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Abstract

Salt stress poses a significant threat to global cereal crop production, emphasizing the need for a comprehensive understanding of
salt tolerance mechanisms. Accurate functional annotations of differentially expressed genes are crucial for gaining insights into the
salt tolerance mechanism. The challenge of predicting gene functions in under-studied species, especially when excluding infrequent
GO terms, persists. Therefore, we proposed the use of NetGO 3.0, a machine learning-based annotation method that does not rely on
homology information between species, to predict the functions of differentially expressed genes under salt stress. Spartina alternif lora,
a halophyte with salt glands, exhibits remarkable salt tolerance, making it an excellent candidate for in-depth transcriptomic analysis.
However, current research on the S. alternif lora transcriptome under salt stress is limited. In this study we used S. alternif lora as an
example to investigate its transcriptional responses to various salt concentrations, with a focus on understanding its salt tolerance
mechanisms. Transcriptomic analysis revealed substantial changes impacting key pathways, such as gene transcription, ion transport,
and ROS metabolism. Notably, we identified a member of the SWEET gene family in S. alternif lora, SA_12G129900.m1, showing convergent
selection with the rice ortholog SWEET15. Additionally, our genome-wide analyses explored alternative splicing responses to salt stress,
providing insights into the parallel functions of alternative splicing and transcriptional regulation in enhancing salt tolerance in S.
alternif lora. Surprisingly, there was minimal overlap between differentially expressed and differentially spliced genes following salt
exposure. This innovative approach, combining transcriptomic analysis with machine learning-based annotation, avoids the reliance
on homology information and facilitates the discovery of unknown gene functions, and is applicable across all sequenced species.

Introduction
To discern the potential functions of genes identified through
transcriptomic analyses, researchers often turn to functional
enrichment analyses employing tools such as the Gene Ontology
(GO) database. As the most comprehensive and widely adopted
model for describing gene functions, the GO database serves as a
cornerstone for functional annotation. When dealing with large
quantities of protein sequences, such as those generated from a
reference genome assembly for an uncharacterized species, the
typical approach involves analyzing protein sequence features to
predict functions based on sequence similarity to known proteins.
In the pursuit of accurate annotation, researchers often integrate
complementary data sources, including protein structure or
protein–protein interaction data [1, 2]. However, achieving precise
annotations on a whole-genome scale remains a formidable
challenge. One contributing feature is the exclusion of less
frequent GO terms, constituting ∼75% of all annotations in the
context of Critical Assessment of Functional Annotation (CAFA),
a standard for evaluating the accuracy of protein functional
annotation predictions [3].

Protein language models, falling under the umbrella of
machine learning (ML), leverage existing protein sequence
and structural information to establish a model through ML
algorithms. This model is then employed to predict the structure
and function of proteins with unknown characteristics. An
illustrative instance of this approach is the application of
the natural language processing paradigm of pre-training [4]
to construct self-supervised protein language models trained
on extensive sequence datasets [5, 6]. These algorithms are
specifically designed to predict protein structures and functions
by utilizing available protein sequences and structural data.
In the context of most protein language models, the primary
task involves predicting the next amino acid within a sequence,
generating protein embeddings that can subsequently be
generalized across various tasks [7]. Despite the widespread
creation of several protein language models, limited research
has been conducted in the field of molecular biology.

Halophytes, constituting ∼2% of terrestrial plants, have evolved
mechanisms to thrive in saline environments [8], employing
structures such as salt glands and salt bladders [9, 10]. Among
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Figure 1. Workflow of the NetGO 3.0 framework. A Input data types. B Training set, test set, and cross-validation process. C Model training, model
ranking, and GO term prediction. LR denotes logistic regression, KNN denotes k-nearest neighbor, and LTR denotes learning to rank.

these halophytes, Spartina alternif lora, a member of the Poaceae
family, stands out with its distinctive salt gland structure
and remarkable salt tolerance. It has developed a potent
salt exclusion system enabling its growth in extreme saline
conditions [11], and thus in coastal mudflat areas and other
saline alkali lands. Spartina alternif lora’s salt tolerance, driven
by its unique adaptations, positions it as a promising candidate
for enhancing salt tolerance and yield in crop species through
genetic engineering. Previous studies, exemplified by the ectopic
expression of SaADF2, SaSRP3-1, or SaVHAc1 in rice (Oryza sativa
L.), have demonstrated the potential of S. alternif lora genes
in improving salt tolerance and increasing yield [12, 13]. As
salt tolerance becomes increasingly critical for crop genetic
improvement in response to dynamic environmental changes,
understanding the molecular underpinnings of S. alternif lora’s
high salt tolerance is imperative.

Despite the potential applications, the molecular mechanisms
governing S. alternif lora’s outstanding salt tolerance remain
largely unexplored. Recent years have witnessed the utilization
of transcriptomic profiles to uncover salt-responsive pathways
and genes in various plants. Transcriptomic analyses of Nitraria
tangutorum, rice, Arabidopsis thaliana, maize (Zea mays), and
Zygophyllum xanthoxylum have elucidated salt stress-responsive
genes and pathways, shedding light on the molecular intricacies
of the salt stress response [14–19]. Notably, transcriptome
sequencing emerges as a suitable approach to unravel the salt
tolerance mechanisms inherent in S. alternif lora.

