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Abstract
Harvesting robots can easily damage small safflower filaments and cannot accurately 
harvest filaments. In addition, harvesting robots experience difficulty in localizing 
accurately under the influence of a near-color background and blurred contour edge features 
in complex environments. Therefore, a method for detecting and locating filament picking 
points based on an improved DeepLabv3+ algorithm is proposed in this study. A lightweight 
network structure, ShuffletNetV2, was used to replace the backbone network Xception of 
the traditional DeepLabv3+. Convolutional branches for three different sampling rates were 
added to extract information on the safflower features under the receptive field and reduce 
the parameters. Convolutional block attention was incorporated into feature extraction at 
the coding and decoding layers to solve the interference problem of the near-color 
background in the feature-fusion process. Then, using the region of interest of the safflower 
branch obtained by the improved DeepLabv3+, an algorithm for filament picking-point 
localization was designed based on barycenter projection. The tests demonstrated that this 
method was capable of accurately localizing the filament. The mean pixel accuracy and 
mean intersection over union of the improved DeepLabv3+ were 95.84% and 96.87%, 
respectively. The detection rate and parameters required were superior to those of other 
algorithms. In the localization test, the depth-measurement distance between the depth 
camera and target safflower filament was 450–510 mm, which minimized the visual-
localization error. The average localization and picking success rates were 92.50% and 
90.83%, respectively. The results show that the proposed localization method offers a viable 
approach for accurate harvesting localization.
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Safflower is a specialty economic crop with a combination of medicinal herbs, dyes, oil, 
and fodder and is thus a key pillar of our society [1]. The fruit balls of safflowers contain 
multiple clusters of small, compact, and dense safflower filaments. The entire life cycle is 
harvested continuously for 3–5 crops [2, 3]. Filaments that are not immediately harvested 
from the fruiting bulb affect subsequent opening, resulting in reduced filament production 
[4, 5]. Current safflower-crop production relies on extensive labor, negatively impacting 
production and the lives of flower farmers. Agricultural robots have the potential to 
revolutionize standard practices [6]. Segmenting safflower filaments can effectively reduce 
field operations and improve filament yield through robotic identification [7, 8]. However, 
the near-color background and contour edge features of the filament harvesting points are 
blurred owing to environmental disturbances (weather and light), making their location 
difficult [9, 10]. Therefore, a safflower-filament localization method based on a 
segmentation algorithm is necessary to accurately localize and harvest filaments with high 
efficiency and minimal damage in complex environments.

Recently, deep-learning-based flower-classification methods have been applied to various 
types of flower-detection problems [11-13]. Most used convolutional neural networks 
containing multilayer stacked structures for flower color, shape, and appearance features to 
obtain better detection results. Dias et al. [14] proposed an improved end-to-end residual 
convolutional neural network to enhance color sensitivity. The flowers were accurately 
identified by applying DEEPLAB+RGR with an effective recall and accuracy higher than 
90%. Tian et al. [15] proposed a method for introducing single-shot multiBox detector deep-
learning techniques to color detection and recognition. The average accuracy on the flower 
dataset was 83.64%. Williams et al. [16] used Faster R-CNN for training on a kiwifruit-
flower dataset. The average accuracy of the algorithm was 85.3%. Palacios et al. [17] 
proposed a field Mikania-recognition model based on deep convolutional neural networks 
(DCNN). The accuracy and computing time of the algorithm were improved by fusing the 
local response normalization function of AlexNet with the continuous convolutional 
structure of VGG-Net. The recognition accuracy was 94.50%. Zhou et al. [18] optimized 
the model structure of VGGNet and preferred an eight-layer network algorithm for tomato-
flower shape feature extraction during different flower periods. The detection accuracy was 
84.48%. Xiong et al. [19] recognized and segmented the shape features of litchi flowers that 
were densely aggregated in complex natural environments by constructing a 34-layer 
ResNet backbone network. The mean average precision was 87%. Zhao et al. [20] proposed 
a cascade convolutional neural network-based tomato-bouquet recognition method. To 
realize the extraction of the bouquet region of tomatoes and accurate recognition of the 
flowering period in the bouquet, the average detection accuracy reached 82.79%. Although 
the aforementioned methods address the detection problem in terms of flower features, they 
are only applicable to cases with obvious differences (color and brightness) between the 
target and background. Moreover, most studies have only focused on flower detection [21, 
22]. Furthermore, few studies have developed simultaneous extraction and picking 
localization.

Several studies have shown that the most important feature of DeepLabV3+ is the 
introduction of null convolution compared with the latest improved PSPNet [23], SegNet 
[24], U-Net [25], MDE-UNet [26], CDMS [27], and CondInst [28] algorithms. The sensory 
field is increased without loss of information. Each convolution output contains a large 
range of information, which is beneficial for extracting multiscale information [29, 30]. 
DeepLabV3+ achieved superior segmentation results for various targets. Zhu et al. [31] 
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proposed a two-stage model, LD-DeepLabv3+, with adaptive loss, to address the problems 
of hard samples and pixel-proportion imbalance in diseased apple-leaf image segmentation. 
Peng et al. [32] focused on the semantic segmentation of branches to enable robotic litchi-
fruit harvesting by clamping/shearing bearing branches. Therefore, to improve the 
recognition and localization accuracy of safflower-harvesting robots, this study uses the 
DeepLabV3+ segmentation algorithm, which has a high accuracy and lightweight structure. 
A method for detecting and localizing filament picking points based on an improved 
DeepLabv3+ algorithm is proposed. The improved DeepLabv3+ adopts the lightweight 
network ShuffletNetV2 to replace the backbone network, improves atrous spatial pyramid 
pooling (ASPP), and incorporates the convolutional block attention module (CBAM), 
reducing background interference and enhancing target features. An improved DeepLabv3+ 
algorithm was used to segment the filament, fruit ball, and branches. The line features of 
the branch and minimum distance constraint from the barycenter of the filament and fruit 
ball to the line of the branch were searched and solved to locate the picking-point position. 
The main contributions of the proposed approach are as follows:

(1) DeepLabV3+ image segmentation with high accuracy and a lightweight structure is used 
as the basis for the algorithm to reduce the interference of background regions and contour 
edges on the filament, fruit bulb, and backbone segmentation. A lightweight network, 
ShuffletNetV2, is used as the backbone network. The input safflower features are operated 
during channel separation and a channel-blending operation was performed to ensure that 
the branch safflower-feature information is fully fused. Subsequently, the downsampling 
unit directly increases the number of network channels and network width to enhance the 
capability of the network to extract safflower features.

