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Deep learning and multimodal remote and proximal sensing are widely used for analyzing plant and crop 
traits, but many of these deep learning models are supervised and necessitate reference datasets with 
image annotations. Acquiring these datasets often demands experiments that are both labor-intensive and 
time-consuming. Furthermore, extracting traits from remote sensing data beyond simple geometric features 
remains a challenge. To address these challenges, we proposed a radiative transfer modeling framework 
based on the Helios 3-dimensional (3D) plant modeling software designed for plant remote and proximal 
sensing image simulation. The framework has the capability to simulate RGB, multi-/hyperspectral, thermal, 
and depth cameras, and produce associated plant images with fully resolved reference labels such as 
plant physical traits, leaf chemical concentrations, and leaf physiological traits. Helios offers a simulated 
environment that enables generation of 3D geometric models of plants and soil with random variation, 
and specification or simulation of their properties and function. This approach differs from traditional 
computer graphics rendering by explicitly modeling radiation transfer physics, which provides a critical link 
to underlying plant biophysical processes. Results indicate that the framework is capable of generating high-
quality, labeled synthetic plant images under given lighting scenarios, which can lessen or remove the need 
for manually collected and annotated data. Two example applications are presented that demonstrate the 
feasibility of using the model to enable unsupervised learning by training deep learning models exclusively 
with simulated images and performing prediction tasks using real images.

Introduction

Remote and proximal sensing of plant systems enables non-
intrusive monitoring of plant architecture, composition, 
and biophysical state with high-throughput [1–4]. Advances 
in modern remote and proximal sensing technology have 
resulted in an abundance of high-resolution images and sen-
sor data of natural and managed vegetation systems, which 
have the potential to provide comprehensive insights into 
plant function, to accelerate and broaden modern breeding 
pipelines, and to provide actionable information to managers 
[4–6]. Multi- and hyperspectral imaging has emerged as a 
promising sensing mode, as it can quantify plant character-
istics not visible to the eye by detecting interactions between 
radiation and plant tissues [3]. Analyzing spectral signatures 
of reflected radiation contained in images has enabled applica-
tions in plant high-throughput phenotyping and horticultural 

management such as citrus greening detection [7], measure-
ment of canopy structure, and biochemical properties of crops 
[8], assessing leaf traits including chlorophyll, water, dry mat-
ter, and nitrogen content [1,2], yield estimation [9,10], and 
interactive effects of water and nitrogen in irrigated horticul-
tural crop production [6], among many others. Visible imag-
ing is a much more accessible but limited optical sensing 
technique that can be regarded as a form of multispectral 
imaging with only 3 bands in the visible region of the elec-
tromagnetic spectrum. It is most useful for detection tasks 
commonly done visually by humans such as plant counting, 
growth monitoring, and the identification of disease symp-
toms [2,11], but has limited capability for quantifying bio-
chemical properties or physiological processes. Many previous 
studies have combined visible with multispectral [8,10], ther-
mal [12], or depth imaging [13–15] for high-throughput plant 
phenotyping.
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Despite the promise of remotely sensed data to enable reli-
able, high-throughput measurement of plant traits and func-
tion, linking remote and proximal sensing imagery to plant 
traits useful for decision-making has remained a challenge. At 
its core, remote sensing is a radiative transfer problem, which 
has led to the development of an incredibly wide array of radia-
tive transfer models aimed at better interpreting remote sensing 
data [16,17]. Early models were simple enough that they could 
accept remote sensing data as input and be directly inverted for 
plant traits of interest [16,18]. Models have evolved to become 
highly complex such that they can fully resolve vegetation geom-
etry in 3 dimensions and represent relevant modes of radiation 
transfer across its spectrum [17,19,20]. However, their complex-
ity makes them difficult to invert based on remote sensing data 
inputs, and these methods are constrained by the absence of 
direct connections to plant biophysical processes, which play 
a crucial role in determining how photons interact with plant 
tissues.

In the absence of detailed, physically based models to facili-
tate automated trait extraction from remotely sensed imagery, 
a popular alternative has been the use of computer vision tech-
niques, which have been revolutionized in recent years by rapid 
advances in machine learning [5,7]. However, the most widely 
used machine learning models, including deep learning mod-
els, are supervised and require an exceptionally large amount 
of high quality and often manually annotated data for model 
training, which necessitates expert knowledge and remains 
tedious and time-consuming (or impossible depending on the 
trait). For instance, image annotation for wheat spikelet and 
ear counting is typically done manually [21], and manual selec-
tion of the canopy region of interest (ROI) is also required for 
many methods [7]. Additionally, the fusion of multimodal data 
also faces challenges when aligning images captured by differ-
ent sensors due to their physically distinct viewpoints and reso-
lutions [14,15].

Although several publicly available annotated image datasets 
for agricultural applications are available for machine learning 
model training and other plant phenotyping applications, such 
as the Annotated Crop Image Dataset [21], Michigan State 
University Plant Imagery Dataset (MSU-PID) [13], AgML [22], 
and KOMATSUNA dataset [15], these data repositories are not 
sufficiently broad to capture the extensive variability that exists 
within agricultural machine learning tasks. The limitations of 
machine learning approaches become evident with small and 
low-variation datasets, as they can lead to severe overfitting, and 
the resulting models are often not readily transferable across 
different light conditions, species, or phenotyping platforms, 
revealing a lack of generalization and posing a substantial risk 
of extrapolation errors [2,22]. Past researchers have utilized data 
augmentation methods like random cropping, scaling, rotation, 
and flipping in the spatial domain [21,23], and introduction of 
random variations in mean offset and slope of the spectral reflec-
tance [24]. However, in many cases, these methods insufficiently 
describe the variation of sample distributions caused by changes 
in plant species, lighting conditions, or sensors.

This work presents a novel 3-dimensional (3D) radiative 
transfer modeling framework for simulation of visible, multi-/
hyperspectral, depth, and thermographic imagery that can be 
readily coupled with machine learning models for inversion 
based on flexible, automated image annotation (Fig. 1). This 
allows the machine learning model to effectively serve as an 
inverter of the 3D model. The radiation model is an extension 

of the Helios 3D plant modeling software [25], which enables 
direct coupling of the radiative transfer simulations with the 
biophysical simulation capabilities of Helios, such as photosyn-
thesis, transpiration, energy transfer, etc. The automated anno-
tation capability can mitigate the high cost of obtaining large 
datasets for training machine learning models, enable a wide 
parameter space to be incorporated within machine learning 
model training, and enable high-throughput phenotyping of 
traits that may be impossible to measure or “annotate” at scale 
[26]. In comparison to other radiative transfer-based image 
synthesis models, such as the LargE-Scale remote sensing data 
and image simulation framework (LESS) [20] and the Discrete 
Anisotropic Radiative Transfer (DART)-Lux model [27], the 
current framework can perform simulations of radiation trans-
port on both large and small scales for plants while providing 
both geometric and biophysical annotations. The main com-
ponents of the present image synthesis framework consist of 
4 modules:

1. Ray-tracing model: a graphics processing unit (GPU)-
accelerated “reverse” ray-tracing method [19] computes the 
distribution of absorbed, transmitted, reflected, and emitted 
radiation for all geometric objects in the domain based on light 
sources with arbitrary spectral flux distribution. A camera sen-
sor is simulated by calculating the radiative flux recorded by 
each camera pixel based on its intrinsic and extrinsic properties, 
which produces final synthetic images.

