al., 2020). With respect to the “Green Revolution” 

for soybean plants, one key aspect of plant architecture is branch formation, particularly 

the branch angle, which directly determines canopy coverage and further influences plant 

functions, especially light interception, photosynthetic efficiency, and yield (Takahashi et 

al., 2021; Clark et al., 2022). Smaller branch angles contribute to narrow architecture, 

enabling dense planting (Tian et al., 2019; Liu et al., 2020; You & Sun, 2022). More 

importantly, small (vertical) angles at the top of the plant and large (horizontal) angles at 

the bottom can maximize the light interception of an individual plant and optimize the light 

distribution and utilization of a crop population, forming a "smart canopy" (Mantilla-Perez 

et al., 2020) for high-yield production. Therefore, the branch angle is vitally important for 

evaluating soybean density tolerance and yield potential.

High-throughput branch phenotyping is one of the key challenges for 3D plant 

architecture studies. The traditional methods for branch angle measurement mainly rely on 

manual operations, such as the use of inclinometers (Gratani & Ghia, 2002), which are 

tedious and difficult to perform. Two-dimensional (2D) image-based techniques have 
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improved the efficiency and precision of branch angle acquisition (Abdel-Khalek et al., 

2017). For example, image-based leaf angle extractors were developed to improve the 

efficiency of leaf angle extraction in maize and sorghum (Kenchanmane Raju et al., 2020). 

However, these methods are mainly focused on crops (e.g., maize and sorghum) with 

simple canopy structures (e.g., symmetrical distribution of leaves) and require specifically 

selected shooting angles. In contrast, soybean crops have more complex 3D plant 

architecture, thus making it difficult to determine an optimal shooting angle.

LiDAR is an active remote sensing technique used to directly acquire the 3D 

information of an object, shedding new light for 3D plant phenomics (Jin et al., 2021b; Tao 

et al., 2022). LiDAR is superior to other 3D reconstruction techniques, such as stereo 

imagers (Yidan et al., 2016) and depth cameras (Xiong et al., 2017), which are easily 

affected by environmental conditions (e.g., illumination) (Ma & Liu, 2018; Ghahremani et 

al., 2021; Ingale & J, 2021), object surface properties (e.g., continuity and flatness) 

(Nuijten et al., 2019), and camera calibration  (Huang, K et al., 2021; Tsai et al., 2021; 

Zhang et al., 2022). LiDAR has been widely applied to phenotypic tasks due to its high 

accuracy and insensitivity to environmental light (Guo et al., 2018; Jin et al., 2020a; 

Jayakumari et al., 2021; Li, Q et al., 2022; Sun et al., 2022; Zang et al., 2023). However, 

LiDAR point cloud-based methods have been mainly developed for crops with simple 

structures, such as for calculating the leaf angles in maize and sorghum (Thapa et al., 2018; 

Jin et al., 2019; Su et al., 2019; Wu et al., 2019; Jin et al., 2021a). These methods can be 

categorized into two major types: geometric methods and machine learning-based methods. 

Geometric methods usually use the geometric distance between the samples in the point 

clouds (Jin et al., 2019) and the curvature calculation method (Su et al., 2019) for skeleton 

extraction and trait calculation. Notably, geometric methods mostly rely on handcrafted 

features and expert experiences. In contrast, machine learning-based methods 

automatically learn features based on given abundant data samples and their corresponding 

labels. The labeled key points of plants allow for machines to learn the rules for expected 

targets and automatically recognize plant phenotypic traits (Dutagaci et al., 2020). 

However, it is difficult to interpret machine learning-based methods and apply them to 

other scenarios (e.g., crop types). Therefore, geometric algorithms are usually selected by 

D
ow

nloaded from
 https://spj.science.org on July 01, 2024



5

the research community if effective features and rules can be designed and large-volume 

datasets are unavailable.

Branch detection algorithms are critical for extracting complex 3D branch angles and 

empowering further 3D phenomics applications. Skeleton extraction is the most frequently 

used method for branch angle detection based on point clouds (Zhang et al., 2020). The 

Laplacian contraction algorithm has been widely used in skeleton extraction by shrinking 

point clouds, such as in maize (Wu et al., 2019). In addition, several heuristic methods have 

been developed (Jin et al., 2019; Su et al., 2019). The MNVG (median normalized-vector 

growth) method was proposed for generating the skeleton by calculating the median points 

of a ball region from the bottom upward (Jin et al., 2019). Similarly, the curvature 

calculation method was developed for extracting the skeleton of maize by finding points 

with large curvatures (Su et al., 2019). Notably, skeleton-based methods are effective for 

large crops with simple canopy structures. However, these methods are not applicable to 

soybean plants due to various challenges. 1) Complex 3D structure: The branches of 

soybean plants are distributed throughout 3D space, thus making their structure more 

complex than that of crops with leaves almost symmetrically distributed along a main stem, 

such as maize and sorghum; 2) Fewer curved branching organs: Plant architecture is 

closely related to branching organs. Compared with the flexible leaves of maize and 

sorghum, the branches of soybean plants are wood-like with no obvious curvature. 3) 

Smaller crop size: The average height, stem width, and branch width of soybean are smaller 

than those of other crops, such as maize, thus leading to a smaller signal-to-noise ratio in 

soybean point cloud data under the same scanning specifications.