(2) According to the geometrical characteristics of the filaments, the dilated depth-separable 
convolution replaces the original ASPP module convolution. Three branches of convolution 
at different sampling rates are added to extract information on the safflower features under 
the receptive field and reduce the parameters. The detection effect significantly improves 
after the introduction of the Convolutional Block Attention Module (CBAM). The problems 
of missed and incorrect segmentation are effectively solved using light intensity and crop 
shading.

(3) Combined with obtaining the regions of interest (ROIs) of safflower branches, the line 
segments are solved using the Hough straight-line detection algorithm. Concurrently, a 
picking-point localization algorithm is designed to locate filaments based on barycenter 
projection with respect to safflower features. Recognition accuracy and real-time 
performance are effectively improved. It is proposed to provide technical support for 
safflower-harvesting robots to locate and harvest safflowers with high efficiency and 
minimal damage.

The remainder of this paper is organized as follows. Section 2 explains the relevant materials 
and methods. Section 3 describes the localization test of the filament picking point in this 
study. Section 4 presents the experimental results, Section 5 presents a discussion, and 
Section 6 presents the conclusions and lists future work.

2. Materials and Methods
2.1. Image data acquisition
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The safflower-image data used in this study were collected in late July 2023 from a 
safflower planting base in Yili, Xinjiang, China. Safflower grows naturally upward with 
filaments opening on the fruiting ball. The area connecting the filament and fruit ball is the 
necking (green boxed area in Fig. 1), which is the best harvesting site for the filament 
picking point. A safflower branch is typically located directly below the filament, fruit ball, 
and necking, as shown in Fig. 1.

Fig. 1. Structure diagram of the opening safflower.
A D435i depth camera (Intel Corp., USA) was used as the image-acquisition equipment. 
The image size was 640 × 480 pixels and the format of the acquired images was .png. The 
acquired images included different weather, light, and shade conditions. A total of 525 
safflower-filament images were obtained, as shown in Fig. 2.

Fig. 2. Examples of safflower images. (A) Sunny day with light, (B) sunny day with 
backlight, (C) overcast day with light, and (D) cloudy day with light.
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2.2 Dataset production
The data were enhanced using geometric (translation and rotation) and color 
transformations (contrast and brightness) to expand the dataset to 1050 pictures. The data 
was divided into training and test sets in a ratio of 8:2, including 840 pictures for the training 
set and 210 pictures for the validation set. The training set was used to train the deep network 
model-parameter weights, and the test set was used to evaluate the generalization ability of 
the final model [33, 34]. The filament, fruit ball, and branch were labeled separately using 
the LabelIme tool. The category information is filament, fruit ball, and branch, which is 
stored in the .json format.
2.3 DeepLabv3+ algorithm
DeeplabV3+ is a semantic segmentation algorithm based on a DCNN that mainly consists 
of an encoder [35], decoder [36], DCNN [37], and ASPP [38]. First, the image input to the 
encoder is fed into the backbone feature-extraction network, Xception. Second, the parallel 
ASPP module is passed in to incorporate the pooled features at the image level to merge 
and extract multiscale contextual information. Then, the number of channels is reduced by 
a 1×1 convolution and output to the decoder for four-fold upsampling. Fusion is performed 
using shallow features extracted from the DCNN module. Finally, the fused features are 
passed through a 3×3 convolution and four-fold upsampling to obtain the predicted image, 
which has the same size as the original image [39].
The high-accuracy DeepLabv3+ algorithm obtains rich image-boundary information and 
multiscale features. It is suitable for solving problems with no obvious differences and 
blurred contour-edge features between the target to be segmented and background of small-
volume safflower filaments in complex environments [32, 40]. However, its network 
parameters are large, and its prediction speed is slow. It also produces missed and incorrect 
segmentation problems, resulting in a large deviation in the localization accuracy. 
Therefore, the detection algorithm must be further optimized.
2.4 Improved DeepLabv3+
To reduce the number of algorithm parameters, further capture the global and contextual 
information, and avoid the localization accuracy deviation caused by missed segmentation 
and mis-segmentation, a method for safflower filament picking-point localization with 
improved DeepLabv3+ is proposed (SDC-DeepLabv3+), which fuses the modules of 
ShuffletNetV2 [32], the ASPP of dilated depth-separable convolution (DDSC-ASPP), and 
CBAM [41], as shown in Fig. 3. To distinguish DeepLabv3+, the SDC-DeepLabv3+ 
algorithm is reordered with the initials of ShuffletNetV2, DSC-ASPP, and CBAM as 
content combinations. Lightweight ShuffleNetV2 is used as the backbone network, and the 
ASPP is improved to DDSC-ASPP. The number of algorithmic parameters is reduced, 
extracting more safflower features from different receptive fields. Moreover, CBAM is 
added so that the fusion of deep and shallow safflower features is allocated to the channel 
and spatial-attention resources. The feature information is maximized. SDC-DeepLabv3+ 
not only reduces the computing cost, but also considers the segmentation accuracy. This 
improves the capability of the algorithm to predict the localization accuracy of the 
safflower-filament picking points.
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Fig. 3. Schematic of the SDC-DeepLabv3+ algorithm structure.
2.4.1 ShuffletNetV2 module
To reduce algorithm computation and improve detection accuracy, the ShuffleNetV2 [31] 
structure is selected as the backbone network, as shown in Fig. 4. ShuffleNetV2 is based on 
ShuffleNetV1 [42] and retains the components of ShuffleNetV1, such as the channel shuffle 
and depth-separable convolution. A more efficient basic block is proposed to reduce the 
number of algorithm parameters and computations and improve detection accuracy.