2. Automated image annotation: Every pixel in the simulated 
images can be automatically annotated based on arbitrary iden-
tifiers assigned to geometric elements in the scene, or based on 
any biophysical variable computed in Helios (e.g., net photo-
synthetic flux, transpiration flux, stomatal conductance, and 
chemical compound concentrations).

3. Camera calibration model: a calibration procedure is 
developed to specify the camera spectral response and recov-
ery of image distortion based on calibration images captured 
by real-world target cameras.

4. Leaf optics model: The PROSPECT model [28,29] is used 
to simulate the optical properties of leaf tissues according to 
the concentration of specified compounds such as chlorophyll, 
carotenoids, and water, which themselves may be determined 
by coupling with Helios biophysical models.

In this paper, we present the principles and verification of the 
above modules. Examples of synthetic plant images along with 
their corresponding labeling maps are provided, along with 2 case 
studies examining the utility of incorporating synthetic imagery 
into machine-learning-based plant phenotyping. The framework 
has been incorporated into the Radiation plug-in of the Helios 
modeling software (v1.3.0), available for free download at https://
github.com/PlantSimulationLab/Helios. Documentation can be 
found at https://baileylab.ucdavis.edu/software/helios/.

Methods

Model geometry
3D meshes of planar primitive elements form the basis of geo-
metric objects contained within simulated domains (object 
geometry in Fig. 1). The Helios modeling software provides a 
means for generation and manipulation of fully resolved 3D 
geometric models of plants, the ground, or other objects [25]. 
Plug-ins included within Helios can be used to quickly create 
procedurally generated models with random variation within 
a prescribed range for different types of plant geometries such 
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as bean, strawberry, sorghum, and walnut trees, as well as a 
ground surface made up of multiple textured patches. The leaf 
geometry is formed using triangular or rectangular primitive 
elements, which can be masked using the transparency channel 
of a PNG image file to create planar elements with any desired 
shape. The procedural models have user-defined geometric 
parameters such as canopy height, leaf size, leaf area index 
(LAI), and leaf angle distribution, which allows for easy cus-
tomization of the specifics of the canopy, and can be used as 
labels for output images in both large and small scales. Helios 
can also import external geometries from standard polygon file 
formats (such as “.ply” and “.obj”). Geometry added to the scene 
can be referenced based on their unique identifiers in order to 
assign their spectral radiative properties.

Ray-tracing model description
Overview
Simulated images are generated and labeled by fusing a camera 
model with the existing radiation transfer model in Helios [19]. 
In a first pass, the distribution of absorbed, reflected, transmit-
ted, and emitted radiation for all primitive elements in the scene 
is computed for a single scattering iteration (i.e., single scatter-
ing or emission instance) based on the ray-tracing method 
proposed by Bailey [19]. A ray-tracing-based camera model is 
then used to sample the reflected and transmitted energy for 
every camera pixel across all wave bands. Scattering iterations 
continue for multiple scattering instances, and the camera con-
tinues accumulating scattered radiation until the amount of 
remaining scattered radiation becomes arbitrarily small. The 

camera also uses ray-tracing to determine primitive elements 
contained within each pixel, which is then used for image label-
ing. The reverse ray-tracing approach utilized in this study for 
emission and scattering ensures adequate ray sampling in the 
presence of complex geometry with very small and skewed 
primitive elements [19].

Details on each of these components of the model are given 
in the sections below.

Radiation sources and surface radiative properties
Radiation originates in the scene due to 8 potential sources: 
(a) collimated solar radiation, (b) radiation emanating from a 
sphere with the same radius and distance from Earth as the 
Sun (thus incorporating penumbral effects), (c) diffuse solar 
radiation with specified angular distribution, (d) a terrestrial 
spherical source (e.g., a light bulb), (e) a terrestrial disk-shaped 
source emitting radiation from one side (e.g., halogen lamp), 
(f) a terrestrial rectangular-shaped source emitting radiation 
from one side (e.g., an LED array), (g) longwave radiation 
emitted by terrestrial objects (i.e., primitives), and (h) diffuse 
longwave radiation emitted by the sky. We classify source types 
a to f as “external” radiative sources, and types g and h as 
“longwave” radiative sources. Each radiation source is defined 
based on its emitted flux integrated across each radiation band 
considered in the model, its position/orientation, and its spec-
tral distribution (for external sources only). Emission from 
spherical external sources is isotropic, and emission from pla-
nar external sources follows a cosine distribution. The spectral 
distribution of longwave sources is not considered explicitly, 

Fig. 1. Schematic representation of the synthetic imagery generation framework. A ray-tracing-based camera model is used to simulate radiation propagation that is emitted 
from a source (e.g., sun and LED light) and reaches the camera after being scattered by objects in the scene. Spectral distributions of radiation source fluxes, object reflectivity 
and transmissivity, and camera response are specified to define how radiation interacts with object surfaces and the camera sensor. The PROSPECT-based leaf optical model 
can generate the leaf optical properties according to the user-specified chemical concentrations of leaves. Finally, the simulated camera generates resulting images that can 
be arbitrarily auto-annotated.
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as their fluxes are specified from the integral over all longwave 
wavelengths based on their temperature according to Stefan–
Bolzmann law.

Before running the ray-tracing model, a reflectance (ρλ) and 
transmittance (τλ; if applicable) spectrum is assigned to each 
primitive in the scene. These surface spectra are then integrated 
over each user-defined spectral band in the standard way [30] 
to yield the total reflectivity (ρ) and transmissivity (τ) for each 
band. These values are used in the calculation of radiative 
exchange between objects in the scene via scattering as described 
previously by Bailey [19].

For radiation exchange between objects and the camera, 
different integrated surface radiative properties are used that 
account for the spectral sensitivity of the camera sensor. The 
surface reflectivity ρo and transmissivity τo used for radiation 
scattered to the camera sensor is calculated based on the speci-
fied surface spectral radiative properties mentioned above, and 
the camera spectral response for each band as follows:

where λ refers to the wavelength; λmin and λmax represent the 
lower and upper bounds, respectively, of the selected waveband; 
and ρλ, τλ, and Sλ are the spectral reflectivity, spectral transmis-
sivity, and radiation source flux at wavelength λ, respectively. 
ρλ, τλ, and Sλ can be manually measured by using spectroscopic 
devices, or by consulting available spectral libraries such as the 
Ecological Spectral Information System [31]. Cλ is the normal-
ized spectral sensitivity of the camera sensor for a given wave-
length (e.g., Cλ = 1 means that the camera can detect 100% of 
incoming radiation at that wavelength). To reduce computational 
complexity, the integration is performed in a pre-processing 
step, and ρ, τ, ρo, and τo for each primitive are stored in GPU 
memory during ray-tracing.