Our research group has previously employed the deep learning
algorithm DeepGOPlus [20] to automatically extract sequence
and protein characteristics, facilitating the exploration of the S.
alternif lora genome for salt-responsive gene families, including
the high-affinity K+ transporter (HKT) family [21]. Experimental
validation of the SaHKT genes’ functions confirmed the accuracy
of our predictions. Despite these advances, a comprehensive
overview of the salt-responsive transcriptional landscape in S.
alternif lora has not been undertaken. In this study we utilized
publicly available S. alternif lora RNA-seq data [22] and aligned it
with our newly assembled S. alternif lora genome. Analyzing the S.
alternif lora transcriptome’s response to multiple NaCl concentra-
tions provided a thorough understanding of dynamic responses to

salt stress in this unique species. Leveraging an ML-based protein
annotation approach facilitated genome-wide GO analysis of salt-
responsive genes, revealing previously unidentified pathways in
the salt stress response. Our findings suggest that utilizing ML
models for GO annotation of newly assembled genomes could
enhance our understanding of functionality compared with rely-
ing solely on background files from other species for annotation.
Additionally, a comprehensive analysis of differential splicing in
response to salt stress was conducted to unveil the involvement
of post-transcriptional modifications and key splicing-associated
genes that contribute to the unique stress responses of this
halophyte. These analyses establish a robust foundation for
comprehending the molecular mechanisms associated with
stress responses in a highly salt-tolerant species, uncovering
candidate genes for future transgenic improvements in key
crop plants.

Results
Overview of the fundamental principles of NetGO
3.0
Figure 1 illustrates the overall framework of NetGO 3.0. The fun-
damental concept of this model is to integrate seven component
methods within a learning-to-rank (LTR) framework to enhance
the performance of automatic function prediction (AFP). Prior to
testing proteins, NetGO 3.0 must be trained using a vast collec-
tion of instances, which consist of protein sequences, their net-
work information, and associated ground-truth GO annotations
(Fig. 1A). Additionally, cross-validation is employed to partition
the training and testing sets (Fig. 1B). The seven components of
the model utilize their learned parameters to extract features
from the protein, resulting in a score feature vector of length 7.
For detailed information on the seven-component model, please
refer to previous studies [7, 23, 24]. Subsequently, candidate GO
terms are input into the LTR model, whose objective is to generate
an optimal ranking of GO annotations for all protein pairs in the
training data. The final output of NetGO for a query protein is
a ranked list of GO terms (Fig. 1C). This approach is applicable
to all sequenced species, enabling a deep understanding of their
biological functions. In this study we aim to utilize NetGO 3.0
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Figure 2. Features of salt glands and identification of DEGs in S. alternif lora under salt stress. A Coastal salt marsh environment with S. alternif lora.
Scale bar = 0.5 cm. B, C Representative images of leaf (B) and stem (C) of S. alternif lora in coastal salt marshes. Scale bars in B and C are 0.5 cm and
100 mm, respectively. D Leaf surface exudate composition from plants grown in a coastal salt marsh. E–G Root and shoot Na+ (E) and K+ (F) contents
and Na+/K+ ratios (G) in S. alternif lora seedlings (n = 5). Values are mean ± standard deviation. Different letters indicate significant differences at
P < 0.05 (Duncan’s multiple range test). H–J Unique and overlapping (H) DEGs, (I) upregulated DEGs, and (J) downregulated DEGs among three NaCl
treatments compared with the 0 mM NaCl control. (J) Summary of up- and downregulated DEGs after treatment with each salt concentration.

to explore the molecular mechanisms underlying salt tolerance
in S. alternif lora, thereby demonstrating the power of this ML
approach.

Salt stress triggers changes in salt glands and
ion content of S. alternif lora
Being a recretohalophyte, S. alternif lora exhibits typical salt glands
that actively secrete excess salt through secretory pores, leading
to the visible accumulation of salt crystals on the stem and leaf
surfaces of plants in coastal marshes of Dongying, Shandong
Province, China (Fig. 2A–C). To quantify ion concentrations in
leaf tissue, we conducted inductively coupled plasma mass
spectrometry (ICP-MS) analysis, revealing a notably higher Na+

concentration compared with other ions, with an average of
366.03 ± 12.87 g/kg (Fig. 2D). In contrast, K+ and Ca2+ exhibited
average concentrations of 10.55 ± 2.16 and 2.93 ± 0.49 g/kg,
respectively.

To investigate ion transport activity in S. alternif lora, we sub-
jected seedlings to increasing salinity, ranging from 0 to 800 mM
NaCl in a hydroponic medium over a 24-h treatment period. Our
analysis revealed a gradual increase in Na+ contents from 0 to

800 mM in root samples, with Na+ concentration consistently
higher in roots than in shoots across all NaCl treatments (Fig. 2E).
In contrast, K+ contents exhibited a significant decrease in roots
but showed no apparent change in shoots (Fig. 2F). Consequently,
Na+/K+ ratios progressively and significantly increased along with
escalating NaCl concentrations in both roots and shoots (Fig. 2G).
These findings underscore the impact of salt stress on ion trans-
port dynamics in S. alternif lora.

Salt stress significantly alters S. alternif lora’s
transcriptome
To unravel transcriptomic responses to environmental stress, we
conducted an analysis using transcriptomic data from a prior
study involving S. alternif lora seedlings subjected to 0, 350, 500, or
800 mM NaCl for 24 h, denoted as S0, S1, S2, and S3, respectively
[22]. The investigation revealed a total of 28 721 differentially
expressed genes (DEGs) across the three treatment groups, includ-
ing a core set of 2539 genes exhibiting differential expression in all
three groups (Fig. 2H). Among these, 1281 were upregulated and
1173 were downregulated at all three concentrations, while the
remaining genes displayed inconsistent directionality (Fig. 2I–J).
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Figure 3. Functional enrichment analyses of DEGs in response to salt stress. A, B GO enrichment analysis of DEGs in (A) S. alternif lora and (B) rice using
NetGO 3.0. C, D KEGG enrichment analysis of DEGs in (C) S. alternif lora and (D) rice under salt stress, displaying the 25 most enriched biochemical
pathways.

Notably, the total number of DEGs increased proportionally with
the salt concentration, resulting in 4034, 9507, and 26 600 DEGs in
S1, S2, and S3, respectively. This comprised 2004, 4371, and 12 449
upregulated DEGs and 2030, 5136, and 14 151 downregulated DEGs
in the respective groups (Fig. 2K). These findings underscored the
significant transcriptional changes induced by salt stress.