The main objectives of this study are presented below.

1) To develop a new soybean branch detection algorithm, i.e., the stratified, clustered, 

and growing-based (SCAG) algorithm, based on LiDAR data.

2) To evaluate the performance and robustness of the proposed algorithm through 

model comparison and parameter sensitivity analysis.

3) To verify the applicability and transferability of the proposed algorithm to other 

crop types and its value in evaluating the potential of soybean density tolerance based on 

plant architecture (e.g., branch angles).
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The proposed SCAG algorithm could facilitate high-throughput soybean branch angle 

extraction and accelerate branch angle-based plant architecture screening, which is of great 

interest to the breeding community.

Materials and Methods

Study area and data collection

The study area was located at the Baima Experimental Station of Nanjing Agricultural 

University in Nanjing, Jiangsu Province, China (119°18′71″E, 31°62′00″N). A two-year 

germplasm screening experiment was repeatedly conducted in both 2021 and 2022. The 

length and width of the experimental field were approximately 200 m and 30 m, 

respectively. There were 810 plots in the field that included two replications of 405 soybean 

varieties (Fig. 1). Each plot had three plant rows with a row spacing of 0.7 m and a row 

length of 1 m. The distance between adjacent plants within a row was approximately 0.07 

m. Two border rows were planted around the target plots for protection. These varieties 

have significant diversity and representativeness in terms of plant architecture and were 

selected from all over the world by the National Center for Soybean Improvement 

(https://ncsi.njau.edu.cn/sysgk1/sysjj.htm).

Although we aimed to assess soybean plant architecture in real production conditions, 

it was difficult to acquire high-quality individual point clouds in a changeable field 

environment with a dense canopy. Therefore, three plants of each variety per plot were 

randomly selected from the field and transferred to an indoor platform for scanning to 

ensure data accuracy during the maturity stage. The leaves of plants at the maturity stage 

were manually defoliated before scanning in 2021, and the leaves and pods were removed 

before scanning in 2022. The soybean individuals of different varieties were fixed in rows 

with a row spacing of approximately 0.7 m and a plant spacing of approximately 1 m on a 

platform with a length of 23 m and a width of 3.5 m (Fig. 1 b). The point clouds of these 

varieties are scanned by using a terrestrial LiDAR scanner (TLS, Faro Focus3D S70) at 

multiple stations. The scanning time of each station was approximately 4 minutes, and the 

point cloud resolution was approximately 2 mm. There were 10-14 stations in the platform 

area, which were distributed along the edge of the platform, and the distance between two 
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stations was approximately 3.7 m (Fig. 1 c). Finally, these multiple stations of  TLS data 

were registered into a whole point cloud using SCENE software.

Fig. 1. The study area and process of data collection. (a) The experimental field was approximately 200 m 

by 30 m. Each plot consisted of three rows of the same soybean variety, with a row width of 1 m and a row 

spacing of 0.7 m. The field contained 810 plots, which included two replications of 405 soybean varieties. 

(b) Soybean plants were fixed on an indoor platform and scanned by using a TLS. (c) Point cloud data were 

registered using the SCENE software, where the black box is the platform and the white "+" represent the 

TLS locations. (d) An overview of the collected LiDAR data on October 22, 2021. (e) The point cloud data 

of several representative soybean varieties.

Data preprocessing and dataset construction

In both 2021 and 2022, the registered LiDAR data were manually segmented into 

3218 individual point clouds of 405 varieties (each variety had 1-2 individual samples) and 

denoised using the statistical outlier removal (SOR) algorithm in CloudCompare software. 

A total of 152 individual samples were randomly selected to construct a well-labeled 

dataset (Soybean3D) for algorithm development (see details in Supplemental Materials S1). 

The Soybean3D dataset is diverse (Fig. S1) and can be further divided into three different 

complex groups based on the number of branch angles and average branch angle (Table 

S1).

Algorithm design of the SCAG
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This work presents an SCAG framework for branch angle detection and calculation. 

The SCAG method includes three steps, i.e., branch detection, node location, and branch 

point optimization (Fig. 2). The branch detection step was designed to coarsely locate the 

branches from a series of point clouds of a slice height (H) from the bottom to the top. The 

node point location step aims to find node points (connection points between stems and 

branches) by using the downward region growth method based on the above-detected 

branch points. Branch point optimization is a postprocessing step for optimizing the above-

detected branch locations that may be too close to the node points. The angle calculation 

uncertainty can be decreased based on the finely optimized branch points and node points.