A limitation of this ray-tracing model is that the incident 
spectral energy flux distribution is calculated based on that 
emitted by the source, Sλ, which may be different from the 
actual spectral flux reaching a leaf if there is multiple scattering. 
This loss of accuracy for multiply scattered radiation is a com-
promise in favor of efficiency gained by the reverse ray-tracing 
approach.

Simulated camera
A thin-lens camera model [32] is employed to sample radiation 
that is reflected, transmitted, or emitted from geometric elements 
based on radiation fields computed by the radiative transport 
model described in Discussion (Fig. 2). A thin-lens camera 
model can represent perspective and focus, but does not explic-
itly represent lens distortion. The model represents distortion 
through a calibration process outlined in Discussion. The user-
specified parameters for the camera model are the horizontal 
field of view (HFOV), image resolution, lens diameter, focal 

plane distance, sensor size, the position of the camera, and the 
orientation of the camera. The goal of the model is to estimate 
the radiative flux sensed by each pixel in the simulated camera 
over a given wave band.

The camera model launches rays from simulated camera 
pixels in a pattern that reproduces image perspective and focus 
consistent with the camera input parameters listed above. In 
order to determine the origin and direction of these rays, the 
model considers 3 parallel planes: image plane, lens principal 
plane, and focal plane. The image plane is subdivided into pix-
els, with physical size equivalent to the sensor size, and distance 
from the lens principal plane being determined by both the 
sensor width and the HFOV. The focal plane aligns with the 
image plane, and its size is a function of the distance between 
the image and the lens, the distance between the lens and the 
focal plane (focal length), and the sensor size. The vector origi-
nating from the center of the image plane and passing through 
the center of the lens and focal plane defines the camera viewing 
direction. The model selects a predefined number of points on 
the lens based on jittered random sampling to compute the ray 
origin (pink point in Fig. 2). Simultaneously, it randomly sam-
ples an equal number of points on the pixel (red point) and 
calculates the corresponding points on the focal plane (yellow 
point). These focal plane points are determined by drawing 
lines (blue dotted line) through the sampled points on the pixel 
and the lens center. Then, the directions (red arrow in Fig. 2) 
of these rays can be determined from the points on the lens 
to the points on the focal plane. If an object is not located on 
the focal plane and the lens has a diameter greater than zero, the 
image will be blurred due to the point spread function. If the 
lens diameter is set to close to 0, the camera model will become 
a pinhole model. In this case, all objects, whether they are on 
the focal plane or not, will be in focus, and the simulated image 
will be sharp and free of blur.

Ray-tracing procedure to calculate camera pixel fluxes
Modeled pixel fluxes are calculated by combining the GPU-
accelerated reverse ray-tracing method for modeling overall 

(1)�o =
∫ �max

�min
�� C� S� d�

∫ �max

�min
S� d�

,

(2)�o =
∫ �max

�min
�� C� S� d�

∫ �max

�min
S� d�

,

Fig. 2. Schematic illustration of the ray-tracing-based method for camera simulation 
based on a thin lens model. Right panel: Radiation sources are sampled by each leaf 
surface element (solid black box) using a reverse ray-tracing approach to determine 
scattered radiation fluxes based on the model of Bailey [19]. Left panel: The camera 
model launches rays randomly sampled on the lens and passing through the focal 
plane, which queries scattered radiative fluxes and unique identifiers of surface 
element it hits.
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radiation transport [19] with the camera-based ray-tracing 
sampling described above. Rays are launched from randomly 
sampled locations on primitive element surfaces toward radia-
tive sources in the case of external sources, and in a hemispheri-
cal pattern in the case of longwave sources. Details on how the 
primitives and sources are sampled to determine the ray origins 
and directions are given in [19]. A flux value is assigned to the 
ray based on the intensity of the source being sampled for exter-
nal sources, or based on the emitted flux for longwave sources 
(and normalized by the number of rays per primitive) [19]. 
Some fraction of this ray energy is either absorbed by the primi-
tive, reflected, or transmitted. The reflected and transmitted 
radiation is stored in “to-be-scattered” buffers for each side of 
the primitive, one set based on ρ and τ, and another set based 
on ρo and τo corresponding to radiation scattered to the camera. 
In the current implementation, it is assumed that reflection and 
transmission are Lambertian, and thus all scattered energy is 
aggregated together in the buffers regardless of its incident angu-
lar distribution. Accordingly, specular reflection is also currently 
neglected. Unlike the previous radiation model implementation 
in Helios, in the latest implementation (v1.3.0), calculations are 
performed for all radiation bands simultaneously without sepa-
rate ray-tracing passes for each band, which reduces the model 
runtime considerably when there are many bands.

At this point, the camera ray-trace has not been performed 
and no energy has reached the camera—there is only energy 
residing in the “to-be-scattered” buffers for each primitive, 
which now needs to be sampled by the camera. The camera 
ray-trace is then performed to determine the amount of the 
“to-be-scattered” energy that reaches each camera pixel. If a 
camera ray intersects an object, its scattered energy (based on 
ρo and τo) is queried in order to determine the radiative flux 
sensed by the camera pixel. At the end of each scattering itera-
tion, the “to-be-scattered” buffers for all primitives are set to 0. 
This energy scattering process is then repeated, starting with 
the general radiative transport ray-trace to calculate “to-be-
scattered” fluxes, then the camera ray-trace to accumulate the 
additional scattered energy. This proceeds iteratively until the 
amount of scattered energy becomes arbitrarily small.

The result of the above calculation procedure is the sensed 
radiation flux for each pixel in the simulated camera for each 
wave band considered (in addition to absorbed radiative fluxes 
for each primitive element).

Radiation transfer model verification
The RAMI On-line Model Checker (ROMC, https://romc.jrc.
ec.europa.eu/_www/) was used to verify the modeled radiation 
transport among canopies and the radiation received by the 
simulated camera sensor. ROMC [33] provides a means for 
assessing the accuracy of user 3D radiation transfer models by 
comparing them against reference models selected during the 
third phase of the RAdiation transfer Model Intercomparison 
(RAMI) exercise [34]. ROMC advises using results from its 
“validate” mode for the assessment of a model’s performance 
in scientific research. Accordingly, we selected the widely used 
brfpp_uc_sgl, brfpp_co_sgl, brfop, and fabs measurements, and 
all scenes under these measurements to validate the present 
ray-tracing model. A case with real-world canopy architecture 
derived from the Wellington Citrus Orchard from RAMI IV 
[35] was also selected for validating model performance. Further 
details regarding the ROMC and RAMI actual case verification 
settings can be found in Section S1.

Image annotation
The current framework supports automatic image annotation 
(allowing the assignment of traits to individual pixels) that 
incorporates multiple traits at 2 distinct levels. The annotation 
process starts by determining the unique identifiers of geomet-
ric element(s) contained in every pixel of the simulated image. 
As is the case for real image annotation, only the closest object 
to the camera in each pixel is considered for labeling. Once the 
object identifiers for each pixel are known, any information in 
Helios about these primitives can be queried and used to gener-
ate “labeled” images. More specifically, this is achieved by using 
the element unique identifier contained in the pixel to look up 
“primitive data” values within Helios [25].