Fig. 4. Structure of ShuffleNetV2. (A) Stride=1 block and (B) stride=2 blocks.
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The input safflower image was first subjected to 24 standard convolutions of size 3×3 and 
step 2 for feature extraction to obtain a new feature map. MaxPool was then used to 
maximize pooling for downsampling purposes to obtain a 24×56×56 feature map. Finally, 
three stage structures consisting of ShuffleNetV2 basic components with stride=1 and 2 
blocks were connected [43]. The semantic information of the different layers of the target 
image was extracted.
Each unit feature channel input of the component stride=1 block was divided into two 
branches, one of which was changed, and the other comprised three convolutions. The two 
1×1 convolutions were no longer group convolutions but ordinary 1×1 convolution 
operations. After convolution, the two branches were connected and fused. The number of 
channels was maintained. A channel shuffle operation was performed to enable information 
communication between the two branches, where the connected fusion of the channel 
shuffle and channel split of the next modular unit were synthesized into an element-level 
operation.
For spatial downsampling, the stride=2 block removed the channel-split operator and 
channel split, and each branch copied the input directly. Each branch had stride=2 
downsampling for concatenated fusion [30]. The filament feature-map space size was 
halved, but the number of channels doubled. Setting the number of channels in each block, 
such as 0.5× and 1×, can adjust the complexity of the model. The specific structure is shown 
in Fig. 4. The architecture was designed with high efficiency to realize information 
communication between different channel groups and improve the accuracy of filament 
feature extraction.
2.4.2 DDSC-ASPP
Compared with other detection objects [23-25], the shapes and distributions of safflower 
filaments, fruit balls, and branches are unstable, varied, and susceptible to occlusion. The 
DeepLabv3+ algorithm uses an ASPP module with a combination of dilation rates of 6, 12, 
and 18 to extract multiscale features [44, 45]. However, its large dilation rate leads to a large 
receptive field, insufficiently detailed feature extraction, and poor extraction of small 
targets. It is difficult to capture all types of information in a single-scale receptive field [46]. 
Therefore, combined with the edge complexity of the safflower features and the high 
leakage rate of small targets, this study added three dilated depth-separable convolution [47] 
branches based on the ASPP module. The filament, fruit ball, and branch feature 
information are extracted under the receptive field using depth-separable convolution with 
higher sampling rates. Reducing the number of algorithmic parameters can satisfy the real-
time algorithmic detection.
(1) Depth-separable convolution
By retaining the original feature extracted from the receptive field, the depth-separable 
convolution actively reduces the parameters and algorithm training [29]. The convolution 
process is divided into two parts: channel-by-channel and point-by-point convolution. The 
convolution kernel of the channel-by-channel convolution corresponds one-to-one to the 
channel of the input image. After the channel-by-channel convolution, the number of 
channels for the feature map remained the same as that before the input. Because the same 
locations of different channels had connections, a 1×1 point-by-point convolution was used 
to adjust the number of channels and establish connections between them. A schematic of 
the depth-separable convolution is shown in Fig. 5.
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Fig. 5. Comparison of depth-separable convolution processes.
(2) Increasing separable convolution of the dilated depth at different sampling rates
The ASPP structure comprises a dilated convolution layer with different sampling rates, a 
1×1 convolution layer, and an image-pooling layer [6]. However, because of the large 
sampling-rate interval of the dilated convolution, the feature extraction of the ASPP 
structure was more sparse, resulting in the loss of some local information from the safflower 
image [48, 49]. Therefore, three dilate depth-separable convolution branches were added, 
based on the original sampling rate. The combination of the dilate rate was modified to 3, 
6, 9, 12, 15, and 18. The middle six convolutional branches were subjected to two 3×3 
convolutional cascade operations. A dilated depth-separable convolution that realizes 
multiscale feature extraction can be added to the receptive field.
When the dilation rate of the dilated depth-separable convolution is r, and the size of the 
convolution kernel is k, the size of the receptive field is as follows: 

                            (1)
However, when the two-layer dilated depth-separable concentration series is cascaded, the 
receptive field size is as follows: 

                        (2)
where R1 and R2 denote the receptive fields provided by the two-layer dilated depth-
separable convolution.
DDSC-ASPP first reduced the middle four convolutional branches to 64 channels using a 1 
× 1 convolution. Two 3×3 convolutions were then performed. Subsequently, using 1×1 
convolution dimensions for 256 channels, the bottleneck structure effectively reduced the 
parameters. The DDSC-ASPP decreased the loss rate of edge information and small-target 
safflower information in the safflower image. This can facilitate detailed feature extraction 
of small targets and safflower contour edges. Thus, the problem of missing the segmentation 
of the filament, fruit ball, and branch was effectively minimized.
2.4.3 CBAM
To accurately extract edge features and solve the interference problem of background 
information for filaments, fruit balls, and branches, this study proposes injecting the CBAM 
into the feature-extraction module of the encoding and decoding layers [50, 51].
Unlike Squeeze-and-Excitation [52] and Efficient Channel Attention [53], which consider 
channels and ignore spatial information, CBAM is a lightweight module that combines 
channel and spatial attention mechanisms [54]. Its core aim is to provide segmentation 
attention to the desired region, as shown in Fig. 6. Given a safflower-feature map, the 
CBAM was able to sequentially generate attention feature-map information in both channel 
and spatial dimensions. The channel-attention mechanism was operated first, followed by 

  1 1R r k k   

1 2 1R R R  
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the spatial-attention mechanism. Then, the information of the two feature maps was 
multiplied by the original input feature map for adaptive feature correction to produce the 
final feature map. The CBAM was embedded into the backbone network to improve 
performance and achieve an enhanced ROI in both the channel and spatial dimensions.