Fig. 2. An overview of the proposed method. (a) Branch detection: The soybean point cloud was sliced into 

multiple layers of the same height. The branch locations were detected based on the cluster relationships of 

adjacent layers. (b) Node point location: The node point was located by using the downward region growth 

method based on the branch points detected in the previous step. (c) Branch point optimization: Two 

branching points were relocated by slicing a new upward layer that was closer/similar to manual operations 

from the node point. The optimized branch points and node points were used to calculate branch angles.

Step 1: Branch detection

Branch detection aims to coarsely find the locations of the branches for branch angle 

calculation, which requires finding two branch points and one node point. The parameter 

slice height (H) was used to slice a point cloud into different layers from the bottom to the 

top because the branches were located at different heights. The point cloud of each layer 

was clustered by using density-based spatial clustering of applications with noise 

(DBSCAN) (Schubert et al., 2017). The branch locations were detected by analyzing the 
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number of clusters and the relationship between any two adjacent layers. The number of 

clusters in each layer and its next bottom layer mainly included three cases.

Case 1: The number of clusters in the upper slice layer (CNU) was greater than the 

number of clusters in the lower slice layer (CNL), i.e., CNU>CNL.

This was the simplest case, i.e., the number of clusters increased from the bottom to 

the top. This case meant that a new branch was formed, as presented in Fig. 3. b.1. 

Therefore, the clusters in the CNU were preserved for locating branches.

Case 2: The number of clusters in the upper slice equaled the number of clusters in 

the lower slice, i.e., CNU=CNL.

This case included two possible results: (I) the upper layer contained a newly split 

branch (Fig. 3. b.2.I), which should be retained; and (II) the upper layer did not contain a 

newly split branch but rather a continuation of the previous branch (Fig. 3. b.2.IⅠ), which 

should be ignored.

To determine if a layer contained a new branch, a distance-based rule was proposed 

by considering the distances (i.e., DCNL = [d1, …, dCNL]) between each cluster in the lower 

layer and its nearest cluster in the upper layer. Each cluster was represented by a median 

point calculated from points belonging to the cluster. We used the median value instead of 

the mean value of the point cloud as the cluster center because our previous findings 

indicated that the median value is insensitive to noisy points (Jin et al., 2019). If one of the 

clusters in the lower layer did not have a neighboring cluster within the given distance 

threshold in the upper layer, then the upper layer contained new branches (Fig. 3. b.2.I); 

otherwise, if each cluster in the lower layer had neighboring clusters within the given 

distance threshold in the upper layer, the upper layer did not contain a new branch but a 

continuation of a lower branch (Fig. 3. b.2.IⅠ). This biological observation can be 

formulated into a distance-based rule, i.e., if the maximum value of the nearest distances 

(i.e., max (DCNL)) is greater than twice the minimum value (i.e., min (DCNL)), the upper 

layer should be retained for locating the new branch. Otherwise, the upper layer was 

considered a continuation of the bottom branch and was discarded. The “twice” threshold 

was selected according to repeated trials and errors.
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Case 3: The number of clusters in the upper slice is smaller than the number of clusters 

in the lower slice, i.e., CNU<CNL.

This case also includes two possible results: (I) the upper layer contained a new branch 

(Fig. 3. b.3.I), which should be retained; (II) the upper layer did not contain a newly split 

branch but rather a continuation of several previous branches (Fig. 3. b.3.IⅠ), which should 

be ignored.

To determine if a layer contained a new branch, the proposed distance-based rule was 

used. First, the distances between each cluster in the lower layer and its nearest neighbor 

cluster in the upper layer were calculated, i.e., DCNL. Afterward, the number of elements in 

DCNL that satisfied the rule of being smaller than two times Min(DCNL) was counted and 

named Nmin. When Nmin was less than CNU, some clusters in the upper layer were unable 

to find their source branches in the lower layer. Here, the upper layer contained new 

branches (Fig. 3. b.3. I ). In contrast, if Nmin was equal to or greater than CNU, then all the 

clusters in the upper layer could find their source branch in the lower layer, which meant 

that the upper layer had no new branches (Fig. 3. b.3. IⅠ).
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Fig. 3. Flowchart of slice clustering and branch detection. (a) Branch detection workflow. The parameter 

slice height (H) represents the height of the slice. (b) The logic for detecting the branch layers is based on the 

number of clusters in two adjacent layers. U and L represent the upper and lower layers, respectively. CNU 

and CNL represent the number of clusters in the upper and lower layers, respectively. dn (e.g., d1, d2, and 

d3) represents the nearest distance from a cluster in the lower layer to a cluster in the upper layer.