To identify the primitive label for a pixel in the image, only 
one ray is launched from the lens center and passes through 
the center of the corresponding pixel on the focal plane (Fig. 
2). The label of the nearest primitive intersected by this ray is 
returned. Since the class label, such as leaf ID, cannot be mixed, 
a fuzzy state pixel is not considered for image annotation.

There are generally 2 classes of traits that may be specified in 
Helios for generation of annotated images. The first level of traits 
are user-specified such as plant height, leaf chemical concentra-
tions, plant or leaf ID for object detection, etc. For these types of 
traits, users set particular primitive data values for all primitive 
elements in the scene (e.g., plant ID). This would then allow for 
generation of an image annotated by all of these data values.

The second level traits are based on data values computed 
within Helios. Examples of such types of values are net photo-
synthetic flux, leaf angle, etc., which are either computed based 
on a model plug-in in Helios or automatically assigned geo-
metric properties.

Thermal and depth images are also generated using the same 
principle as labeling, while the labels are temperature and dis-
tance, respectively. Note that thermal images can also be gener-
ated based on the emitted radiation flux to be consistent with 
the quantity actually measured by real thermal cameras. More 
details can be found in Section S6.

Camera calibration
Distortion recovery
Images captured by cameras are normally distorted due to lens 
aberration or sensor misalignment. In most remote and proxi-
mal sensing applications, the objective of image pre-processing 
is to remove these distortions [13,36,37]. In contrast, the ray-
tracing model described in the “Methods” section generates 
perfect undistorted images as a result of the thin lens model. 
In order to recover the image distortion to make the output 
synthetic images resemble real images, simulated lens distor-
tion is added to the synthetic images.

The radial and tangential distortion of images can be described 
mathematically as [38]:

where (ui, vi) represents the original position of the ith pixel in 
the image coordinate (the principal point is the center of the 
image), 

(

û, v̂
)

is the pixel position after distortion, p1 and p2 are 
the radial distortion coefficients, p3 and p4 are the tangential 
distortion coefficients, and ri2 = ui

2
+ vi

2. This distortion mech-
anism is integrated into the camera model by adjusting the 

(3)
�ûi=ui

(

p1ri
2
+p2ri

4
)

+2p3uivi+p4
(

ri
2
+2ui

2
)

,
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(
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2
+p2ri

4
)

+2p4uivi+p3
(

ri
2
+2vi

2
)

,
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location of the respective pixel in the original image generated 
by the ray-tracing model. Consequently, the locations of all 
pixels are rearranged to produce the distorted output image. 
The verification process of the distortion is described in Section 
S2. If all coefficients are set to 0, the distortion will not be 
applied, leaving the image in its original, undistorted state.

Camera spectral response calibration
The quality of simulated images is strongly dependent on the 
input camera spectral responses. However, the response spectra 
for many cameras are not easily accessible online, and if available 
from measurements, the spectral response of the camera sensor 
may differ from that of the actual image due to lens effects and 
internal software corrections applied by the camera. Additionally, 
there may be some inaccuracy in the specification of surface 
reflectance/transmittance and light source spectra based on 
spectrometer measurements. Therefore, it may be necessary to 
apply a calibration based on output images rather than simply 
using the spectral response of the sensor specified by the manu-
facturer. This correction was applied by determining the effec-
tive camera spectral response based on the calibration procedure 
outlined in Section S2.

To calibrate the camera, the target (physical) camera first 
captures an image of a reference material with a known spectral 
reflectance and transmissivity directly opposite to the camera 
in a blank and open space under a lighting condition (such as 
sunlight without cloud cover). This ensures that the captured 
image only includes the reference material and the ambient 
lighting, without any additional objects or obstructions that 
could affect the calibration process. Therefore, the obtained 
image value of the material mreal should be equal to its ρo across 
a given image channel. Ideally, a color calibration card with a 
wide range of color patches should be used, such as the DGK 
Color Card (DGK Color Tools, Boston, Massachusetts, USA) 
chosen for this study. Users can also customize the object color 
values for greater flexibility in color calibration. In other words, 
it allows for the simulation of the camera spectral response with-
out an actual target camera. The details of the calibration process 
and verification method are given in Section S2.

Model of leaf optical properties
ρλ and τλ in Eq. 1, used for calculating surface radiative proper-
ties, can be specified through manual measurements or predicted 
by leaf optical models. Leaf optical models PROSPECT-D [28] 
and PROSPECT-PRO [29] were integrated within Helios in 
order to link plant function to simulated sensing measurements. 
The original PROSPECT model developed by Jacquemoud and 
Baret [39] is a leaf tissue radiative transfer model that character-
izes the optical properties of plant leaves across the solar electro-
magnetic spectrum. This method originates from the plate model 
put forth by Allen et al. [40]. It assumes that a leaf consists of a 
pile of N uniform layers divided by N-1 air gaps. The integration 
with PROSPECT-D and PROSPECT-PRO enhances the current 
framework, enabling the generation of plant images that have 
corresponding distribution maps of leaf chlorophyll, carotenoids, 
anthocyanins, dry mass, water, protein, and carbon-based con-
stituent concentrations.

Example plant phenotyping applications
Bean leaf detection
To investigate the potential benefits of including synthetic 
images in the machine learning model training pipeline, we 

considered an example phenotyping application aimed at detect-
ing bean leaves within real RGB plant images. A publicly avail-
able dataset from the Michigan State University Plant Imagery 
Database [13] was used in this test. This dataset is composed of 
RGB images of 5 early-stage bean plants, with each plant having 
35 leaf label maps at various growth stages. It should be noted 
that these segmentation maps were extracted from the fluores-
cence images given in the dataset rather than the RGB images. 
However, due to slight positional differences between the RGB 
and fluorescence sensors, these segmentation maps were trans-
lated and rescaled to align with the RGB images, which may 
introduce a minor amount of error. Specific details regarding 
the light source spectral distribution and the camera response 
spectra were not known, and reasonable values were determined 
through trial and error. The simulated scene was created with 9 
Cree XLamp XHP70.2 LED spherical light sources. Initial cam-
era parameters were assumed to correspond to a Basler ace 
acA2500-20gc RGB camera (Basler, Ahrensburg, Germany), 
which was then calibrated under the LED lights. Leaf radiative 
properties were specified by manually determining an appropri-
ate range of concentration parameters in the leaf optical model. 
For the bean leaf plants in this dataset, which are small and in 
early stages of growth, the Helios “Plant Architecture” plug-in 
was utilized to construct the plant geometry. This model offers 
flexible parameters, allowing for the construction of plants rang-
ing from the main stem to sub-stems, and setting the number 
and size of leaves per petiole. Initially, we created bean plant 
models at several growth stages that closely resembled the real 
images (Fig. 3). Subsequently, we randomly varied the rotation 
of leaves and plants along 3 axes, as well as the size of leaves, 
within empirically defined ranges to generate a collection of 
synthetic images representing different growth stages. The tri-
angular meshes comprising the bean leaf prototypes were first 
constructed in Blender software (Blender Foundation; https://
www.blender.org), which are then scaled, translated, and rotated 
appropriately within the plant architecture model (see also 
Section S3). The radiation simulations utilized settings of 5 scat-
tering iterations and 3 diffuse rays per primitive.