To explore potential similarities in gene expression patterns
between S. alternif lora and other plants under salt stress, we
conducted a comparative analysis of transcriptome data from rice
exposed to salt treatment in the same study [22]. Our comparison
revealed a total of 582 DEGs identified at 1, 5, and 24 h after
300 mM NaCl stress in rice (Supplementary Data Table S1).
To explore whether S. alternif lora and rice exhibit similar
expression profiles in response to salt stress, we aligned 28 721
S. alternif lora DEGs with rice DEGs, identifying 341 orthologs
(Supplementary Data Table S2). Of the 341 orthologous genes,
22 encode transcription factors (TFs), including ERF (ethylene-
responsive factor), NAC (NAM, ATAF1/2, CUC1/2), and WRKY,
among others, while 16 are annotated as functional proteins,
including those encoding SWEET (sugars will eventually be
exported transporter), PEBP (phosphatidyl ethanolamine-binding
protein), BBX (B-box zinc finger protein), and other proteins.

Machine learning uncovers critical biological
functions associated with salt tolerance in S.
alternif lora
To gain deeper insights into the specific functions of S. alternif lora
DEGs, we employed NetGO 3.0, an ML-based protein language
model, to identify commonalities in the annotations of 28 721 salt-
responsive DEGs in S. alternif lora and 582 salt-responsive DEGs in
rice in response to salt stress.

GO analysis highlighted significant enrichment of S. alternif lora
DEGs in various biological process terms, including ‘response
to stimulus’ (GO:0050896, GO:0009628, and GO:0051716), ‘salt
stress’ (GO:0009651), ‘ion transport’ (GO:0006811, GO:0030001,
GO:0006812, GO:0043269, and GO:0006813), ‘response to abscisic
acid’ (GO:0009737, GO:0071215, GO:0009738, and GO:0009787),
and ‘reactive oxygen species metabolism’ (GO:0072593,
GO:2000377, and GO:1903409) (Fig. 3A and Supplementary Data
Table S3). Similarly, rice DEGs were significantly enriched in
‘response to stimulus’ (GO:0050896, GO:0009628), ‘salt stress’
(GO:0009651), ‘response to abscisic acid’ (GO:0009737), and ‘reac-
tive oxygen species metabolism’ (GO:2000377 and GO:1901700)
(Fig. 3B and Supplementary Data Table S4), indicating shared salt
response pathways between the two species.
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Figure 4. Trend analysis of DEGs. The 28 721 DEGs in S. alternif lora responding to salt treatment were clustered into nine profiles, the displayed profiles
being the top six in terms of total number. Each row in the figure represents the clustering results for each NaCl concentration. Legends on the right
indicate the GO enrichment results for the corresponding profiles. The number above the upper left of each box denotes different trend clusters. The
number at the bottom of the box indicates the gene numbers enriched in this profile, and the number at the top of the box represents the P-value
significance of the cluster. Different colors in clusters 1, 2, 4, and 5 denote significant expression patterns (P < 0.05).

Further exploration using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database unveiled that S. alternif lora
DEGs were associated with 136 KEGG biochemical pathways
(Supplementary Data Table S5), primarily in metabolism,
especially specialized metabolite biosynthesis (e.g. ko01100).
While the relative enrichment factor differed between rice and
S. alternif lora, rice DEGs were also predominantly enriched in
metabolic pathways (Fig. 3C and D). These findings underscored
the functional annotation similarities between S. alternif lora and
rice under salt stress.

To validate the accuracy of the ML model, we performed
additional GO annotations using the homologous alignment
method. Aligning 28 721 DEGs from S. alternif lora to the rice
genome and conducting GO analysis for the best matches in the
rice genome revealed 12 986 rice homologs. These homologs were
mainly enriched in signal transduction pathways but did not
show enrichment in the biological processes of ‘ion transport’
or ‘salt stress’ (Supplementary Data Table S6). This comparison
highlights the necessity of employing methods, such as NetGO
3.0, that do not rely on homology to known genes for establishing
gene functions.

Trend analysis unveils dynamic changes in salt
stress-responsive genes
To comprehend the general expression patterns of DEGs in
response to salt stress in S. alternif lora, we employed the
Short Time-series Expression Miner software (STEM) pro-
gram to group genes with similar expression profiles across
treatment groups. The number of genes exhibited substan-
tial variation among clusters ranged from 8 to 18 184 per
cluster (Supplementary Data Fig. S1), excluding the cluster

containing only 1 gene. The expression patterns from dif-
ferent clusters demonstrated diverse variations (Fig. 4 and
Supplementary Data Fig. S1).

For the purpose of analyzing the common mechanisms under-
lying the expression patterns, we categorized the expression pat-
terns into three sets: late-up/down response (clusters 1 and 2),
transient up/down response (clusters 3, 4, 5, and 6), and grad-
ual up/down response (clusters 7 and 8). The late-up pattern
(cluster 1), characterized by genes upregulated in all salt treat-
ment groups, and peaking in S3, was the largest cluster, com-
prising 18 184 genes (Fig. 4). In contrast, 465 genes exhibited the
late-down pattern (cluster 2). Cluster 1 contained 63.31% of the
DEGs in S. alternif lora, indicating its dominance in gene expres-
sion in response to increasing salt concentrations. The transient
up/down clusters, featuring genes strongly induced in S2, also
encompassed a substantial number of genes (1195 and 569 in
the transient up [cluster 3] and transient down [cluster 4] groups,
respectively). The other two transient up/down clusters (clusters
5 and 6) comprised genes that were up- or downregulated in
S2, maintaining this regulation in S3. The gradual up cluster
(cluster 7) consisted of 14 genes, increasing in expression across
NaCl concentrations, peaking in S3. Similarly, cluster 8 included
eight genes consistently decreasing across salt concentrations,
reaching minima in S3 (Supplementary Data Fig. S1). These find-
ings indicated that higher salt concentrations exerted more pro-
nounced effects on these genes. Overall, the clustering analysis
highlighted late upregulation and transient upregulation as the
dominant expression patterns.

