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Abstract: Due to nutrient stress, which is a significant constraint to the development of the global 

agricultural sector, it is now vital to timely evaluate plant health. Remote sensing technology, especially 

hyperspectral imaging technology, has evolved from spectral response modes to pattern recognition and 

vegetation monitoring. This study established a hyperspectral library of 14 NPK nutrient stress conditions in 

rice. The terrestrial hyperspectral camera (SPECIM-IQ) collected 420 rice stress images and extracted as well 

as analyzed representative spectral reflectance curves under 14 stress modes. The canopy spectral profile 

characteristics, vegetation index, and principal component analysis (PCA) demonstrated the differences in 

rice under different nutrient stresses. A transformer-based deep learning network SHCFTT was established 

for identifying nutrient stress patterns from hyperspectral images while being compared with classic SVM, 

1D-CNN, and 3D-CNN. The total accuracy of the SHCFTT model under different modeling strategies and 

different years ranged from 93.92% to 100%, indicating the positive effect of the proposed method on 

improving the accuracy of identifying nutrient stress in rice.  
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1. Introduction

Among the world's most significant field crops, rice contributes to global high-quality development, 

hunger reduction, and environmental variety [1]. This topic has undergone thorough investigation over an 

extended period of time [2-5]. However, the quality of above services depends on the yield and quality of 

rice, but crops often suffer from various biotic and abiotic factors during their growth process [6]. Stress has 

emerged as a significant limiting factor affecting rice production and quality because of the detrimental 

effects of various stresses (biotic and abiotic stress) on crop growth [7]. Among these, nutrient stress, such as 

NPK stress, can lower yield and crop failure while causing corresponding changes in the external 

morphology, biochemical component content, photosynthesis, enzyme activity, and meristem function in rice 

plants [8-10]. Too low NPK content will lead to slow plant growth, resulting in rice yield reduction [11], 

while excessive application of nutrients will lead to overgrowth of plants, prone to lodging, and increase the 

risk of pests and diseases [12]. In addition, nutrient stress may also lead to a decline in soil quality, further 

affecting soil conservation capacity and ecological function [13]. A dependable approach that can track 

minute variations in crop growth, physiology, and production factors is needed to quantify heterogeneity 

quickly and avoid detrimental effects on crop yield and the environment. This approach should also be able to 

pinpoint the primary reasons of these variations, in order to maximise crop management and resource 

investment in the future.

The most widely utilised techniques for tracking crop stress are still field research and physicochemical 

analysis [14]. Despite its high reliability, the former has subjective, labor-intensive, and time-consuming 

problems. The latter monitors crop stress with high accuracy, but it has problems such as cumbersome steps, 

expensive equipment and destructive testing. The patterns of plant nutrient stress can be efficiently observed 

using remote sensing technology. Previous research has shown that hyperspectral data from space [15] 
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ground-based platforms [16] can be widely used for non-biotic stress assessment and vegetation monitoring. 

Furthermore, spectral response pattern variations can be used to infer the variability of the plant health index 

[17], which includes biodiversity [18-21], non-structural carbohydrates, leaf area index, and canopy nitrogen 

concentration. While some recently launched satellites are able to provide sub-meter ground resolution [22], 

other factors that may have an impact on the accuracy of aviation and aerospace image retrieval include the 

satellite's altitude, complex atmospheric conditions, highly mixed farmland communities, and systematic 

errors related to orbit angle and solar radiation pressure on the Chinese BeiDou Navigation Satellite System 

(BDS), Geostationary Orbit (GEO), and Inclined Geostationary Orbit (IGSO) satellites [23]. This implies that 

flaws frequently go undetected until they have already propagated widely. Drones, however, are able to offer 

a ground sample distance (GSD) of less than one centimetre. However, as Barbedo sums up the state of drone 

research and application, this technology also has some drawbacks [24]. Specialised training is necessary for 

drone operation, there may be stringent flight regulations, crash accidents frequently occur, meteorological 

variables can cause impaired picture resolution or potential flight obstruction. Therefore, using in situ or 

ground spectroscopy for close range image measurement is a comparatively feasible option to achieve high 

spatial resolution.