Step 2: Node point location
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The node point location was designed to find the intersection point of the main stem 

and branches (Fig. 4). It was implemented by considering regional growth based on the 

detected branch clusters. As the clusters forming a branch angle were often the closest 

clusters, this study considered only two clusters belonging to a new branch by finding the 

two closest clusters in each layer, although there was a possibility of more than two clusters 

existing in the same layer. The median values of two detected clusters were calculated and 

used as the seed points in the three steps of the downward regional growth method. First, 

the points with z values larger than the two seed points were removed from the point cloud 

of the plant. Second, the two seed points (on the main stem and the branch) were used for 

searching for the N nearest neighbors, i.e., growth point number, with the KD-Tree 

(Bentley, 1975) searching method. The resulting N points on each side were extracted as a 

new cluster, which was then used to recalculate the new seed points. Third, the new seed 

points were used to repeat the aforementioned downward growth process, i.e., the first two 

steps. The growth ended when the number of points (overlapping points) obtained on both 

sides during the search was greater than N. Finally, the overlapping points were extracted, 

and their median was used as the node point.
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Fig. 4. Flowchart of the node location and downward regional growth. (a) The layers include new branches 

that are marked with colorful points after branch detection. (b) The two closest clusters were kept in each 

layer. (c) The median points of the two clusters were calculated. (d) Points greater than the median point 

were removed. (e) The KNN method was used to search for N nearest neighbor points with two median points 

as the seed points. (f) The two searched new clusters are presented in yellow and blue. If the number of points 

(overlapping points) obtained during the search on both sides was greater than N, the two clusters were used 

to extract new median points, which were then used for repeating steps (c) to (f). Otherwise, (g) the downward 

search ended, and the median of the overlapping points was extracted as the node point.

Step 3: Branch point optimization
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Branch point optimization was designed to improve the angle calculation accuracy by 

finely adjusting the locations of branch points. As the branch points obtained by slicing 

and branch detecting were too close to the node point, the angle calculation had large 

uncertainties based on the measuring technique. The branch points can be optimized based 

on the distance between them and the newly founded node point. First, we selected a layer 

above the node point with a thickness of 1 cm and a slice depth (D) for simulating the 

manual measurement. Second, DBSCAN was used for dividing the points in the sliced 

layer into two groups and calculating the medians of each group as the optimized branch 

points. Third, two spatial vectors, i.e., 𝑎 and 𝑏, were formed by connecting the node point 

and the optimized branch points, which were used for calculating the branch angle (Fig. 

5d).

Fig. 5. Branch point optimization and branch angle calculation. The parameter slice depth (D) denotes the 

distance used for upward optimization based on the node point. (a) The points from a 1-cm deep layer were 

selected above the branch point with a height of D. (b) The selected points were clustered into two groups 

using DBSCAN. (c) The median points of two clusters were calculated, which represented the two branch 

points after optimization. (d) The branch angle was calculated based on two spatial vectors formed by the 

optimized branch points and the node point.

Accuracy assessment of the proposed SCAG

The accuracy assessment of the proposed SCAG algorithm mainly consisted of two 

parts, namely, branch detection accuracy assessment and angle calculation accuracy 

assessment. The branch detection accuracy was evaluated by analyzing the Euclidean 

distance between the SCAG-predicted node points and the manually labeled node points. 

If there was one or more labeled node points surrounding the predicted node point with a 

distance of less than 1 cm (approximately the average diameter of a soybean node area), 

the prediction was correct and was called a true-positive (TP) case; otherwise, the 
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prediction was treated as a false-positive (FP) case. If there was no predicted node point in 

the 1 cm neighborhood of a labeled node point, the node point was missed and called a 

false-negative (FN). Finally, the recall (R), precision (P), and F-score (F) (Goutte & 

Gaussier, 2005) were calculated. The values of all three metrics range from 0 to 1. A larger 

value indicates better accuracy. These metrics can be mathematically expressed as follows:

𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(1)

𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(2)

𝐹 =  2 ×  
𝑅 ×  𝑃
𝑅 +  𝑃

(3)

The angle calculation accuracy was evaluated by using the coefficient of correlation 

(r) and root mean squared error (RMSE) between the SCAG predictions and manual 

measurements.

Parameter sensitivity analysis of SCAG

The proposed SCAG algorithm has three important parameters, namely, the slice 

height (H), growth point number (N), and slice depth (D). Theoretically, the branch 

detection accuracy may be influenced by parameters H and N, whereas parameter D may 

influence only the accuracy of the branch angle calculation.