To elucidate the primary biological processes and cellular com-
ponents affected by salt, we conducted a functional annotation
analysis of each cluster using NetGO 3.0. This analysis unveiled
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a diverse array of salt-affected GO categories (Fig. 4). Specifically,
clusters 1 and 5 (containing the majority of DEGs, which were
upregulated in S3) exhibited over-representation of stress signal-
ing terms, including pathways associated with hormones, reactive
oxygen species (ROS), and ion transport. These results correspond
to the GO analysis of the DEGs presented in Fig. 3A.

Salt stress triggers differential expression of
genes in S. alternif lora
To delve deeper into the expression and functional characteristics
of DEGs induced by salt in S. alternif lora, our focus shifted to
DEGs annotated as components of the salt stress response, ROS
metabolism, or ion transport in subsequent analyses.

Differentially expressed genes associated with the salt
stress response
A total of 364 DEGs associated with the GO term ‘salt response’
were identified in S. alternif lora (GO:0009651; Supplementary Data
Table S7). Among them were two genes involved in Na+ transport:
a sodium transporter gene (SA_11G296500.m1), with expression
levels negatively correlated with salt concentration, and an
Na+/H+ antiporter gene (SA_09G217800.m1), upregulated by high
salt concentrations (Fig. 5A). The expression patterns of these
genes closely resembled those of their homologs in rice following
salt exposure [25, 26]. Additionally, several Ca2+-dependent signal
transducer genes were identified, including genes encoding a
calcium-dependent protein kinase (CDPK), three calcineurin B-
like (CBL) proteins, and two calcineurin B-interacting protein
kinases (CIPKs), all of which showed significant differential
expression after exposure to high salt concentrations. Treat-
ment with 800 mM NaCl upregulated SA_05G178400.m1 (CBL),
SA_01G058100.m1 (CBL), and SA_04G194400.m1 (CDPK), and down-
regulated SA_12G365500.m1 (CBL/SOS2) and SA_05G305800.m1
(CIPK). Expression of SA_08G089800.m1 (stress-activated protein
kinase, SAPK) was positively correlated with salt concentration,
while the expression levels of SA_11G296500.m1 (HKT) and
SA_14G020900.m1 (MAPK) were negatively correlated with salt
concentration. A total of 27 TFs were identified as involved in
the salt stress response, the majority not showing differential
expression between S1 and S2. Among these, 19 were only
upregulated in S3. The bZIP SA_09G450000.m2 and the MYB
SA_05G161000.m1 exhibited positive and negative correlations,
respectively, with salt concentration (Fig. 5B).

Differentially expressed genes associated with reactive
oxygen species metabolism
A total of 142 DEGs associated with ROS metabolism were iden-
tified (Supplementary Data Table S8), with the majority being
secretory peroxidases (66 genes; Fig. 5C and D). Predominantly,
these were class III peroxidases (PRXs), known to contribute to
salt resistance by regulating peroxidase (POD) activity and ROS
contents in peroxisomes [27]. Most secretory peroxidases were
downregulated by salt stress, and only 12 were differentially
expressed across all three salt treatments. Additionally, six genes
associated with ROS scavenging were identified: four superoxide
dismutase (SOD) genes and two ascorbate peroxidase (APX) genes.
Among these, three SODs (SA_14G006500.m1, SA_24G002700.m1,
and SA_14G019200.m1) were downregulated by salt stress, while
both APXs (SA_07G250400.m1 and SA_27G136900.m1) were upreg-
ulated. Expression levels of genes encoding one stress-activated
protein kinase (SAPK) (SA_08G089800.m1) and one calmodulin-
like protein (SA_03G033600.m1) were positively correlated with
salt stress.

Differentially expressed genes associated with ion transport
In our analysis we identified 24 ion transporter genes among the
DEGs (Fig. 5E), including 6 HKTs, 10 high-affinity K+ transporters
(HAKs), and 8 zinc transporter genes (ZIPs). Among the HAKs,
SA_20G057900.m1 and SA_30G035700.m1 were downregulated
in S3, while all other HAK genes were upregulated in every
salt treatment. Only one HKT (SA_13G268800.m1) was upreg-
ulated in S3, as the other HKTs were downregulated in this
treatment group. We also identified salt-responsive voltage-
gated potassium channel genes, including cyclic nucleotide-
gated channel (CNGC), high-affinity K+/K+ uptake permease/K+

transporter (HAK/KUP/KT), gated outwardly-rectifying K+ chan-
nel (GORK), and stelar K+ outward-rectifying channel (SKOR)
(Supplementary Data Table S9). Some ZIPs and sugar transporter
genes (SLCs) involved in ion transport were also identified as
salt-responsive and underwent significant induction by high
salt. Nine mitochondrial carrier protein genes, crucial for ion
transporter function, were differentially expressed in response
to salt treatment; eight of these were upregulated, except for
SA_01G284900.m1. We found 45 members of the major facilitator
superfamily (MFSs) in the S. alternif lora genome, all of which
were induced by salt stress. Expression levels of the MFS genes
SA_01G111900.m1, SA_28G076500.m1, and SA_11G055300.m1
were positively correlated with salt concentration, whereas
SA_08G317700.m1 and SA_10G103900.m1 were negatively corre-
lated. These findings suggest that ion transport-based responses
to salt stress involve more than just Na+ and K+ transport,
and that various types of protein transporters may function
synergistically.