For both real and synthetic images, the backgrounds were 
removed by converting the RGB images to the HSV color space 
and filtering based on threshold values. The deep learning model 
“YOLOv5s” [41], a member of the “You Only Look Once” (YOLO) 
model family that is popular for object detection tasks, was 
used for the detection.

By employing varying numbers of real and synthetic images 
for training, the efficacy of the synthetic imagery model was 
analyzed. Across different tests, the model size remained 
consistent, and the training parameters, such as learning rate, 
were also kept uniform. Model training was conducted for 
150 epochs with an image size of 256 × 256 pixels. Various 
models trained based on 35 real images (plant 1), 35 real images 
plus 35 synthetic images, 35 real images plus 70 synthetic 
images, 35 real images plus 105 synthetic images, 105 synthetic 
images, and 140 synthetic images were tested on the other 140 
real images (other 4 plants). The batch size equaled to the total 
number of training images. Model performance was evaluated 
using the mean average precision at an intersection over union 
(IoU) threshold of 0.5 (mAP50).

Unsupervised strawberry detection
A second case was considered in which the goal was to detect 
visible strawberries in images of strawberry plants in the field. 
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The openly available dataset named “strawberry.00” was used, 
available at https://universe.roboflow.com/skripsie/strawberry.00. 
This dataset is composed of 450 annotated images, 59 and 391 
of which were utilized for training and testing, respectively. The 
image dataset contains some unripe strawberries that are par-
tially or fully green, and only fully red or “ripe” berries are anno-
tated. This presents a challenge for the model because it cannot 
simply detect strawberries, or red regions in the images. This 
also creates some ambiguity for a human labeler as to what con-
stitutes a fully red berry.

For this study, we generated synthetic images (as shown in 
Fig. S9) for unsupervised training of the YOLOv5s model. The 
camera model used to create the real image dataset was not 
known, so it was assumed that the camera was similar to 
a Nikon B500 camera, and calibration was then performed 
according to the procedure described in the “Camera calibra-
tion” section. 3D strawberry plant geometry was created 
using the “Canopy Generator” plug-in in Helios. Specifically, 
the plant height, strawberry radius, and leaf length were ini-
tially set within the ranges of 0.2 to 0.4 m, 0.04 to 0.08 m, 
and 0.05 to 0.1 m, respectively. Subsequently, the entire plant 
geometries were scaled down by a factor of 0.8, resulting in the 
actual sizes (units in meter) of these elements being 0.8 of their 
original settings in the simulated scene. This adjustment was 
necessary because the “Canopy Generator” offers quick configu-
ration options but does not allow for adjustments to individual 
stem and petiole settings. To approximate real-world plant sizes 
and make the geometry appear closer to actual examples, scaling 
was employed. The number of stems per plant and the number 
of strawberries per stem were configured to 15 and 1 to 3, 
respectively.

The radiation simulations utilized settings of 5 scattering 
iterations, and the number of diffuse rays per primitive was 3. 
The strawberry fruit spectral reflectivity was assigned based 
on published data from Weng et al. [42]. Berry reflectivities 
were randomly scaled between 0.95 and 1.05 for the 610- to 
700-nm waveband (red band). As there are some fully green 
or partially green berries in the original dataset, the surface 
reflectivity of green berry surfaces was specified using leaf 
optical model simulations (low input chlorophyll and carot-
enoid concentrations). The greening starts at the top of the 
berries, and the extent of this green portion was randomly set, 
while the remaining portion retained the strawberry red 
reflectivity. The leaf radiative properties were set using the 

same strategy as in the bean case. Strawberry plants were illu-
minated by simulated sun, and zenith and azimuth angles of 
the sunlight were randomly set during simulated image gen-
eration. Real images from the original testing set of the “straw-
berry.00” dataset were used to creating background-only 
images. The center parts of these images containing the plants 
were manually removed (as shown in Fig. S9a). Some back-
ground images containing unscreened residual strawberry 
patterns were excluded from selection, resulting in 50 back-
ground images chosen for training.

Model training was conducted for 60 epochs with an image 
size of 704 × 544 pixels. Models were trained and tested using 
different combinations of synthetic and background images: 
50 synthetic images, 100 synthetic images with and without an 
additional 50 background images, 200 synthetic images with 
and without an additional 50 background images, and 300 syn-
thetic images with and without an additional 50 background 
images. These models were then evaluated on the 391 real 
images. The batch size was adjusted based on the number of 
training images to ensure that the number of training iterations 
in each epoch is 3. Model performance was also evaluated using 
the mAP50.

Results

Radiation transfer model verification
Table 1 displays the SKILL scores for the RAMI verification tests 
brfpp_uc_sgl, brfpp_co_sgl, brfop, and fabs, which are 98.00, 
92.65, 97.52, and 99.98, respectively. Figure 4 presents the simu-
lated bi-directional reflectance factor (BRF) (black curve) for 
the measurement of brfop of experiment HET51_DIS_UNI_
NIR_00 and the output images captured by the simulated radia-
tion cameras at varying viewing zenith angles (red numbers) 
used to compute the BRF. The SKILL score of fabs indicates that 
the ray-tracing model is excellent at describing the radiation 
absorbed by objects in the scene, and SKILL scores of brfpp uc 
sgl, brfpp co sgl, and brfop indicate that the simulated camera 
can correctly capture the reflected radiation fluxes (more 
detailed results of brfop can be found in Section S1). The scat-
tering iteration number used for verification was set to 20 for 
brfop. It was observed that the BRF tends to converge around 
15 to 20 iterations, as shown in Fig. S2. The need for a relatively 
high number of iterations is due to the high complexity of the 
test scene and large differences in surface reflectivity. The 

Fig. 3. Example images from the bean leaf detection case. (A) Real bean RGB image from MSU-PID; (B) synthetic bean RGB image; (C) real bean image with background 
removed, labeled by a model trained on 105 synthetic images (annotations are labeled with the class type [0 represents a leaf] and a subsequent IoU value).
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number of diffuse rays per element has a minimal impact on 
the BRF simulation, with nearly identical results obtained for 
1, 100, and 1,000 rays per primitive. This is attributed to the 
reverse ray-tracing approach ensuring every element is sampled, 
and because the total number of primitives in the ROMC test 
scenes is high (approximately 3.08 million for experiment 
HET01_DIS_UNI_NIR_00). Consequently, the total number 
of rays in the scene used for running the ray-tracing model is 
always sufficiently large. The outcome of the actual scene case 
from RAMI IV, as obtained by the current ray-tracing model, 
falls within the range of the RAMI IV benchmark models (as 
depicted in Fig. S3). This demonstrates that the present ray-
tracing model is effective in handling complex actual scenes.