Fig. 6. CBAM structure.
The CBAM captured the correlation between features in different dimensions by adapting 
learning channels and spatial-attention weights. The enhanced features were used as inputs 
for the subsequent network layers. It suppressed safflower-image noise and irrelevant 
information while preserving key information. Therefore, the performance of safflower 
recognition and detection was enhanced, realizing the accurate segmentation of filaments, 
fruit balls, and branches.
2.5. Localization method for filament picking point
To improve the localization accuracy and speed of damage-free safflower-filament picking 
and remove the influence of image noise on the localization of the picking point, combined 
with the characteristics of safflower-growth diversity, this study set up an ROI in the branch 
region [55]. The flowchart of the filament picking point localization method is shown in 
Fig. 7. 

Fig. 7. The flowchart of the filament picking point localization method.
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Firstly, the safflower image was preprocessed according to the SDC-DeepLabv3+ algorithm 
and segmented into filaments, fruit bulbs, branches and trunks. The interest regions of 
filaments and fruit bulbs were obtained. The maximum connectivity region of the two was 
extracted, and the center of mass coordinates of the filament and fruit ball were solved. 
Meanwhile, edge detection was performed on the ROI based on the branch ROI obtained 
by the SDC-DeepLabv3+ algorithm to obtain an edge binary map. All the line segments in 
the binary map were solved using the Hough line-detection algorithm [56]. The line segment 
that solved for the minimum distance between the barycenter coordinates of the filament 
and fruit ball and the line was considered as the line position of the picking point and was 
projected onto this line segment. Finally, the midpoint of the two barycenters for the 
projection points on the line section was used as the picking point. A schematic of the 
picking-point calculation model is shown in Fig. 8.

Fig. 8. Schematic of picking-point calculation model. The barycenter coordinates of the 
filament and fruit ball are P1 (x1, y1) and P2 (x2, y2), respectively. The barycenter projection 
of the filament and fruit ball are P'1 (x'1, y'1) and P'1 (x'1, y'1), respectively. The values of the 
two endpoint coordinates are Q1 (xz1, yz1) and Q2 (xz2, yz2), respectively. The value of the 
picking point coordinates is Pc (xc, yc).
2.5.1. ROI Extraction with Linear Detection
Safflower grows naturally upward. In the absence of interference from other supports, 
safflower filaments open on the fruit ball, and the branch is typically located directly below 
the filament and fruit ball. To minimize environmental interference with the localization of 
the picking point, the ROI of the branch was determined based on the barycenter of the 
filament, barycenter of the fruit ball, lowest point of the contour, and distance between the 
left and right poles, as shown in Fig. 8.
In the ROI images, the edge response of the branches was stronger. To simultaneously 
suppress noise and enhance the boundary, a safflower image was subjected to a binarization 
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operation [57]. The barycenter coordinates of the filament P1 (x1, y1) and fruit ball P2 (x2, 
y2) were derived. The edge gradient-detection algorithm was used for edge extraction of the 
branch ROI. The gradient-direction vector was calculated using a finite difference. The 
gradient of the pixel points in the ROI image was calculated as follows: 

                 (3)
where f(x, y) denotes the pixel-point value in the ROI image, and fw(x, y) and fh(x, y) denote 
the gradients in the direction of the horizontal and vertical coordinate axes, respectively.
The local maximum points of the gradient are considered as the corresponding edge pixel 
points in the safflower image. Subsequently, the generated gradient map was thresholded 
for image segmentation to obtain a binary edge map of the ROI of the branch.
2.5.2. Picking-point localization based on barycenter projection
Because the edges of the branches were presented as lines, the Hough line-detection 
algorithm was used to detect the lines in the binary edge map within the branch ROI. All 
the line segments in the region that satisfied these conditions were detected. The values of 
the two endpoint coordinates Q1 (xz1, yz1) and Q2 (xz2, yz2) were recorded for all detected line 
sections, as shown in Fig. 8. Based on the coordinates of the two endpoints, the equation for 
the line is as follows: 

         (4)
where (x, y) are the pixel coordinates, and (xz1, yz1) and (xz2, yz2) are the coordinates of the 
first and second endpoints of the branch line, respectively.
The distance from the barycenter of the filament and fruit ball to each line Lb was calculated 
based on the coordinates of the endpoints for all satisfied lines. The minimum constraint 
function for the distance between the barycenter and line min(Lb) was solved to determine 
the line with the minimum distance from the picking point. The line distance Lb to the center 
of mass is calculated as follows: 

                 (5)
Because safflower naturally grows upward and opens flowers on the fruit ball, the branch is 
typically located directly below the barycenter. Theoretically, the extension line through the 
branch must pass through the barycenter. However, under the influence of image-
segmentation errors, blurred and irregular contours of the filament and fruit ball, and other 
disturbing factors in practice, the calculated extension of the branch line tends to be offset 
from the barycenter to a certain extent. The barycenter projection of the filament and fruit 
ball, P'a (x'a, y'a) and P'b (x'b, y'b), is obtained by calculating the barycenter-projection point 
on the line, where the picking point is located at the minimum distance using Equation (5). 
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The midpoint between the two barycenter projection points on the line was considered as 
the picking point Pc (xc, yc).

3. Localization test of filament picking point 
3.1. Test platform

The training platform used in this study was a Windows 11 (64-bit) operating system 
(Lenovo R9000X, Razor 8-core R7-5800H, RTX3060). The computer was equipped with 
an Intel(R) Xeon (R)CPUE52630v4@2.20GHz operating memory, 64 GB running memory, 
1 TB SSD, and 12 GB GTX1080Ti×2 GPU. Anaconda 3.5.0 (Anaconda Inc., USA), CUDA 
11.0 (Nvidia, USA), and cuDNN 6.0 (Nvidia, USA) libraries were used. In addition, the 
open-source deep learning framework Pytorch was used as the development environment, 
and the programming language used was Python 3.9 (Python Software Foundation, USA).