To validate the key DEGs, we utilized quantitative real-
time PCR (qRT–PCR) to confirm the expression of 14 randomly
selected DEGs (Fig. 5F). The results demonstrated that their
expression trends under salt stress were consistent with the
transcriptome data.

An S. alternif lora SWEET gene contributed to salt
tolerance
As previously mentioned, a total of 341 orthologs of S. alterni-
f lora were identified among the rice DEGs (Supplementary Data
Table S2). Despite the overall dissimilarity in expression patterns
of most orthologous gene pairs (Fig. 6A and B), 41 S. alternif lora
salt-responsive DEGs displayed similar expression patterns to
rice salt-responsive DEGs. These included 33 gene pairs with
upregulated expression and 8 gene pairs with downregulated
expression (Supplementary Data Table S2). To gain insights into
whether there are commonalities among these orthologous gene
pairs, we employed Grand Convergence to detect amino acid
convergent selection between these orthologous gene pairs. Inter-
estingly, we found convergent selection in an upregulated DEG in
S. alternif lora (SA_12G129900.m1) and its upregulated homolog in
rice (LOC_Os02g30910/OsSWEET15). Specifically, the S. alternif lora
gene SA_12G129900.m1, a member of the SWEET family, exhibited
convergent selection at amino acid position 166 (Fig. 6C). Multiple
sequence alignment revealed that this residue, histidine (H166),
was conserved in homologs across various species, including O.
sativa ssp. indica, O. sativa ssp. japonica, Z. mays (Zm00001eb180830),
Setaria viridis, Setaria italica, Panicum virgatum, and Populus tri-
chocarpa. However, other amino acids, including arginine (R), lysine
(K), and serine (S), were conserved among SWEET proteins in other
species (Fig. 6D).

SA_12G129900.m1 mapped to a region of S. alternif lora chromo-
some 12 (12.06–12.31 Mb) that had undergone a selective sweep
and showed synteny with the short arm of chromosome 2 in rice
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Figure 5. Expression patterns of DEGs with functional annotations ‘salt response’, ‘ROS metabolism’, and ‘ion transport’. A–E Expression patterns of
DEGs with the GO terms (A, B) ‘salt response’, (C, D) ‘ROS [reactive oxygen species] metabolism’, and (E) ‘ion transport’ in response to treatment with
various salt concentrations. The darker shades of blue indicate lower expression levels, while redder colors represent higher expression levels.
(F) qRT–PCR analysis of 14 DEGs in response to salt stress. The horizontal axis depicts the varying salt concentration treatments, specifically 0, 350,
500, and 800 mM, while the vertical axis represents the relative expression levels of these genes. The presence of different lower-case letters among
the treatments indicates statistically significant differences at a significance level of P < 0.05.

(Fig. 6E). Previous research demonstrated that salt stress signifi-
cantly induces OsSWEET15 in rice, modulating sucrose transport
and distribution [28]. Considering functional annotations, gene
conservation, and expression levels of SA_12G129900.m1 and its
orthologs, we propose that this gene is crucial for salt tolerance in
S. alternif lora.

Salt stress triggers alterations in
post-transcriptional levels in S. alternif lora
To comprehensively investigate the alternative splicing (AS)
landscape in S. alternif lora under high salt conditions, we screened
3548 salt-responsive AS events, corresponding to 2463 genes
(Supplementary Data Table S10). Genes undergoing salt stress-

responsive AS events were defined as differentially alternative-
spliced genes (DAGs), with 586, 716, and 2246 DAGs identified in
response to S1, S2, and S3 treatments, respectively. The distri-
bution of AS types was comparable between treatment groups,
with exon skip (ES) being the most abundant AS event type,
followed by retained intron (RI), alternative 3′ splice site (A3SS),
alternative 5′ splice site (A5SS), and mutually exclusive exon
(MXE) (Fig. 7A and B). Noteworthy DAGs included important S.
alternif lora salt-responsive genes (Supplementary Data Table S10),
such as TFs, ion transporters, and protein kinases.

Considering that Ser/Arg-rich (SR) proteins are crucial AS
regulators in plants [29], we investigated the expression levels and
AS of S. alternif lora SR genes in response to salt treatment. Only
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Figure 6. Convergent selection analysis of a SWEET protein in S. alternif lora and rice. A, B Expression patterns of orthologs in (A) S. alternif lora and (B) O.
sativa. C Probability of convergent changes in the SWEET protein sequence between S. alternif lora and rice. The red arrow denotes the position in the
protein sequence alignment where the divergence occurred (highlighted in red text). D Convergent amino acid change (from K/R/Q/E/V/L/T/S to H) in
SWEET shared by different species (highlighted in red) at the position indicated by a red arrow. E Comparative genomic analysis of syntenic and
conserved sequences in the 0.25/0.27-Mb region surrounding SA_12G129900.m1/LOC_Os02g30910.1 (red) in S. alternif lora and O. sativa ssp. japonica cv.
‘Nipponbare.’

seven SR genes were differentially spliced under salt treatment
(Supplementary Data Table S11), constituting 14.89% of all SR
genes in the S. alternif lora genome. This was fewer than the differ-

entially spliced SR genes observed in wheat and rice in response
to salt stress [30, 31], suggesting a limited effect of salt stress on S.
alternif lora SR genes. To explore the relationship between AS and
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Figure 7. Comparative analysis of DEGs and DAGs in response to salt stress. A Differential AS events in salt-treated compared with control plants.
B Differentially expressed AS genes in salt-treated compared with control plants. C Functional enrichment examination of DEGs and DAGs. The heat
map displays the enrichment factors of significantly enriched (P < 0.05) GO terms.

transcriptional regulation, we compared DEGs and DAGs in
response to salt stress. Among the DAGs, there were only 24,
41, and 95 DEGs at S1, S2, and S3, respectively, representing
0.59, 0.43, and 0.36% of all DEGs under these conditions
(Supplementary Data Fig. S2). Although AS is known to play
important regulatory roles in plants at the post-transcriptional
level in response to hostile environmental conditions, S. alternif lora
underwent relatively few post-transcriptional modifications
following salt stress compared with other characterized species.