The R2 value for checker square corner positions between simu-
lated checkerboard images without distortion and MATLAB 

built-in reference images was 0.919, improving to 0.930 when 
distortion is applied (Table 1). Figure S4 demonstrates the cur-
rent framework’s proficiency in accurately recovering distortion. 
Consequently, the ability to recover plant image distortion within 
the current framework is likely to improve its ability to reproduce 
real proximal images and aid machine learning model training.

Figure 5 shows the color board image (captured under 
solar conditions in the real world by a Nikon B500 camera) 
used as a reference for color values, as well as the 2 synthetic 
color board images created using calibrated Nikon B500 and 
uncalibrated Nikon D700 cameras, respectively. The corre-
sponding calibrated and uncalibrated camera response spec-
tra can be found in Fig. S5. It is visually evident that the color 
board in the image captured by the calibrated camera more 
closely resembles the real image. The R2 value for the cali-
brated color values is 0.903, while the uncalibrated color val-
ues have an R2 of 0.864. It is noteworthy to highlight that when 
users perform calibration without a physical target camera 
(for instance, by assigning reference color values derived from 
online images), they create a completely new simulated cam-
era spectral response, which is designed to facilitate the rapid 
utilization of the model. An example of synthetic plant images 
taken by a calibrated Nikon B500 camera and uncalibrated 
Nikon D700 can be found in Fig. S6.

The results from sub-model verification demonstrated con-
sistency in the implementations for simulating the radiation 
field. Example synthetic plant images are shown in the follow-
ing section.

Synthetic image examples
Figure 6 displays synthetic raw RGB (Fig. 6A), distorted RGB 
(Fig. 6B), 980 nm (Fig. 6C), 550 nm (Fig. 6D), depth (Fig. 6E), 
and thermal (Fig. 6F) images of sorghum plants under direct 
sunlight. Qualitatively, the model is able to generate high-quality 

Table 1. Results of sub-model verification

Results

Ray-tracing model SKILL (brfpp_uc_sgl) 98.00

SKILL (brfpp_co_sgl) 92.65

SKILL (brfop) 97.52

SKILL (fabs) 99.98

Camera calibration R2 (distortion recovered) 0.930

R2 (undistorted) 0.919

R2 (color calibrated) 0.903

R2 (color uncalibrated) 0.864

Fig. 4. The bi-directional reflectance factor (BRF) curve of experiment HET51_DIS_UNI_NIR_00 measured in the ROMC case brfop and corresponding synthetic images captured 
by simulated cameras at multiple viewing zenith angles (red numbers below images).
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images that are visually similar to real images. The near-infrared 
(NIR) (980 nm) image reveals different features from the RGB 
images, as is expected given the differences in surface radiative 
properties across these bands. Figure S8 provides an example of 
the same sorghum plant scene under a solar source with various 
zenith and azimuth angles, illustrating distinct differences in 
lighting patterns. This feature can be used for time-dependent 
plant physiological studies. In addition to small-scale images, 
Fig. 7 displays large-scale images of strawberry plants and part 
of the “Wellington Citrus Orchard” from RAMI IV [35]. This 
illustrates the framework’s capability to produce synthetic images 
on a large scale, contributing to drone-based plant phenotyping 
and physiological analysis.

Figure 8 shows simulated RGB images of a bean crop with 
varying optical properties output from the PROSPECT model 
with varying input leaf chemical concentrations. Specifically, 
Fig. 8 illustrates changes in chlorophyll concentration between 
10 and 40 μg/cm2 and carotenoid concentration between 2.5 
and 10 μg/cm2 (the ratio of chlorophyll to carotenoid concen-
trations was set to 4). Overall, these images illustrate the clear 
impact of varying leaf chemical properties on the synthetic 
images.

Figure 9 provides an example of automatic image annota-
tion for bean plants. Figure 9A illustrates the randomly speci-
fied chlorophyll concentrations ranging from 25 to 45 (the 
ratio of chlorophyll to carotenoid concentrations was set to 4). 
The leaf chlorophyll values were input to the PROSPECT 
model in order to calculate leaf reflectivity and transmissivity. 
The ray-tracing model was then run based on these properties 
and finally output bean plant RGB image (Fig. 9B). Figure 9C 
illustrates the associated plant segmentation map, with each 
color representing a unique plant, which could, for example 
be used to generate bounding boxes for object detection or 
masks for semantic segmentation. Figure 9D presents the dis-
tribution map of the net photosynthetic rate, calculated using 
the Farquhar, von Caemmerer, and Berry (FvCB) model [43]. 
For this example, the Vcmax25 (maximum carboxylation rate), 
Jmax25 (maximum electron transport rate), and Rd25 (dark res-
piration rate) at the reference temperature of 25°C required 
by the FvCB model were empirically calculated (Section S4). 
These images demonstrate the framework’s ability to link vari-
ous verified components and generate annotated images, 

which could be utilized for a range of plant phenotyping appli-
cations. However, for users requiring more realistic images 
and corresponding distribution maps that closely mimic real-
world plants, field measurements of model-required param-
eters such as chlorophyll concentrations, Jmax25, Vcmax25, Rd25, 
and environmental factors are necessary.

Details of the setup for synthetic images described in this 
section can be found in Section S3.

Example plant phenotyping applications
Bean leaf detection
Training the bean leaf detection model using only a small num-
ber of real images (35 images of plant 1) resulted in the poorest 
performance out of the cases considered (Table 2). Adding 35 
synthetic images helped to markedly improve detection perfor-
mance, while the further addition of more synthetic images 
resulted in diminishing returns. Table 2 shows that adding 70 
synthetic images or 105 synthetic images had similar benefit. 
These results are better than those of models trained with 35 
synthetic images, and they are higher than those trained with 
only 105 or 140 synthetic images, which had mAP50 values of 
0.764 and 0.753, respectively. It was thus possible to obtain rea-
sonable model performance when the model was never shown 
real annotated images during training (i.e., “unsupervised”). 
Figure 3C displays an example where all leaves were accurately 
labeled by the model trained exclusively on 105 synthetic 
images. Nonetheless, these results also illustrate that the benefits 
of adding synthetic images are not limitless, as variability is con-
strained by factors such as plant geometry and lighting condi-
tions in the image generation settings.

Unsupervised strawberry detection
Table 3 presents the results of the strawberry detection tests 
using models trained with varying combinations of synthetic 
and real background images. Two types of mAP50 evaluations 
were conducted: one using the best model selected during 
training, and another using the model obtained after complet-
ing all 60 epochs of training. It is evident that increasing the 
number of synthetic images enhanced detection accuracy. 
Similarly to the bean results, adding more than 100 images 
does not enhance model performance in the absence of back-
ground images. Incorporating real background images can 

Fig. 5. Calibration of camera spectral response. (A) Real image of DGK Color Card captured by a Nikon B500 camera, (B) uncalibrated synthetic color board image captured 
by simulated Nikon D700, and (C) calibrated synthetic color board image captured by simulated Nikon B500 under sunlight.
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further improve the model performance (Table 3), a result that 
is clearly illustrated in Fig. 10. When the model was trained 
with 300 synthetic images and 50 background images, all 
strawberries in the example image shown in Fig. 10B were 
correctly detected.