3.2. Evaluation indicators

In this study, mean pixel accuracy (mPA), mean intersection over union (mIoU), frames per 
second (FPS), and params were used as algorithm performance-evaluation metrics. mPA 
calculates the number of pixels that are correctly classified in each pixel category within a 
class and then determines the average of all classes, %. The mIoU is a standard metric for 
semantic segmentation. It calculates the ratio of the intersection and concatenation of the 
set of true and predicted values [58]. The evaluation metrics are calculated as follows: 

                               (6)

                       (7)

                                (8)

                                (9)

where pii denotes the number of true instances, while pij and pji are interpreted as false-
negative and false-positive instances, respectively. False-negative instances are samples 
predicted to be non-filament, fruit ball, and branch regions and actual filament, fruit ball, 
and branch regions. False-positive instances are samples predicted to be filament, fruit ball, 
and branch regions and actual non-filament, fruit ball, and branch regions; k denotes 
category.

3.3. Localization performance test
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A test set of images was used to validate the performance of the SDC-DeepLabv3+-based 
picking-point localization method. A target safflower was selected from each test image by 
manual labeling, and the coordinate position of the best picking point was recorded. In the 
test, SDC-DeepLabv3+ was used to process the safflower images of the test, and the two-
dimensional coordinate values of the predicted target picking points were recorded. These 
errors were used as an important basis for judging the performance of the picking-point 
localization method [55]. The prediction accuracy of the picking-point localization method 
was evaluated using pixel error. The formula for the pixel error is as follows: 

                        (10)

where Xbt and Ybt denote the horizontal and vertical coordinate values of the manually 
labeled best picking point in the image, respectively; x and y denote the horizontal and 
vertical coordinate values of the picking point predicted by the picking-point localization 
method in the image, respectively; ex and ey denote the pixel-point error value between the 
predicted and manually labeled picking points in the x/y direction; and e denotes the 
combined pixel-point error value of the predicted and manually labeled picking points.

The two-dimensional coordinate values of the filament picking point were mapped and 
matched with the three-dimensional depth map acquired by a camera (RealSense D435i, 
Intel, USA). Using the inherent internal parameters of the depth camera, the image 
coordinate system was converted to the camera’s optical coordinate system to obtain the 
three-dimensional spatial coordinate values of any coordinate point in the camera coordinate 
system. Subsequently, the global coordinate system was set on a calibration plate. The first 
square was used as the reference point in the upper-left corner of the calibration plate and 
set as the origin of the global coordinate system. The normal direction of the calibration-
plate plane was used as the Z-axis depth direction, and the horizontal direction was used as 
the X-axis direction. The three-dimensional coordinates of the filament picking point were 
obtained by interconverting the camera coordinate system with the global coordinate system 
of the harvesting robots in the global coordinate system. By comparing the results from the 
manual measurement and depth camera, the visual localization error EZ in the Z direction 
and localization error EX in the X direction were calculated as follows: 

                   (11)

            (12)

where M and m denote the total number of image combinations and image sequence number, 
which are M=50, m [1, 50], respectively; Z(CP)m and X(CP)m denote the values of the Z and 
X coordinates of the picking point measured by the depth camera, respectively; Z(GT)m 
denotes the value of the Z coordinates of the manually measured picking point; X(OP)m 
denotes the value of the X coordinates of the calibration-plate reference point (the origin of 
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the global coordinate system); and Lm denotes the manually measured distance between the 
calibration-plate reference point and filament picking point.

4. Results and Analyses
4.1. Algorithm training results
To improve algorithm performance and decrease overfitting, the initial learning rate of the 
SDC-DeepLabv3+ algorithm was 0.01, the batch size was set to eight, and the number of 
training iterations was 1000. If the accuracy was not increased within 15 rounds of training, 
the learning rate would be reduced to 0.01 times the original one using the SGD optimizer 
[41]. The network-weight file was saved after every 10 training epochs. The parameters 
with the highest and lowest accuracies were saved. The algorithm was validated using a test 
set, and the detection results were output. The training results for the SDC-DeepLabv3+ 
algorithm are shown in Fig. 9. 

Fig. 9. Parameters of the training process. (A) Loss curve and (B) mean pixel accuracy.
The loss value decreased the fastest in the first 163 rounds of the training process. It was 
still decreasing after 163 rounds, and the rate gradually became slower. When the number 
of iterative training rounds reached 902, the loss curve tended to flatten out. It eventually 
stabilized at the minimum value and completed the training, as shown in Fig. 9A. 
Meanwhile, the mPA curve gradually rose with the increase of training rounds and finally 
stabilized. As shown in Fig. 9B, the mPA (IoU=0.5) is 92.61%, which indicates that the 
algorithm converges. The trend of each curve during the training process can reflect the 
effectiveness of training. It is favorable to improve the accuracy of safflower segmentation.
4.2. Evaluation of filament-segmentation algorithm
4.2.1 Ablation test
Four sets of ablation tests were conducted to verify the effects of the ShuffletNetV2 
backbone network, DDSC-ASPP, and CBAM on the recognition accuracy of the SDC-
DeepLabv3+ semantic segmentation algorithm. The test results are listed in Table 1.
Table 1. Results of the ablation test.

Algorithms Backbone 
networks

Pyramid 
module

Add 
module

mIoU/
%

mPA/
%

FPS/(f·s
-1)

Params/M
B

DeepLabv3
+ Xception ASPP none 94.13 95.64 45.32 206.32
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DeepLabv3
+