To understand the biological functions of genes regulated by
AS and/or transcriptional modulation in response to salt stress,
GO enrichment analyses were performed. While transcriptional
activity appeared to be the primary driver of salt stress responses,
with very few GO terms enriched among the DAGs, some com-
mon terms related to plant development and stress responses
were enriched in both gene sets (Fig. 7C). Notably, key terms
enriched in the DEGs, such as ‘response to stimulus’, ‘response
to stress’, ‘response to salt stress’, ‘ion transport’, and ‘reactive
oxygen species metabolic process’ were not enriched in the DAGs.
Some GO terms common to both plant development and stress
responses were enriched in both gene sets (including the cellular
compartment terms ‘cell’, ‘cell part’, and ‘cytoplasm’). These
findings suggest that some salt-sensitive pathways in S. alternif lora
are subject to dual regulation at both the transcriptional and post-
transcriptional levels.

Discussion
Machine learning is a powerful tool for
annotating genes with Gene Ontology terms
Conventional GO annotation faces limitations due to its reliance
on existing annotation information, which is often derived from
experimental data available for only a subset of genes and
species. This complicates large-scale analyses and comparisons
across diverse species. ML offers a solution to these challenges

by integrating and comparing results from different experi-
mental datasets and annotations, enhancing the accuracy and
repeatability of annotation-based outcomes. In our study, we
employed the ML-based annotation model NetGO 3.0 to annotate
genes from the relatively under-studied species S. alternif lora. By
utilizing this ML approach, we are able to uncover previously
unrecognized biological narratives, and the method is applicable
to all sequenced species, making it highly usable for exploring
gene functions.

The enriched GO annotations for salt-responsive genes, iden-
tified through ML, predominantly encompassed biological pro-
cesses related to osmotic stress, signal transduction, and ion
transport. A comparison between the ML-based method and an
ortholog-based annotation method revealed substantial differ-
ences in enriched functions among salt-responsive DEGs. This
discrepancy suggests that GO annotations based on gene homol-
ogy may not accurately capture gene functions in the context
of salt stress response. Overall, the use of ML models for GO
annotation provides several advantages over traditional methods.
These include increased accuracy, the potential for automation,
and the ability to conduct large-scale annotations, such as whole-
genome annotations. These factors significantly enhance gene
annotation efficiency, enabling accurate annotations of entire
genomes, particularly for species that have not been extensively
characterized. In our study, the application of an ML-based anno-
tation model allowed us to effectively explore the salt-responsive
transcriptome of S. alternif lora, shedding light on the biological
processes associated with salt stress resistance in this uniquely
salt-tolerant species.

Salt stress triggers intricate transcriptional
changes in S. alternif lora
Transcriptional regulation plays a crucial role in enabling higher
plants to survive salt stress. However, understanding the key
genes and regulatory pathways that control plant growth and

D
ow

nloaded from
 https://academ

ic.oup.com
/hr/article/11/5/uhae082/7636586 by guest on 01 July 2024

https://academic.oup.com/hr/article-lookup/doi/10.1093/hr/uhae082#supplementary-data


10 | Horticulture Research, 2024, 11: uhae082

development at both the transcriptional and post-transcriptional
levels in salt-stressed halophytes remains limited. In this study,
our objective was to identify key salt-responsive genes in S. alterni-
f lora and to elucidate the molecular mechanisms involved in the
salt stress response. We employed transcriptomic and ML-based
gene annotation methods to achieve a comprehensive under-
standing of the salt stress response in this halophytic species.

Plants exhibit adaptive responses to various environmental
stresses, including salt stress, through the regulation of tran-
script levels in specific genes associated with osmotic stress,
signal transduction, transcriptional regulation, and ion trans-
port [32–35]. In our study, we aimed to identify the processes
involved in regulating salt stress responses, by analyzing the
GO terms of DEGs in S. alternif lora under varying levels of salt
stress. Notably, we observed distinct differences in the enriched
GO terms among salt-responsive DEGs in S. alternif lora compared
with well-characterized model plant species.

For instance, in A. thaliana, salt-responsive DEGs are primarily
associated with phytohormone pathways, transcriptional regula-
tion, general metabolism, energy production, and cell wall mod-
ification [36]. In maize hybrids, salt-responsive DEGs are mainly
linked to processes related to photosynthesis and redox reac-
tions [16]. However, in S. alternif lora, salt-responsive DEGs were
notably enriched in biological process terms such as ‘response
to stimulus’, ‘response to salt stress’, ‘ion transport’, and ‘ROS
metabolism’. This pattern aligns with the salt-responsive DEGs
observed in the alkaline-tolerant grass species Puccinellia nuttal-
liana, but diverges from the responses of rice, maize, and A.
thaliana to salt exposure [17, 37–39].

The distinct response in S. alternif lora may be attributed to its
natural habitat in saline environments, indicating evolutionary
adaptations that provide a greater basal capacity to cope with
external salt stress. This inherent capacity is further bolstered by
ion transporter genes, enhancing the plant’s ability to withstand
salt stress. Remarkably, we observed more complex changes in
S. alternif lora gene expression with higher salt concentrations
compared with lower concentrations. This complexity is reflected
in the increased number of DEGs, greater transcript diversity, and
activation of a larger number of pathways. However, the Na+

content of seedlings treated with 800 mM NaCl did not differ
significantly from those treated with 500 mM NaCl. This resilience
is attributed to S. alternif lora adaptive mechanisms enabling sur-
vival in high-salt environments. These mechanisms regulate ion
transporter activities, control ion absorption and excretion, and
modulate intracellular osmolality to balance external salt stress.
Therefore, halophytes maintain intracellular ion homeostasis
despite increasing external salt concentrations. Additionally,
gene expression changes do not always directly correlate with
altered ion content; some genes may respond to environmental
fluctuations without directly regulating ion homeostasis [11].
The findings suggest that the identification of key salt tolerance
genes in halophytes, such as S. alternif lora and P. nuttalliana,
may necessitate the application of more extreme experimental
conditions.