Complexity abounds in hyperspectral imaging (HSI). Extracting relevant information from a vast 

amount of data is the most challenging aspect of the HSI application [25]. In order to demonstrate the 

association between spectral input and plant nutrient stress modes, previous research has effectively 

employed machine learning methods, including support vector machines (SVM), random forest (RF), and 

multiway partial least squares analysis [26-28]. However, Chen et al.'s study compared the stacked 

autoencoder with logistic regression and SVM algorithms, and found that the model's performance is 

determined by preprocessing technology and professional experience [29]. Zhang et al. used savitzky-golay 
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smoothing, the derivative transformation, standard normal variate and other three methods to analyze the 

spectra of winter wheat samples, and found that the preprocessing methods vary depending on the specific 

tasks [30]. There is a pressing requirement to create a comprehensive analytic method that can extract 

characteristics from the original graph and enhance the model's capacity to generalize. Deep learning has 

emerged as a substitute technique in recent years for improving performance in classification and regression 

issues because of its feature learning capability [31]. Deep learning for classification can obtain the same or 

even superior calibration performance compared to conventional machine learning techniques, according to 

studies by Audebert, Le-Saux, and Lefevre [32] and Yang et al. [33]. Deep learning technology's Transformer 

architecture has garnered attention lately. Vaswani et al. have successfully applied transformer architecture to 

practical tasks [34]. Transformer introduction has been the subject of numerous studies aimed at improving 

HSI task solutions. He et al. [35] directly employed the transformer network for HSI classification and 

proposed the HSI-bidirectional encoder representations from the transformer (BERT). In order to capture 

spectral spatial characteristics and advanced semantic features, Sun, Zhao, Zheng, and Wu [36] integrated 

CNN and Transformer. Currently available advanced approaches are not as good as the suggested spectral 

spatial feature tokenization transformer (SSFTT) method for classification performance. The above research 

proves that the combination of CNN and Transforme structure will help to analyze the sample characteristics 

more fully, and can significantly improve the classification performance, which has become a hot technical 

topic for its advantages. Unfortunately, to our knowledge, research on deep learning combined with 

hyperspectral remote sensing technology to identify rice NPK stress has not yet been reported. On the other 

hand, there is a limited number of studies investigating the impact of N, P, and K stress on the spectral 

reflectance of rice leaves [37,38]. The possibility of using spectral information to simultaneously evaluate the 

effects of N, P and K states and their interactions in physiological responses and vegetation indices still need 
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to be completely investigated. Insufficient information in this area can result in misinterpretation when 

assessing the health condition of rice plants and hinder the decision-making processes related to it.

Considering the above background, this study intended to identify different stress modes of NPK in rice 

while using terrestrial hyperspectral images and deep learning. Our work objectives were as follows: (1) 

Conducting field experiments to establish and obtain rice HSI images under different nutrient stresses, (2) 

Using spectral profile, unsupervised visualization and vegetation index to indirectly characterize rice under 

different nutrient stresses, (3) Proposing a SHCFTT model based on CNN and Transformer architecture, 

which creatively combines unsupervised feature extraction module, a spectral-spatial feature extraction 

module, a Gaussian weighted feature tokenizer, and a transformer encoder (TE) module, developing a deep 

learning classification network for identifying nutrient stress patterns in rice, (4) Analyzing the classification 

results of the built deep learning model under different modeling strategies in different years and evaluating 

the performance of the model while comparing with the recognition results of classical SVM, 1D-CNN, and 

3D-CNN.

2. Materials and Methods

2.1 Experimental Site and Design

The experiment was conducted for two years (2021-2022) at the Rice Research Base of Fangzheng 

County, Heilongjiang Province, China, at an altitude of 124±0.7 m (east longitude 128°13 '41 "-129°33' 20", 

north latitude 45°32'46"-46°09'00"). This region falls within the cold temperate continental monsoon climatic 

zone, with an average annual temperature of 3.8℃ . The mean annual precipitation is 579.7 mm, while the 

mean annual sunlight duration is 4446 hours. The soil samples taken from the experimental field at a depth of 

0-20 cm were analysed for their nutrient composition, the results showed that contain organic matter content 

of 42.01 g/kg, an alkali-hydrolyzed nitrogen content of 73.68 mg/kg, available phosphorus content of 54.43 
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mg/kg and available potassium content of 136.9 mg/kg. The Aromatic Rice No.2 (135-day growth period, 

active accumulated temperature 2550℃, 13-leaf variety) was chosen as the experimental rice variety. 