ShuffletNetV
2 ASPP none 95.01 96.33 56.19 22.75

DeepLabv3
+

ShuffletNetV
2

DDSC-
ASPP none 95.35 96.52 58.24 14.61

DeepLabv3
+

ShuffletNetV
2

DDSC-
ASPP CBAM 95.84 96.87 57.48 13.54

The backbone network of the original DeepLabv3+ was Xception. The mIoU of this 
algorithm for safflower detection was 94.13% and the mPA was 95.67%. After changing 
the backbone network of DeepLabv3+ from Xception to ShuffletNetV2, the mIoU and mPA 
improved by 0.88 and 0.69 percentage points, respectively. The parameters were 
significantly reduced to the original 0.26 percentage points. When ASPP was improved to 
DDSC-ASPP, mIoU and mPA were enhanced by 0.34 and 0.19 percentage points, 
respectively. The number of samples was reduced by 11.91 MB. This shows that DDSC-
ASPP enriched the expression of effective features and enhanced the detection of filaments 
for small targets. To a certain extent, the algorithm-segmentation accuracy was improved, 
and the detection effect was enhanced. Finally, with the introduction of the CBAM, the 
SDC-DeepLabv3+ algorithm enhanced the mIoU and mPA to 95.84% and 96.87% for 
safflower detection, respectively. This significantly improved the linkage of filament 
features in the channel and space, suppressed background interference, and highlighted 
more safflower filaments. In addition, the FPS decreased marginally with the addition of 
DDSC-ASPP alone. These parameters were further reduced by 0.66 MB.
Comprehensive ablation tests showed that SDC-DeepLabv3+ significantly improved the 
mIoU, mPA, and FPS. The parameters of the improved network algorithms were 
significantly reduced. Therefore, the safflower features refined by the SDC-DeepLabv3+ 
algorithm received attention weights in the channel and spatial dimensions and more 
prominent target edge features. This provides support for the fast and accurate localization 
of the picking points.
4.2.2. Comparison of different algorithms with backbone networks
To verify the effectiveness of the feature-extraction network and further analyze the 
segmentation performance of the improved DeepLabv3+, five segmentation algorithms, 
including PSPNet [23], SegNet [24], U-Net [25], DeepLabv3+ [32], and SDC-DeepLabv3+, 
were comparatively tested under the same guarantee of other parameters, as shown in Table 
2.
Table 2. Comparison of different segmentation algorithms and backbone networks.

Algorithms Backbone 
networks mIoU/% mPA/% FPS/(f·s-1) Params/MB

PSPNet ResNet50 92.86 94.99 48.37 176.53
U-Net ResNet50 93.15 95.13 39.65 92.07
SegNet ResNet50 92.69 94.66 47.11 24.26
DeepLabv3+ Xception 94.13 95.64 45.32 206.32
SDC-
DeepLabv3+ ShuffletNetV2 95.84 96.87 57.48 13.54

(1) Performance comparison of different segmentation algorithms
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As shown in Table 2, the PSPNet algorithm failed to completely detect the safflower 
filaments and branches (Fig. 10B). The mIoU and mPA values for the U-Net algorithm were 
93.15% and 95.12%, respectively. The detection results were unclear, and the algorithm 
could not effectively address the irregular and blurred contours of the branches (Fig. 10C). 
By comparison, the mIoU and mPA values of the SegNet algorithm were 0.46% and 0.47% 
lower, respectively. The detection results were consistent; however, sporadic regions were 
incorrectly detected (Fig. 10D). The DeepLabv3+ algorithm used cavity convolution and a 
multi-scale strategy to significantly increase the receptive field; however, depressions and 
burrs remained (Fig. 10E). The accuracy of safflower segmentation was better than that of 
the previous three algorithms, but the parameters and prediction speed may be improved. 
After replacing the backbone network of DeepLabv3+ with ShuffletNetV2, SDC-
DeepLabv3+ effectively decreased the number of parameters and improved the prediction 
speed. Relative to DeepLabv3+, the mIoU and mPA improved by 1.71% and 1.23%, 
respectively, and the FPS improved by 12.16 f/s. This was because the filament was 
characterized, and the fruit balls and branches differed from the background region. 
However, SDC-DeepLabv3+ was more capable of detecting small targets with the accurate 
extraction of edge features. The interference problem of the background information for the 
filament, fruit ball, and branch feature extraction was further solved, as shown in Fig. 10F. 
This proved that the improved algorithm achieved excellent results in terms of both 
segmentation accuracy and prediction speed, making it suitable for deployment in 
embedded robots. The algorithm was guaranteed to have high segmentation accuracy while 
being lightweight.

Fig. 10. Detection results of different segmentation algorithms. (Ⅰ) Sunny day with light, (
Ⅱ) sunny day with backlight, (Ⅲ) overcast day with light, and (Ⅳ) cloudy day with light. 
(A) Original image, (B) resulting image of PSPNet, (C) resulting image of U-Net, (D) 
resulting image of SegNet, (E) resulting image of DeepLabv3+, and (F) resulting image of 
SDC-DeepLabv3+. The arrows indicate areas in which depressions or burrs were detected, 
and the circles indicate areas in which segmentation errors or omissions were detected.
(2) Performance comparison of different backbone networks
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As shown in Table 2, the accuracy of SDC-DeepLabv3+ for safflower segmentation was 
superior to that of the previous four groups of algorithms. The mIoU and mPA improved, 
the number of model parameters decreased, and the prediction speed improved. In terms of 
image-segmentation performance, the mIoU of ShuffletNetV2 was able to achieve 95.84%, 
which was 2.69 and 1.71 percentage points higher than those of ResNet50 and Xception, 
respectively. The mPA was 96.87%, which was 1.75 and 1.23 percentage points higher than 
those of ResNet50 and Xception, respectively. In addition, different backbone networks 
could efficiently segment the safflower images. ShuffletNetV2 exhibited an improvement 
of at least 9.11 and 12.16 f/s over ResNet50 and Xception, respectively, and the parameters 
were reduced by at least 10.71 and 192.78 MB, respectively. The segmentation effectiveness 
and training efficiency showed that the lightweight ShuffletNetV2 feature-extraction 
network was effective and could be used as a backbone network for the safflower image-
segmentation algorithm.
(3) Performance comparison of four different weather and lighting environments
Comparative results of SDC-DeepLabv3+ algorithm and DeepLabv3+ algorithm for MP, 
MR, Miou, mPA under four different weather and lighting environments is shown in Table 
3.
Table 3. Results of algorithm under four different weather and lighting environments.