The expression of numerous calcium-dependent signaling
genes is modulated in response to salt stress. For instance,
upon exposure to high salt concentrations, CDPK, CBL, and
CIPK genes exhibited significant differential expression patterns,
with some genes being upregulated and others downregulated
(Fig. 4A). High doses of Na+ trigger changes in the expression
of Ca2+-dependent genes in cells due to shared transport and
signaling pathways with Ca2+ [40]. This occurs when Na+ enters
cells, competing with Ca2+ for binding sites, disrupting calcium

homeostasis. This modulation, such as changes in CBLs, affects
Ca2+ levels and enhances plant salt tolerance [41–43]. The
differential expression of these genes is complex, involving
multiple factors and mechanisms, likely as a cellular response
to maintain homeostasis under salt stress. For instance, CNGCs,
voltage-gated ion channels, form ABA-activated Ca2+ channels.
CNGC10 negatively regulates salt tolerance in Arabidopsis, while
AtCNGC19 and AtCNGC20 are upregulated in salinity stress [44,
45]. Microarray profiling in rice revealed differential expression
of cation/Ca2+ exchangers like OsCCX1, OsCCX2, and OsCCX3
under Ca2+ deficiency [46]. Global expression analysis showed
differential expression of Ca2+ transporter genes in salinity-
stressed rice [47]. In summary, Ca2+-dependent gene expression
varies under salt conditions.

In our comparative analysis of the transcriptomes of the halo-
phyte S. alternif lora and the non-halophyte rice after exposure to
salt stress, a homologous gene pair was identified with both mem-
bers showing upregulation: SA_12G129900.m1 and OsSWEET15.
Both genes belong to the SWEET family of transporters, known
for their involvement in various plant growth and developmental
processes, including senescence, seed and pollen development,
and grain filling in crop species such as rice and maize [48, 49].
However, the functions of SWEET transporters in abiotic stress
responses, particularly salt stress, have not been thoroughly char-
acterized. Our analysis revealed that SA_12G129900.m1 and its
rice ortholog OsSWEET15 underwent convergent selection during
evolution. This finding is consistent with evidence suggesting
convergent selection in other SWEET genes, such as ZmSWEET1b
in maize and its rice ortholog OsSWEET1b. ZmSWEET1b has been
shown to play a crucial role in maize plant development and
salt stress responses, potentially influencing the transcriptional
abundance of genes responsible for Na+ efflux from roots to the
rhizosphere [50]. Understanding the evolution of SWEET genes
among domesticated crop species provides valuable insights into
potential targets for molecular design breeding. This approach
aims to develop plants with optimized sugar transport activity
and enhanced salt tolerance.

Post-transcriptional modifications may not
effectively enhance salt tolerance in S. alternif lora
AS has emerged as a potential target for genetic manipulation
to regulate plant environmental fitness, given its role as a key
regulator of plant function. Developmental genes with stress-
induced spliceoforms have been identified as candidate AS genes
for this purpose, contributing to environmental stress tolerance
[29]. In the case of S. alternif lora, we conducted a comprehensive
analysis of its transcriptome in response to salt stress to identify
alternative forms of salt-responsive gene transcripts and assess
their potential for genetic manipulation. Our analysis revealed
a total of 3548 salt-induced AS events, corresponding to 2463
genes in S. alternif lora. Among these, seven SR genes, known to
regulate splicing events, exhibited distinct AS events in response
to salt stress. However, it is noteworthy that none of these
SR genes were differentially expressed after exposure to high
concentrations of salt. This observation aligns with similar
findings in salt-stressed cotton, suggesting a preferential regu-
lation of splicing regulators in plants at the post-transcriptional
level [51].

In addition to the known AS events, there is a likelihood of
numerous unidentified or unvalidated AS events that may play
a role in stress responses. For instance, a genome-wide AS anal-
ysis in rice identified 764 significant genotype-specific splicing
events under salt stress conditions [38]. In wheat, 1141 genes
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exhibited significant changes in AS after exposure to salt stress
[52]. Furthermore, in G. davidsonii 1287 and 1228 differential AS
events were identified in the roots and leaves, respectively [53].
However, the number of AS genes in S. alternif lora was compara-
tively lower than in other species under salt stress conditions. This
discrepancy could be attributed to the adaptation of S. alternif lora
to extreme saline environments, resulting in many salt-tolerance
genes being basally active rather than stress-responsive. Previous
studies have suggested that AS and transcriptional regulation are
parallel processes that operate independently in response to envi-
ronmental stressors. Little overlap has been identified between
DEGs and DAGs in response to biotic and abiotic stressors in A.
thaliana, wheat, and Nicotiana attenuata [52, 54–56]. Similarly, in S.
alternif lora, we found that only 0.36–0.59% of DEGs in response to
salt stress also underwent AS. GO enrichment analyses revealed
that several abiotic stress-responsive GO terms were significantly
enriched in DEGs, including ‘response to stimulus’, ‘response to
abiotic stimulus’, ‘response to stress’, ‘response to osmotic stress’,
and ‘response to salt stress’. However, very few of these GO terms
overlapped with those enriched in DAGs. Consequently, targeting
AS to enhance salt tolerance may not be a promising strategy in
S. alternif lora.