According to the quadratic regression D-optimal design, the NPK stress experiment was divided into 14 

treatments, each with 3 replicates. The experimental sites were divided into 42 small communities, each with 

an area of 24 m2. The specific arrangement is shown in Fig. 1. All rice plants were transplanted through 

manual transplanting on May 16, 2021, and May 20, 2022, respectively. Four levels of N, P, and K nutrient 

stress were produced using urea, heavy superphosphate calcium and potassium chloride with 2 levels being 

the local average fertilization amount obtained through investigation and survey. The whole plot treatment 

included a N0 (extreme), N1 (low), N2 (normal) and N3 (high) N rate (i.e., 0, 5, 10 and 15 Kg/666.67 m2, 

Purity quantity); P0 (extreme), P1 (low), P2 (normal) and P3 (high) P rate (i.e., 0, 1.5, 3 and 4.5 Kg/666.67 m2, 

Purity quantity); K0 (extreme): K1 (low): K2 (normal): K3 (high) K rate (i.e., 0, 3, 6 and 9 Kg/666.67 m2, 

Purity quantity), this is shown on the right side of Fig. 1. The fertilization ratio corresponding to each stage of 

rice is 50% nitrogen+100 phosphorus+50% potassium for base fertilizer, 20% nitrogen for striking root 

fertilizer and 30% nitrogen+50% potassium for tillering fertilizer. During the whole period of plant growth, it 

is important to maintain the height and density of all plots at a level that effectively prevents water seepage, 

water overflow, and the inflow and outflow of nutrients from neighbouring plots. Uniform implementation of 

weed management and disease prevention techniques is necessary across all tiny plots, in accordance with 

their specific requirements.            
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Fig. 1. Experimental location and fertilization test block arrangement. 

2.2 Spectrum Collection

To reduce air interference and capture detailed spectral data for rice nutrient stress studies, we purchased 

a state-of-the-art hyperspectral camera known as SPECIM IQ (model 0604675, Olu, Finland). The SPECIM 

IQ incorporates functionalities, such as the collection, examination, manipulation, and visualisation of 

hyperspectral data. The SPECIM IQ camera was operated using the SPECIM IQ Studio software and 

connected remotely using either USB or WiFi for control. The remote control enables all camera functions 

with the exception of focussing. SPECIM IQ is capable of capturing comprehensive hyperspectral photos 

without the need for external movement or experiencing any slight delays in recording distinct sections of the 

image, whether spatially or spectrally. The hyperspectral image acquired by the camera was a 3D data set 

with 204 bands, 512×512 pixels spatial sampling and a 31◦ by 31◦ field view. It can capture a target from a 

minimum distance of 150 mm to an infinite distance. For a more comprehensive understanding of this 

camera, refer to the research conducted by Wang et al. [39].
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This study utilises the Labsphere Spectralon panel as a reference during field measurements to ensure 

consistent data collection throughout various different conditions and diurnal variations. The panel is chosen 

for its nearly perfect reflectance of 99% within the 250-2500nm band. The factor of utmost importance for 

capturing hyperspectral images of nutritional stress in rice is the variation in irradiance resulting from the 

fluctuations in solar intensity and atmospheric conditions. To mitigate potential atmospheric effects, it is 

advisable to minimise the time lapse between the reference and target measurements, considering that the 

majority of reflectance measurements are currently conducted using a single field of view (FOV). This 

optimisation is also crucial because it must ensure the consistency of illumination feature for the reference 

and target measurements. Furthermore, it is necessary to take into account the adjustment for the 

non-Lambertian behaviour of the standard when using any field reflectance standard.

The reference measurement can be calibrated using Equation (1) in the following manner if any field 

standard  is incorporated into the process:

                               (1)

In this scenario, represents the reflectance of the spectrum adjusted for non-Lambertian field 

reference and  represents the spectrum reflectance factor of the field standard. and represent the 

reflected spectral radiant flux and incident spectral radiant flux respectively. Because in most circumstances, 

and , needs to be applied to before multiplying it with the reflected radiance. 