The sensitivity analysis of parameters H and N was evaluated with the F-score under 

different parameter combinations using a grid-searching method in Python. The parameter 

H was set as 0.3 cm, 0.5 cm, 1 cm, 1.5 cm, 2 cm, or 2.5 cm relative to the height of the 

adjacent branching node. The parameter N was chosen from 10, 20, 30, 40, 60, 80, 100, 

120, and 140 by considering the point density around the branching node. Similarly, the 

sensitivity analysis of parameter D was evaluated with the correlation coefficient r under 

different selections using an equally spaced searching method in Python. Parameter D was 

chosen from 1.5 cm, 2 cm, 2.5 cm, 3 cm, 3.5 cm, and 4 cm based on manual measurements.
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Cross-comparison with other methods

The proposed SCAG method was compared with two other methods, including the 

heuristic method (i.e., a threshold method based on point density) and the machine 

learning-based method (i.e., support vector machine (Noble, 2006)). These three methods 

mainly differ in terms of the techniques used for detecting the branches, but they use the 

same approach for calculating the angles. The density-based method (DB) is a heuristic 

method that is based on the knowledge that the local point density of a branch node point 

is greater than that of other locations. In contrast, the support vector machine (SVM) 

method performs point classification (i.e., node point or not) in a supervised manner based 

on manually labeled targets and handcrafted features. The reasons for selecting SVM for 

comparison were based on its wide usage and low dataset requirements (Tsang et al., 2005). 

The implementation details of the two methods are provided in Supplemental Materials S2.

Results

The SCAG performed well in branch detection and branch angle calculation

The proposed SCAG method was evaluated qualitatively and quantitatively by using 

the Soybean3D dataset. Twelve representative samples were selected to visually 

demonstrate the branch detection performance due to limited space (Fig. 6). The samples 

included maximum and minimum values of the plant height, canopy width, CHR, average 

angle, number of branch angles, and nearest point distance (NPD). In each subplot, each 

detected branch consisted of three points of the same color, which represented two branch 

points and one node point. NPD had a minor effect on SCAG performance because 

branches were accurately detected in large and small NPD cases (Fig. 6a). Similarly, the 

proposed SCAG accurately detected the branch angles of samples with different plant 

height, canopy width, CHR, branch angle number, and average angle values. Some 

underdetections existed when the points were missing (Fig. 6c) or the branch angle was too 

large (Fig. 6e-f). Overall, the proposed SCAG method performed effectively for different 

soybean varieties.
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Fig. 6. Branch detection and node location results for 12 representative soybean varieties with high 

phenotypic diversity. The three points in different colors on each soybean crop represent one node point 

and two branch points of the branch detected by the SCAG method. The left and right subplots represent 

the point clouds of the plants with the largest and smallest (a) NPD, (b) plant height, (c) canopy width, (d) 

CHR, and (e) number of branch angles, respectively. (f) Average branch angles. The red boxes indicate 

branches not detected by the algorithm.

The quantitative results showed that the mean R, P, and F-score of branch detection 

were 0.81, 0.73, and 0.77, respectively (Table 1). Moreover, the F-scores of the simple, 

medium, and complex groups were 0.80, 0.77, and 0.66, respectively. Furthermore, the 

quantitative results of the branch angle calculations showed that the mean r of the proposed 

SCAG was 0.84. The r values for the simple, medium, and complex samples were 0.88, 

0.85, and 0.83, respectively (Supplemental Materials S2), which showed a decreasing trend. 
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In addition, the proposed SCAG-predicted angles showed a slight overestimation for small 

angles and an underestimation for large angles in the different complex groups.

Table 1. The accuracy of branch detection and angle calculation for the proposed SCAG method based on 

the Soybean3D dataset.

Group Sample number Recall Precision F-score r

Simple 50 0.75 0.86 0.80 0.88

Medium 51 0.77 0.78 0.77 0.85

Complex 51 0.71 0.62 0.66 0.83

All 152 0.81 0.73 0.77 0.84

The SCAG was superior to the other methods and was robust

For branch detection, the proposed SCAG method detected most of the angles 

(R=0.81), which was better than the SVM (R=0.52) and DB (R=0.55) methods (Table 2). 

Moreover, SCAG outperformed the other two methods in terms of the precision (0.73) and 

F-score (0.77). This showed that the proposed SCAG method detects more branches with 

higher precision. In the angle calculation, all three methods achieved high performance 

with r values greater than 0.80, and the differences among the three methods were relatively 

small.

Table 2. The best results of the three calculation methods for branch angle detection after parametric 

sensitivity analysis.

Method Recall Precision F-score r

SVM 0.52 0.55 0.53 0.84

DB 0.55 0.56 0.55 0.88

SCAG 0.81 0.73 0.77 0.84

Parameter sensitivity analyses were separately conducted for branch detection and 

angle calculation. The branch detection was insensitive to parameter N but influenced by 

parameter H following a clear pattern (Fig. 7). On the one hand, the optimal value of H, 

according to the best F-score (0.77; Fig. 7c), was between 0.5 cm and 1.0 cm, which was 
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around the branch diameter. On the other hand, the R value decreased with H (Fig. 7a), and 

the P value first increased and then decreased (Fig. 7b).

Fig. 7. Parameter sensitivity analysis of branch detection. (a), (b), and (c) Recall, precision, and F-score of 

branch detection under various parameter combinations of slice height (H) and growth point number (N).