Weather and lighting
Algorithms Evaluation 

indicators Sunny day 
with light

Sunny day 
with backlight

Overcast day 
with light

Cloudy day 
with light

MP/% 93.12 92.58 90.63 91.12
MR/% 85.47 84.84 82.91 84.05

mIoU/% 93.61 91.70 90.28 91.13DeepLabv3+

mPA/% 93.78 92.35 90.05 90.65
MP/% 95.16 94.08 90.95 93.84
MR/% 87.27 86.60 85.19 86.02

mIoU/% 95.07 94.57 91.26 93.57
SDC-
DeepLabv3+

mPA/% 95.50 94.61 91.35 92.72

As shown in Table 3, the segmentation accuracy of SDC-DeepLabv3+ algorithm was better 
than the DeepLabv3+ algorithm for different weather and lighting environments. The SDC-
DeepLabv3+ algorithm showed the best performance in the evaluation indicators MP, MR, 
Miou, mPA under sunny day with light, which all outperformed the sunny day with 
backlight and overcast day with light by at least 0.32%, and improved the performance 
relative to the DeepLabv3+ algorithm by 2.04%, 1.80%, 1.46%, and 1.72%, respectively. It 
indicated that the present algorithm was better in sunny conditions than in cloudy and cloudy 
conditions, which were more affected by light. Especially in the low light environment, the 
algorithm was difficult to distinguish safflower color and texture features, and mis-
segmentation occurs, as shown in Fig. 10.
4.3. Localization-performance test
The localization accuracy of SDC-DeepLabv3+ at the filament picking point was verified 
under four different weather conditions. The results of the filament picking-point 
localization are shown in Fig. 11. Four images were selected to test the pixel coordinates 
and localization errors of the picking points, as shown in Fig. 11 and Table 4.
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Fig. 11. Location process of picking points with four types of lighting. (A) Sunny day with 
light, (B) sunny day with backlight, (C) overcast day with light, and (D) cloudy day with 
light. Green arrows indicate the barycenter points of the safflower filaments or fruit balls; 
red arrows are projection points of the safflower filament or fruit ball barycenter; and yellow 
arrows are barycenter points coinciding with projection points.
Table 4. Picking point and pixel-localization errors.

The barycenter 
coordinates of 
filament/pixel

The barycenter 
coordinates of the 

fruit ball/pixel

Picking 
point/pixel

Pixel localization 
error/pixelTypes

(X1, Y1) (X2, Y2) (x, y) ex ey e

Sunny day 
with light (336, 135) (335, 265) (333, 199) 0 0 0

Sunny day 
with 
backlight

(244, 206) (270, 311) (256, 258) 0 2 2

Overcast 
day with 
light

(489, 143)
(213, 162)

(475, 214)
(189, 265)

(484, 178)
(209, 216)

0
0

1
5

1
5

Cloudy day 
with light

(331, 194)
(89, 234)

(330, 287)
(84, 289)

(329, 240)
(86, 261)

0
1

2
0

2
1

The test results did not exhibit an error between the picking point and optimal picking point 
obtained by the proposed method on a sunny day with a backlight. The localization accuracy 
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was marginally higher than that of the backlight. The optimal picking-point pixel range was 
manually set. The branch center axis was used as the location of the optimal picking point 
(generally a rectangular range of 30 × 10 pixels). Owing to the changes in lighting 
conditions, sunny days with light improved the light intensity and brightness on the 
safflower, improving the localization of the picking point. However, the error between the 
obtained and optimal picking points was two pixels greater in backlight than on a sunny day 
with light. the backlighting effect increased the intensity and brightness of the safflower; 
however, the filament blended with the surrounding complex environment. 
However, the glare from the backlight caused the filament to overlap with the background 
color, resulting in the localization of safflowers with the same color as the surrounding 
background. The pixel error in the row direction was small, and the optimal picking point 
was between cloudy and sunny conditions with light. Moreover, 1–5 pixel errors occurred 
between the column direction and optimal picking point. In particular, the pixel error was 
largest for cloudy light in the direction of the column. The main reason for this was that the 
light intensity on cloudy days was weak compared with that on overcast days; thus, the color 
of the picking-point site was not prominent. Therefore, the localization of the picking point 
was prone to deviation.
Taking a safflower image from a sunny day with light as an example, a depth-measurement 
test was conducted using the same target filament picking point at different depth distances. 
The depth distance between the center of gravity of the camera and filament picking point 
ranged from 200 to 700 mm. Fifty sets of depth-measurement errors are shown in Fig. 12 in 
the X- and Z-directions. 

Fig. 12. Schematic representation of the error distribution of picking points in the global 
coordinate system.
As shown in Fig. 12, the depth-measurement error of the camera continuously fluctuated 
with an increase in the depth distance between the depth camera and target filament. In 
particular, the depth-measurement error was within 13 mm in the Z direction. When the 
depth distance was 450-510 mm from the depth camera to the target filament, the depth-
measurement error was minimized in the Z direction to less than 1 mm. When the depth 
distance exceeded 640 mm, the depth-measurement error was greater than 7 mm and 
continued to increase with increasing depth distance. The depth-measurement error was 
within 9 mm in the X direction. When the depth distance of the camera from the target 
filament was 450–510 mm, the depth-measurement error was minimized in the X direction. 
With an increase in the depth distance, the measurement error increased. Therefore, the 
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optimal depth-measurement distance was 450–510 mm between the depth camera and target 
filament. The target visual-localization error between these distances was minimized to 
meet the harvesting-accuracy requirements.
4.4. Picking-point real-time localization test
The XYZ three-axis sliding table module was used as the motion platform, the end effector 
as the picking robot, and a depth camera as the vision core, as shown in Fig. 13. The SDC-
DeepLabv3+ algorithm detected real-time safflower scenes in the field under different 
weather conditions. Taking the correct rate, error rate and leakage rate of real-time frame 
detection as evaluation indexes, the real-time safflower detection results are shown in Table 
5.

Fig. 13. Validation tests and effects of safflower-harvesting robots.
Table 5. Real-time detection results under different weather conditions.