One source of error in the model was the presence of par-
tially green berries. The criteria for berry labeling in the origi-
nal dataset was unclear, as there were instances in which 
partially green berries were labeled. This caused some error in 
the model because it was trained to only detect fully red berries 
(as shown in Fig. 10A and B). In addition, some berries under 
the shadow of leaves were not labeled in the original dataset, 

yet most of them were detected by our model (such as the 
bottom right berry in Fig. 10). Therefore, the model’s perfor-
mance may be higher than suggested by the obtained evalua-
tion metrics. When no real background images were used in 
training, some small stones in the background were mistakenly 
identified as berries (Fig. 10A). This error was expected, given 
that the simulated images did not have any stones in the back-
ground, and the stones tended to have a red hue. However, 
adding some real background images (which do not require 
annotation) was able to mostly resolve this issue. Furthermore, 
some leaves were incorrectly classified as berries when the 
number of training images was small. Overall, the use of a 

Fig. 6. Synthetic images of sorghum plants illuminated by the sun. (A) Raw output RGB image, (B) RGB image after distortion recovery, (C) 980-nm NIR image, (D) 550-nm VIS 
image, (E) depth image, and (F) thermal image. Note that the black gaps around the image border in (B) result from application of the image distortion recovery procedure. In 
(E), the color scale ranges from white (closest to the camera) to black (furthest from the camera). In (F), the color scale ranges from black (coldest) to yellow (hottest). The 
camera focal plane distance, HFOV, and diameter of the lens are 3 m, 54°, and 0.02 m, respectively. The 550-nm VIS image and 980-nm NIR image are captured by a simulated 
multispectral camera (Spectral Devices Inc., London, Ontario, Canada).
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substantial number of synthetic images combined with pure 
background images can achieve good results in this unsuper-
vised strawberry detection case.

Speed of synthetic image generation
The total number of primitives in each bean plant scene ranged 
from about 113,000 to 127,000, depending on the number of 
leaves. The simulation speed for the bean plant was 11 s per 
scene with one image when using a laptop with an NVIDIA 
RTX A2000 (8 GB GDDR6) graphics card and a 12th Gen Intel 
Core i9-12950HX CPU. For the strawberry case, the time to 
generate one image was 13 to 14 s when using the same laptop. 
The total number of primitives in each strawberry scene ranged 
from about 200,000 to 220,000; this variation is caused by the 
number of leaves and berries, which change due to random 
variation.

Using a server-grade GPU considerably reduced the syn-
thetic image generation time. In the strawberry case, the gen-
eration time was 3 to 4 s per image when using an NVIDIA 
A100 (80 GB) GPU coupled with an AMD EPYC 7713 32-Core 
Processor. Using an NVIDIA RTX A5500 (24 GB) GPU and 

AMD EPYC 7272 processor increased the time to 4 to 5 s per 
image. When processing a larger scene with over 2 million 
primitives, Table 4 shows the generation speed per image 
and host random-access memory (RAM) requirement when 
A100 and A5500 GPUs were used.

Discussion
The present framework can effectively simulate a wide range of 
camera-based sensors in order to produce a large number of 
high-quality synthetic images of plant scenes that incorporate 
a range of labels, including canopy structure and leaf chemical 
properties under the specified light environment. The example 
application of bean leaf segmentation has initially demonstrated 
that synthetic images can directly serve as inputs to machine 
learning models designed for high-throughput plant phenotyp-
ing images to improve model training. It was also shown that 
the model could be trained exclusively based on synthetic 
images and perform well when applied to real images (Fig. 10). 
This illustrates a primary advantage of a realistic model that is 
close to reality, which is that there is a minimal impact on model 

Fig. 7. Example large-scale simulated images. (A) Synthetic RGB image of part of the “Wellington Citrus Orchard” (extent 50 × 50  m2) illuminated by a solar light source. The 
camera focal plane distance, HFOV, and diameter of the lens are 100,000 m, 0.143°, and 0.01 m, respectively. (B) Synthetic RGB images of strawberry plants illuminated by a 
solar light source (extent 8 × 8  m2). The camera focal plane distance, HFOV, and diameter of the lens are 11.5 m, 34.2°, and 0.01 m, respectively.

Fig. 8. Synthetic bean RGB images with varying input leaf concentration of chlorophyll (from A to D: 10, 20, 30, and 40 μg/cm2) and carotenoids (from A to D: 2.5, 5, 7.5, and 
10 μg/cm2). Other leaf properties remained constant: the number of elementary layers N = 1.5, anthocyanin concentration was 1 μg/cm2, equivalent water thickness was 
0.015 g/cm2, and dry mass per area was 0.009 g/cm2. The camera focal plane distance, HFOV, and diameter of the lens are 1.55 m, 9°, and 0.02 m, respectively.
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training relative to real images. Integration of simulated data 
into model training may be considered a form of unsupervised 
learning, as it required no manual human annotation. The 
example application in strawberry detection further demon-
strates the potential of the current framework in unsupervised 
plant phenotyping.

The background often contains noisy information, making 
it challenging to model in a simulated environment. Collecting 
background data is also considerably simpler and more straight-
forward than annotating plant traits. Results of the strawberry 
detection test suggested that creating a set of pure background 
images may be an effective strategy to enhance the performance 
of machine learning models trained with synthetic images 
(“Unsupervised strawberry detection” section).

Although the synthetic image sets used for illustration were 
relatively small, the GPU-accelerated model efficiency, com-
bined with the “embarrassingly parallel” nature of synthetic 

image generation, enables the generation of massive simulated 
image sets. Each image is independent of another, which 
means that the images can be generated in parallel across a 
cluster of compute nodes. Given the runtime of around 4 s per 
image on a GPU server for the strawberry case, if we had a 
cluster of 25 nodes with comparable hardware, an image set 
of 1 million annotated images could be generated in less than 
2 days. For larger scenes, adding more simulated cameras to 
capture images of the same scene from different angles can 
further enhance the efficiency of generating synthetic images. 
This would likely result in more efficient image generation 
because multiple images could be generated from a single 
scene, and thus overall time of scene generation and data trans-
fer to the GPU is reduced. Additionally, as mentioned in the 
“Radiation transfer model verification” section, the number 

Fig. 9. Example annotated synthetic images of bean plants. (A) Distribution map of leaf chlorophyll concentration (color scale given in units of μg/cm2), (B) synthetic RGB 
image, (C) plant segmentation map, and (D) distribution map of net photosynthesis (color scale given in units of μmol m−2 s−1). The camera focal plane distance, HFOV, and 
diameter of the lens are 1.35 m, 11.5°, and 0.02 m, respectively.

Table 2. Results of bean leaf detection tests. Each test used a 
different number of real and synthetic images for model train-
ing. Agreement between the human-annotated and predicted 
leaf bounding boxes was quantified using the best mean aver-
age precision at an intersection over union (IoU) threshold of 0.5 
(mAP50) and mAP50 at the 150th epoch.