In the angle calculation, D was the only parameter that affected the result. However, 

the angle calculation accuracy may be indirectly influenced by the branch detection 

process, which is influenced mainly by parameter H but is insensitive to parameter N 

according to Fig. 7. Therefore, we analyzed the influences of parameters D and H on the 

angle calculation. The results showed that H has only a subtle influence. The r was 

relatively higher when D was approximately 2.0~3.0 cm (Fig. 8), which was closer to the 

threshold height between branch points and node points when measured manually.
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Fig. 8. Parameter sensitivity analysis of the branch angle calculation according to the angle calculation 

accuracy (r). The title of each subplot denotes the value of parameter D. The horizontal and vertical 

coordinates of each subplot represent the parameters H and N, respectively.

Discussions

Automatic, accurate, and robust branch detection and angle calculation

This study proposed an accurate method (SCAG) for branch detection inspired by the 

growth laws of plants. The proposed SCAG is accurate in most cases (Fig. 6; Table 1). 

Some underdetection cases were mainly caused by missing data due to overlapping (Fig. 

6c), too short branches (Fig. 6d), or too large branch angles that do not obey the principle 

based on the upward growing angle (Fig. 6e-f). On the other hand, overdetection cases are 

rare unless excessive noise points exist.

In addition to high accuracy, the proposed SCAG method is not very sensitive to 

parameter N within the range of 20 to 140 or parameter D within the range of 1.5 cm to 4.0 

cm, and it is affected by parameter H (i.e., slice height in branch detection). (Fig. 7). If H 

is too large, a slice layer may include multiple node points, resulting in a lower recall (Fig. 

7a). If H is too small, a slice may have too few points, which may be considered noise 

during the clustering process, thus reducing precision (Fig. 7b). Theoretically, the proposed 

SCAG method should be robust because it detects branches based on the logic of branch 

growth based on clustered median points instead of considering every point. This 

robustness of the median points has been discussed in previous studies (Jin et al., 2019; 

Wang et al., 2023). In practice, the parameter H should be set to approximately two times 

the branch diameter according to the sensitivity analysis (Fig. 7). Parameter D is suggested 

to be consistent with manual measurements (Fig. 8). The parameter N is insensitive and 

can be set by simple pretesting (Fig. 7).

The proposed SCAG outperforms the SVM and DB methods (Table 2) because it is 

difficult to define a feature set for SVM and a robust density threshold for the DB method, 

given a sparse, unordered, and unstructured point cloud. In the DB method, the reason for 

the low angle detection rate is that the density of the point cloud is uneven. In the SVM 

method, the handcrafted features are also experienced and may not be optimal, thus 
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resulting in a low branch detection rate. Despite the rapid development of deep learning 

methods (Jin et al., 2018; Guo, Q et al., 2020; Jin et al., 2020b; Li, D et al., 2022; Xu & Li, 

2022), they have high requirements for building large-volume, well-labeled, and rich-

diverse datasets.

Extensibility analysis of the proposed SCAG algorithm

The transferability of an algorithm is crucial for ensuring its widespread application. 

The proposed SCAG algorithm was therefore evaluated with an open-source point cloud 

dataset, namely, Pheno4D (Schunck et al., 2021), to show its general applicability. The 

Pheno4D dataset contains point clouds of two different kinds of crops, i.e., maize and 

tomato. Maize is a monocotyledonous crop that has a relatively simple structure due to its 

asymmetrically distributed leaves along a single stem. In contrast, tomato is a 

dicotyledonous crop that has a much more complex structure than soybean, such as 

multiple branches around the main stem. This work selected six different maize and six 

different tomato point clouds to evaluate the transferability performance of the SCAG 

algorithm.

As expected, SCAG works well for maize (parameter setting: H=20; N=100; D=30) 

and tomato (parameter setting: H=5; N=120; D=8) varieties (qualitative results in Fig. S11). 

The accuracy of the leaf/branch angle calculations was high for maize (r=0.95) and tomato 

(r=0.94), thus demonstrating its effectiveness across multiple crop types (Fig.11). The 

predicted angle values show an overall overestimation in maize, which is mainly caused 

by the adhesion between the leaf sheath and stem of corn, resulting in the predicted node 

points being at higher positions than the manually measured node points (Fig. S11).

Therefore, SCAG can be applied not only to soybean for branch angle-related trait 

extraction but also to other crops, such as maize and tomato, thereby improving 

architecture-related breeding applications (van Esse, 2022; Wang et al., 2022). Through a 

better understanding of how plant architecture affects light penetration, air circulation, and 

disease susceptibility, breeders can design new varieties that maximize the yield, quality, 

efficiency (Coupel‐Ledru et al., 2022), and tolerance potential of crops in various 
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environments (Guo, W et al., 2020), contributing to global food security and agricultural 

innovation in the future.