Types No. Frame detection 
correct rate/%

Frame detection 
error rate/%

Frame detection 
leakage rate/%

Sunny day with light 119 98.32 0 4.20
Sunny day with backlight 107 94.39 1.87 3.74
Overcast day with light 128 85.16 7.81 7.03
Cloudy day with light 115 88.70 5.22 6.09

Sunny day with light was applied to the safflower to improve the light intensity and 
brightness, which made the safflower color and texture features more obvious with no error 
rate. The correct rate of real-time frame detection is higher than the other cases by at least 
3.93%, and the leakage rate is lower by at least 0.46%. Although the sunny day with 
backlight effect improves the light intensity and brightness on safflower, the filament itself 
blends with the complex surrounding environment, which is not conducive to identification 
and localization. Further analysis revealed that cloudy day with light was weak, making 
safflower color features unremarkable and with less relevant information. However, 
overcast day with light caused the color and texture features of the filaments to be blurred. 
The correct rate of real-time frame detection was the lowest, and the error and leakage rate 
were also relatively high.
The improved DeepLabv3+ was verified to localize the safflower-filament picking points 
under different weather conditions [4], as listed in Table 6. The results showed that the 
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filament-localization and -picking success rates were the highest on sunny days with light, 
at 98.33% and 96.67%, respectively; the localization success rate was 92.50%. The filament 
leakage picking rate was also the lowest, at 3.33%. Furthermore, the color and texture 
features of the filament were blurred because of the influence of light and other shading 
conditions on cloudy days. The filament-localization and -picking success rates were lower 
than those under other weather conditions by at least 1.67% and 2.5%, respectively. The 
filament damage rate exceeded 0.74%.
Table 6. Field-harvesting test data for filaments.

Types No. Localization 
success rate/%

Picking success 
rate/%

Filament 
leakage rate/%

Filament 
damage rate/%

Sunny day with 
light 120 98.33 96.67 3.33 7.07

Sunny day with 
backlight 120 95.00 92.50 7.50 6.01

Overcast day 
with light 120 87.50 85.83 14.17 7.81

Cloudy day with 
light 120 89.17 88.33 11.67 6.14

5. Discussion
Accurate and rapid detection of safflower filaments in complex environments is of utmost 
importance for harvesting on schedule and preventing wilting [1, 3]. Previous studies have 
demonstrated the identification and detection using deep learning methods combining 
background color and contour with top localization methods, which are prone to blindness 
and uncertainty in locating the filament picking point [59]. Previous studies have 
demonstrated improvements in algorithms that can alleviate the impact of complex 
backgrounds on the detection task [4, 8, 13]. However, these methods usually increase the 
model size and computational complexity, resulting in slower detection and causing severe 
filament damage. To solve the difficulty of accurately locating safflower-filament picking 
points with near-color backgrounds and irregular contours in complex environments, this 
study proposes a localization method for safflower filament picking-point detection using 
an improved DeepLabv3+ algorithm. 
(i) SDC-DeepLabv3+ uses a lightweight network, ShuffletNetV2, as the backbone network 
for detection. The background areas, contour edges, and interference with filament, fruit 
ball, and branch segmentation were reduced. 
(ii) The dilated depth-separable convolution added three convolutional branches at different 
sampling rates. A CBAM was introduced to extract information on safflower features under 
different receptive fields. 
(iii) The line segment that minimizes the distance between the barycenter coordinates and 
straight line was solved. The line was considered as the line position of the picking point 
and projected onto this line segment with the midpoint as the picking point.
The test results show that SDC-DeepLabv3+ enhanced the mIoU and mPA to 95.84% and 
96.87%, respectively, compared with the original algorithm. This significantly improved 
the linkage of safflower filament features in the channel and space, suppressed background 
interference, and highlighted the filament more prominently. Furthermore, the FPS 
increased by 12.16 percentage points and the parameters decreased by 192.78 MB. 
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Compared with the other five segmentation algorithms, the SDC-DeepLabv3+ algorithm 
increased the mIoU and mPA by at least 1.71% and 1.23%, respectively [23, 24, 25, 32]. 
The FPS increased by at least 9.11 f/s. In addition, the parameters with only 13.54 MB were 
significantly smaller than those of the other models. A safflower filament picking-point test 
was performed under various weather conditions. The test results showed that the best 
distance was 450–510 mm, average localization success rate was 92.50%, and average 
picking success rate was 90.83%. This indicates that the performance index of the filament 
picking-point localization method improved significantly based on the proposed 
DeepLabv3+ algorithm, which exhibited a high performance stability and good adaptability.
In addition, the performance of the model on the test dataset is better than in training. The 
main reason for this is too much model regularization [60-61]. The difference between the 
model at training, which cuts out the random set of classifiers due to too much Dropout. The 
model at validation is large. However, Dropout will be automatically turned off during 
validation and all weak classifiers will be used, resulting in a relatively high test accuracy. 
Another reason is the lag of small batch statistics and the data preprocessing of the training 
set, such as geometric transformations (translation, rotation) with color transformations 
(contrast, brightness) and other operations [62-63]. Excessive preprocessing leads to 
changes in the distribution of the training set, making the test accuracy relatively high.

6. Conclusions and future work
In this study, an SDC-DeepLabv3+ filament picking-point detection and localization 
method was developed by improving the algorithm in multiple ways to address the problem 
of near-color backgrounds and irregular contours of the picking point. The test verified that 
the algorithm had a good segmentation performance and obvious performance 
improvements over similar existing networks. However, extensive work can be carried out 
for in-depth research in the future:
(1) This study only addressed safflower varieties grown in Xinjiang, China. Owing to the 
differences in the physical features related to the appearance of different safflower varieties, 
the robustness of the segmentation capability of the proposed algorithm must be verified. 
However, extending the application to localize more safflower varieties or even similar 
crops is necessary to obtain more comprehensive results.
(2) The CBAM was introduced to improve the feature extraction of the improved algorithm. 
In future studies, the effects produced when CBAM is inserted at different locations in the 
backbone network should be considered. In addition, the channel or spatial attention 
mechanism should be considered at different positions in the algorithm. The extent of 
influence of the attention mechanism should be further derived from the segmentation 
performance of the improved algorithm.
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