Real images Synthetic images
Best mAP50 (mAP50 at 

the 150th epoch)

35 0 0.685 (0.683)

35 35 0.760 (0.748)

35 70 0.772 (0.768)

35 105 0.775 (0.758)

0 105 0.764 (0.756)

0 140 0.753 (0.751)

Table 3. Results of unsupervised strawberry detection tests. 
Each test used a different number of real background and 
synthetic images for model training. Agreement between the 
human-annotated and predicted strawberry bounding boxes 
was quantified using the best mean average precision at an IoU 
threshold of 0.5 (mAP50) and mAP50 at the 60th epoch.

Synthetic images
Background 

images

Best mAP50 
(mAP50 at the 

60th epoch)

50 0 0.598 (0.582)

100 0 0.755 (0.748)

100 50 0.778 (0.772)

200 0 0.749 (0.715)

200 50 0.785 (0.771)

300 0 0.751 (0.728)

300 50 0.793 (0.780)
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of diffuse rays can be reduced to 1 to achieve faster rendering 
speeds for large scenes.

The strawberry case also illustrated an interesting aspect of 
human annotation: the potential of using synthetic data as an 
assistant to human annotation. The process of human annota-
tion is subjective and contains non-systematic bias, or may be 
limited by an individual’s skill. This is exemplified by annota-
tion of the strawberry images, in which the definition of a fully 
ripe strawberry is not well-defined, and the annotators missed 
some strawberries within shadows (Fig. 10). Annotation of 
synthetic images is “exact” and based on strictly defined criteria. 
These results are promising in terms of illustrating the model’s 
capability to reduce or eliminate the amount of manually anno-
tated data needed for model training.

Although the example applications focused on RGB imagery 
datasets, another important strength of the proposed modeling 
framework is that it can simulate other sensor modalities such 
as visible (VIS) multispectral and thermal imagery. The mecha-
nism for generating VIS multispectral imagery, which includes 
modeling radiative properties and calibrating sensor spectral 
response, is exactly the same as for RGB imagery, given that 
RGB imagery can be considered a 3-channel multispectral imagery 
in the visible region. The generation of synthetic thermal images 
is conducted by integrating with other Helios components, 
which have been individually validated such as temperature/
energy balance models [44]. A recent study [45] has also verified 
the point temperature values simulated using the present model. 
A comprehensive, pixel-by-pixel quantitative assessment of errors 
for an entire synthetic thermal image and net photosynthesis 
distribution map has not yet been conducted. Therefore, future 
work utilizing the model for thermal imagery-based phenotyping 
and analysis of net photosynthesis distribution should also 
include additional model validation.

Previous work has demonstrated the utility of incorporating 
synthetic imagery into the machine learning training process 
when the scope of available images is limited [26,46]. However, 
these studies were limited by the use of traditional computer 
graphics-based renderers that are not coupled to the underlying 
radiation physics or biophysics. This limits their application to 
object detection and segmentation tasks with RGB images. The 

image annotation capabilities of the present framework is not 
limited to only the traits shown in this paper, but also other 
commonly utilized plant traits such as plant height, canopy 
cover, stomatal conductance, and LAI [1,11,47]. Furthermore, 
the flexibility in utilizing simulated camera sensors can be ben-
eficial for the fusion of multimodal data from different types 
of sensors, as all the sensor parameters are user-specified. 
Adding distortion recovery is also important, as distortion can 
influence plant phenotyping [48–50]. Overall, the framework 
can greatly enhance the efficiency and precision of high-
throughput plant phenotyping, which is essential for agricul-
tural and ecological research.

Apart from image synthesis, the current framework can act 
as a basis for investigating a variety of radiation-dependent 
processes, including photosynthesis, transpiration, and micro-
climate. Rapid measurement of traits associated with these 
processes has the potential to enhance our understanding of 
their distribution and interactions with canopy structure. In 
comparison to many analytical tools for plant phenotyping such 

Fig. 10. Example comparison of strawberry detection results based on one test image: (A) using the model trained with 100 synthetic images only, (B) using the model trained with 
300 synthetic images and 50 background-only images, and (C) original label boxes from the dataset. Note that in the original dataset, only nearly full-red berries were labeled.

Table 4. Image generation speed and host memory usage for dif-
ferent large scenes using A100 and A5500 GPUs. The base scene 
used is the RAMI IV actual case (extent: 108.25 × 103.9  m2) with 
different number of trees added.

Number of 
primitives

Host RAM 
usage  

(gigabyte)

Generation 
speed (s/

image) GPU

2.15 million 7.55 48.6 A5500

2.15 million 7.54 36.2 A100

2.60 million 9.05 59.0 A5500

2.60 million 9.04 43.9 A100

3.75 million 12.95 86.5 A5500

3.75 million 12.91 61.4 A100

D
ow

nloaded from
 https://spj.science.org on July 01, 2024

https://doi.org/10.34133/plantphenomics.0189


Lei et al. 2024 | https://doi.org/10.34133/plantphenomics.0189 14

as PlantCV [51] and HSI-PP [52] for plant image analysis, and 
AgML [22] and CropSight for data management [53], the cur-
rent framework addresses the need for synthetic imagery and 
offers a solution for multimodal analysis tools. Compared to 
the LESS [20] and DART-Lux [27] models, the current frame-
work offers integrated models for generating and modifying 
model geometry via Helios, making it especially suited for 
proximal remote sensing applications. Additionally, it provides 
pixel-by-pixel annotation and ability to couple with other bio-
physical models, which are not currently available in LESS and 
DART-Lux.

The framework implementation has limitations that suggest 
directions for future development. For instance, surface reflec-
tion and transmission are Lambertian in the model, and thus 
specular reflection and anisotropic scattering by surfaces are 
currently neglected. The lateral transmission of radiation within 
the leaf is not considered, implying that each primitive operates 
independently of others. Additionally, the non-leaf surface opti-
cal properties (e.g., stems, fruit, and soil) are set empirically, and 
thus lack interaction with physiological traits and chemical 
composition. Future enhancements will address these limita-
tions, aiming to offer a more flexible and robust tool for plant 
image synthesis and radiative-based physiological modeling. 
While model efficiency allows for direct scaling to domains rel-
evant to satellite images, the present modeling framework does 
not include atmospheric absorption and scattering such as in 
DART-Lux [27].

The modeling framework developed in this study is able to 
simulate radiation transport among objects, and ultimately, 
radiation is detected by a variety of simulated camera sensors. 
Realistic synthetic RGB and multispectral plant images were 
presented, demonstrating the framework’s ability to create 
images with distinct light and shadow features under various 
radiation sources. Additionally, the framework can generate 
large-scale synthetic images, facilitating the simulation of drone 
imagery. It can also produce images incorporating variation in 
leaf chemical properties, and generate precise annotations based 
on any user-specified or simulated data. The fully labeled syn-
thetic spectral images can supplement machine learning model 
training by expanding reference datasets for predicting plant 
traits from real spectral images. Consequently, the framework 
is valuable for high-throughput plant phenotyping applications 
and has the potential to minimize the need for manually col-
lected and annotated data in deep learning training. Finally, 
complex plant systems can be presented in a simple and intuitive 
manner, which is highly advantageous for radiative-based physi-
ological modeling.
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