Fig. 9. The quantitative results of leaf/branch angle calculations obtained by using the proposed SCAG 

algorithm on six (a) maize and (b) tomato point clouds.
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The application value of the SCAG algorithm in ideal soybean type selection 

Selecting ideal soybean types is a key step for breeding applications. To construct new 

traits for ideal soybean type selection, we first extracted four basic three-dimensional 

phenotypes from all 405 varieties in both years, including the average angle (computed by 

SCAG), canopy width, height, and stem length (Supplemental Materials S5). In this study, 

we noted that there was an inconsistency of phenotypes between the two replications. This 

inconsistency may be caused by data scanning. One main reason was that the individual 

plant structure can be damaged when it is transported from the field to the indoors for 

scanning. The other possible reason is that the scanner has a point resolution of 

approximately 2 mm, which makes it challenging to characterize thin branches and small 

stems, especially under occlusions. Therefore, data quality control was conducted based on 

the basic traits before constructing the new traits. First, if a variety had no sample in any 

replication of two years, it was removed. Second, the consistency of traits between two 

replications in each year was evaluated based on stem length because it had high accuracy 

(Fig. S7) and was insensitive to plant posture (e.g., tilted or not). If the relative error (Park 

& Stefanski, 1998) of the stem length between two replications was greater than 30%, the 

variety was excluded. After data quality filtering, 96 varieties were retained for 2021, and 

76 varieties were retained for 2022. Finally, 55 common varieties from both years were 

identified for further trait exploration.

Second, 11 composite indices were constructed to evaluate density tolerance based on 

basic traits, including the CHR (ratio of canopy width to height, a classic density tolerance 

index), CLR (ratio of canopy width to stem length), LHR (ratio of stem length to height), 

CAR (ratio of canopy width to average angle), AHR (ratio of average angle to height), 

ALR (ratio of average angle to stem length), ANR (ratio of average angle to angle number), 

ACHR (product of average angle and CHR), ACLR (product of average angle and CLR), 

ANRCHR (product of ANR and CHR) (Supplemental Materials S6). Smaller values for 

these composite indices meant that the plant looks more compact and should be useful for 

screening potentially density-tolerant varieties.

The single-year H2 (Visscher et al., 2008; Zang et al., 2023)was calculated for the 96 

varieties in 2021 and the 76 varieties in 2022, while the multiyear H2 was computed for the 
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55 varieties across the two years. Moreover, two-way analysis of variance (ANOVA) 

revealed significant differences among varieties for different traits, suggesting the presence 

of distinct plant types among our materials (Table S2). To better reveal the ability of traits 

to describe the relative differences among varieties, we evaluated the consistency between 

the two years using the DTW (dynamic time warping) method based on the ranking results 

of traits for varieties (Muda et al., 2010). DTW offers a flexible alternative that does not 

require data to adhere to specific distribution assumptions and enables the repeatability 

assessment of trends despite overall differences in absolute (mean) values. A smaller DTW 

indicates better consistency between two sequences. All indices were normalized to the 

range of 0 to 1 using the min–max scaling method before calculating DTW. The DTW of 

two series of data may be influenced by their series order (the variety number in this study). 

However, the relative relationship between DTW and different traits was not influenced by 

the variety order (Table S3), making it suitable for comparing the repeatability of different 

traits across years. Overall, we expected to screen traits with higher H2 and smaller DTW, 

which should be more robust in evaluating the attributes of density tolerance across years 

and may be more valuable in future genetic applications.

Heritability (H2) and repeatability (DTW) analyses revealed that stem length and 

height had better H2 values than canopy width and average angle (Fig. 10). Notably, the 

relatively high H2 for stem length may be a result of data quality control. Moreover, 

different traits had similar repeatability between the two years, although the average angle 

had the best (smallest) DTW.
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Fig. 10. The repeatability (DTW) of various density tolerance indices across two years was compared for 55 

soybean types, and their heritability (H2) was assessed. Among them, H2
2021&2022 exhibited broad-sense 

heritability between the two years. H2
2021 showed broad-sense heritability in 2021. H2

2022 showed broad-sense 

heritability in 2022. The vertical axis of each subplot represents the normalized value of each index, and the 

horizontal axis represents the different soybean varieties.

The analysis of the 11 composite indices showed that the AHR and ALR were clearly 

better than the CHR in H2, while the ANR and CAR were similar to the CHR. All of these 

angle-related indices had similar repeatability to the CHR (i.e., similar DTW). In contrast, 

we found that the stem length-related traits LHR and CLR had lower heritability and worse 

DTW than the CHR for the selection of density-tolerant varieties (Fig. S8). Furthermore, 

composite indices can be further combined to construct other new traits that are marginally 

better than the CHR, such as the ACHR and ACLR (Fig. S9), but simple traits are usually 

preferred among useful traits in practice.
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Fig. 11. Comparison of the repeatability (DTW) of different composite density tolerance indices for 55 

soybean varieties in 2021 (red line) and 2022 (blue line) and assessment of their heritability (H2). H2
2021&2022 

showed broad-sense heritability between the two years. H2
2021 showed broad-sense heritability for 

2021. H2
2022 showed broad-sense heritability for 2022.

The application value of the SCAG algorithm holds great potential for enhancing crop 

development and agricultural productivity. One significant application of SCAG is its 

ability to screen for potentially ideal plant architecture. Different crops have distinct branch 

angle preferences, with some requiring more upright architecture to optimize light 

interception and promote yield production (Pearcy et al., 2005). This study explored novel 

angle-related traits (e.g., AHR and ALR) that have better heritability (higher H2) and 

repeatability (lower DTW) across years for evaluating density-tolerant varieties (Fig. 11). 