In conclusion, this study establishes a valuable framework
for the future investigation of key salt tolerance genes in a
model halophyte. Moreover, it underscores the significance of
ML-based annotation methods in accurately identifying gene
functions on a whole-genome scale, particularly in under-
studied species. Notably, the comparative transcriptomics
between S. alternif lora and more extensively characterized
model plant species unveiled a salt-responsive SWEET gene
that is subject to convergent selection. These findings present
a compelling set of candidate genes for potential use in genetic
enhancement of salt tolerance in key fast-growing crops, thereby
contributing to the advancement of sustainable food production
practices.

Materials and methods
Observation of salt glands and determination of
ion content
One-month-old seedlings underwent a 24-h exposure to diverse
NaCl concentrations. Ion contents (Na+, K+, and Ca2+) were deter-
mined in 0.1 g of seedling roots or shoots using an inductively
coupled plasma mass spectrometer (ICP-MS; SUPEC 7000 series,
Hangzhou, China). Ion content determination involved 10 biolog-
ical replicates. The ion content of salt crystals on the leaf surface
was also analyzed by ICP-MS, employing 10 biological replicates
of 0.1 g each.

Transcriptomic sequencing
The RNA-seq data utilized in this study (Bioproject accession
number PRJNA413596) were sourced from a previous report [22].
Transcriptomic data comprised raw datasets from 6-week-old S.
alternif lora treated with 0, 350, 500, and 800 mM NaCl for 24 h,
denoted as S0, S1, S2, and S3, respectively. Additionally, raw data
were derived from wild-type rice (O. sativa L. ssp. japonica cv.
‘Nipponbare’) plants treated with 300 mM NaCl for 1, 5, or 24 h.
Following quality control, trimming of adapter sequences, and
removal of low-quality reads, high-quality RNA-seq reads from
each library were aligned to our recently assembled S. alternif lora
reference genome or the O. sativa ssp. japonica genome (IRGSP-1.0)
using TopHat v2.0.14, following the parameters outlined by Kim
et al. [57].

Differentially expressed gene analysis,
expression clustering, and qRT–PCR validation
Gene expression values were computed in fragments per kilo-
base of exon transcript per million mapped reads (FPKM). Reads
uniquely mapped to reference sequences with no mismatches
were employed in the analysis of DEGs. DESeq2 was utilized to
classify genes as DEGs with thresholds of |log2(fold change)| ≥ 1
and a false discovery rate (FDR)-adjusted P < 0.01. Trend analysis,
aimed at categorizing genes with similar change characteris-
tic patterns within a changing trend, was conducted post-FPKM
calculation. Expression patterns were clustered using the STEM
[58] on the OmicShare platform (www.omicshare.com/tools). The
analysis considered general types of gene expression patterns
with a significance level of P < 0.05, and the number of trends was
chosen to be nine.

Samples of plants treated with varying concentrations of NaCl
(0, 350, 500, and 800 mM) were used for RNA isolation. Total RNA
was extracted using the Trizol method. RNA quality was evalu-
ated by agarose gel electrophoresis and quantity was determined
using a Nanodrop spectrophotometer. Reverse transcription was
performed using the Evo M-MLV kit to generate first-strand cDNA,
which was then diluted 10-fold and used as a template for qRT–
PCR. Specific primers were designed using NCBI Primer-BLAST
and qRT–PCR was conducted using the SYBR Green kit (Accurate
Biology, Changsha, China) following the manufacturer’s instruc-
tions. Each treatment had three biological replicates, and relative
expression was calculated using the 2−ΔΔCt method [59]. Results
were analyzed and visualized in Excel 2010 and significant dif-
ferences were analyzed using the LSD test at P < 0.05. Primers
were synthesized by Sangon Biotech (Shanghai) and sequences
are provided in Supplementary Data Table S12.

Transcription factor prediction and Gene
Ontology enrichment analyses
To identify TFs among the DEGs in S. alternif lora, each DEG was
employed as a query in a BLAST search against the Plant Tran-
scription Factor Database (PlantTFDB) using a threshold of E-
value <10−5. DEGs were annotated with the protein language
model NetGO 3.0 [7], following the method described in the source
article, with all parameters set to the default threshold of the pro-
gram. Annotations were categorized as enriched in specific gene
sets at P < 0.05 (Fisher’s exact test) and an enrichment threshold
of ≥1.5-fold higher than the background (the whole genome).

Phylogenetic and convergent selection analyses
The protein sequences of various species were obtained from
the Phytozome database. These sequences underwent alignment
using T-Coffee [60]. Subsequently, the alignments were utilized
to construct a phylogenetic tree in MEGA 7 [61] employing the
neighbor-joining (NJ) method with 1000 bootstrap replicates. The
protein sequence alignments and the phylogenetic tree served
as input for Grand Convergence [62], a program that estimates
the posterior number of convergent and divergent substitutions
shared by all pairs of branches in the phylogenetic tree to identify
convergent amino acid changes. Predicted convergent sites,
classified as those with a probability >0.99, underwent manual
examination to identify amino acid mutations shared by specific
S. alternif lora genes and their orthologs. Utilizing the full-length
transcripts from S. alternif lora and rice as input, a collinearity
analysis was conducted in MCScanX with BLASTP v2.8.1, employ-
ing the following parameters: -evalue e-10 -num_alignments
5-outfmt 6.
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Alternative splicing detection and identification
of salt stress-responsive alternative splicing
events
rMATS v4.0.2 [63] was employed for the detection of differential
alternative splicing (DAS) from replicate RNA-seq data. This pro-
gram models exon inclusion levels while simultaneously evalu-
ating the uncertainty of individual replicates and the variability
between replicates, resulting in highly accurate validation of DAS
events between conditions. The input for this analysis included
RNA-seq BAM files and the GTF file containing the S. alternif lora
reference genome. Various types of AS events (A3SS, A5SS, ES,
RI, and MXE) were statistically validated with an FDR threshold
of 0.05 to identify differences between isoform ratios.
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