These novel traits hold potential value for selecting ideal plant types and screening 

germplasm resources (Ao et al., 2013; Liu et al., 2020; Wang & Wang, 2015; Moeinizade 

et al., 2020; Singh et al., 2020; Basu & Parida, 2023).
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Contributions and implications

This work proposed a biologically inspired method for soybean branch detection and 

angle calculation based on point clouds. The proposed SCAG method incorporates the 

idea of logical judgment based on continuous changes in the number of branches and 

stratification, clustering, and growth technologies. The proposed SCAG achieves high 

branch angle calculation accuracy (r=0.84) and outperforms two other branch angle 

extraction algorithms. Moreover, the proposed SCAG is insensitive to hyperparameters 

and is suitable for other crops, such as maize and tomato. Moreover, the SCAG-predicted 

angles are valuable for selecting heritable and repeatable traits to identify density-tolerant 

varieties. Additionally, diverse datasets (Soybean3D) and source code, such as for deep 

learning-based branch detection, are publicly available for future studies.

Despite the aforementioned contributions, this work also reveals some implications to 

be considered in future studies. These implications primarily revolve around data collection 

and sample quality. First, point cloud data collection is time-consuming due to 

transportation and scanning. One way to improve the efficiency of 3D data acquisition is 

to use 3D reconstruction techniques from high-resolution images based on new techniques, 

such as neural radiance fields (Mildenhall et al., 2021), which is much less expensive but 

still challenging in the field. Second, the point cloud accuracy needs to accurately describe 

the branch thickness. It is worth further exploring how point cloud quality affects the 

performance of a geometry-based method. In addition, missing data problems are common 

due to factors such as leaf occlusion, which can be alleviated by introducing data 

reconstruction algorithms, such as 3D model-based methods (Pound et al., 2014; Kar et al., 

2015) and 3D geometry-based methods (Furukawa & Hernández, 2015; Verbin & Zickler, 

2020), during the data preprocessing steps. The underdetection of flattened/broken 

branches may require a combination of upward and downward detection results or the use 

of state-of-the-art deep learning methods (Huang et al., 2020) that may have a better ability 

to capture long-range/global relationships of branches. The deep learning methods may 

also be beneficial for detecting small branch targets due to their multiscale feature 

embedding and attention mechanisms (Jin et al., 2020b; Li, D et al., 2022; Yu et al., 2022). 
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Third, the detected branches may contain petioles that are directly connected to the stem. 

Discriminating petioles and branches that are both connected to stems is challenging based 

on the precision of the current data. Once a plant point cloud containing leaves, petioles, 

branches, and stems can be collected completely, we could use graph theory and 

technology to discriminate among different organs (Li et al., 2020). Finally, although high-

throughput phenotyping has been widely used in genetic analysis, we should be careful 

about the impact of phenotypic measurement errors on genetic analysis, which are not only 

random effects but also may be partially under genetic control (Freitas Moreira et al., 2021; 

Morota et al., 2022).

Conclusions

Branch detection and angle calculations are important prerequisites for quantifying 

plant structure and selecting ideal plant types that are important for achieving the soybean 

Green Revolution. In this work, a novel algorithm (SCAG) for branch detection and angle 

calculation is proposed. The proposed SCAG algorithm achieves good results in terms of 

the recall (0.81), precision (0.73), and F-score (0.77) for branch detection, as well as r 

(0.84) for angle calculation. The proposed SCAG algorithm outperforms the SVM (F-

score=0.53) and DB (F-score=0.55) methods, while their angle calculation accuracies are 

similar. Additionally, the proposed SCAG algorithm has proven to be insensitive to 

parameter N within the range of 20 to 140 cm, as well as parameter D within the range of 

1.5 cm to 4.0 cm, which are used for node point detection and angle calculation, 

respectively. Although the proposed SCAG algorithm is affected by parameter H, the 

influence pattern is clear, and the optimal values are usually located around the branch 

diameter. Additionally, the generalization ability of the proposed SCAG algorithm for 

other crops was verified by selecting representative maize (r=0.95) and tomato (r=0.94) 

point clouds. Finally, we proposed new indices (i.e., AHR and ALR) for screening density-

tolerant soybean varieties using SCAG-predicted angles. While we emphasized the 

contributions of the proposed novel algorithm, we also hope to promote future studies that 

focus on data quality restoration and the development of artificial general intelligence 

algorithms by sharing our research dataset, algorithms, and software.
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