Sunphotometer observations may be used to quantify the stability of the atmosphere at certain wavelengths.
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After completing fertilization treatments in 2021 and 2022, field information acquisition started on the 

7th day. As shown in Fig. 1 (bottom right), a hyperspectral camera was placed about 70cm above the tested 

object. A total of 420 (5×14×3×2) hyperspectral images of 14 NPK nutrient stresses were collected with a 

data size of approximately 1.4TB. The vast majority of captured hyperspectral images include background 

regions, which must be excluded before calculating the 14 NPK nutrient stress features and deep learning 

recognition classification. Therefore, ENVI was applied to each hyperspectral image to create a binary mask 

layer that could mask the background area including water, Labsphere Spectralon panel and soil. Typical 

masking processing is shown in Supplementary File Fig. 1. Fig. 2 shows the detailed flow of the 

distribution program for obtaining and analyzing hyperspectral images from a ground-based hyperspectral 

camera. In addition, deep-learning classification models require Label making on hyperspectral images. To 

guarantee that the sample labels are of a high quality, manual labelling was exclusively used. The analysis 

Fig. 2. The flow diagram of the study.
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and processing of SVM, 1D-CNN, spectral profiles, PCA, etc. require obtaining representative spectral 

information from the sample. The extraction method reference Wang's et al. [40] research. For the 

atmospheric correction, image splicing and ROIs extraction in this study, the ENVI 5.4 software (Research 

Systems Inc., CO, USA) was used. The Label making was accomplished using the open-source tool labelme 

in Python 3.7 (Python Software Foundation, Wilmington, DE, USA).   

2.3 Method

2.3.1. Spectral Diversity of NPK Nutrient Stress

To illustrate the variations in spectral reflectance of rice caused by different nutrient stressors and how 

the spectral reflectance of stress samples and NPK are related, principal component analysis (PCA) of 

spectral reflectance of rice stress samples from various spectral regions can be extracted and use PCA to 

analyse the spectral variety of rice under various nutrient stresses [41,42]. The variation in the rice stress 

samples' spectrum reflectance across different spectral regions is indicated by the amplitude of the PC 

coefficient. These differences are linked to the biochemical and structural characteristics of rice as well as 

how it interacts with NPK. Therefore, the PC's shifting pattern throughout the wavelength reveals how the 

stress level and NPK affect the reflectance of the rice canopy. Furthermore, the results of the PCA may 

indicate variations in stress kinds and levels that are present in different types of rice and offer the 

interpretability of the rice stress modal identification technique.

2.3.2. Vegetation Index (VI)

When crop growth is under stress, corresponding physiological structures, pigments and enzymes will 

undergo changes. These substances contain rich chemical bonds, which are strongly absorbed in the visible 

and near-infrared regions. These intense vibration bands form recognizable bands in the spectral region [43]. 

The vegetative indices (VIs) that are produced could offer effective and straightforward methods for mapping 
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crop stress, health status, and structure in both qualitative and quantitative domains. Empirical and 

semi-empirical spectral indices, such as the Normalised Difference Vegetation Index (NDVI), Photochemical 

Reflectance Index (PRI), and Plant Sensitivity Reflectance Index (PSRI), are examples of classic vegetation 

indices [44]. NDVI is the most extensively used vegetation index. It is formed from plant's converse spectral 

response patterns in the red and NIR regions of the electromagnetic spectrum. It is highly correlated with 

vegetation greenness, health condition and vegetation productivity [45]. Since mesophyll collapse occurs 

before chlorophyll decline, NDVI serves as an early indicator of plant stress before visible changes in stress 

occur.

                               (2)
                                                                                     

To mitigate the changes related to the sun's diurnal angle, the PRI's applicability was also investigated to 

determine the variations of nutrient stress in 14 types of rice. PRI is a photosynthetic index based on 

narrowband reflectance, obtained by normalizing the difference in reflectance around the 531 and 570nm 

wavelength regions. It is thought to have great potential in directly estimating net photosynthetic rate [46]. 

Net photosynthetic rate is an important indicator to measure photosynthesis capacity as well as vegetation 

productivity, which could reflect the overall growth of plants. The structure and functional state of plant 

leaves improve with increasing nett photosynthetic rate. The PRI index is particularly related to the 

conversion of carotenoids in the lutein cycle, which is crucial for preventing excessive light exposure [47].

                           (3)

Different crop phenotypes might create distinct spectral characteristics according to the Plant Sensitivity 

Reflection Index (PSRI), which is especially sensitive to the ageing stages of the crop. Crop productivity, 

yield analysis, and vegetation canopy stress monitoring can all be done with it [48].
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                                                               (4)

2.3.3. t-distributed Stochastic Neighbor Embedding (t-SNE)

A nonlinear, unsupervised, manifold-based FE technique called t-Distributed Stochastic Neighbour 

Embedding (t-SNE) uses cluster analysis and dimensional reduction to visualise data [49]. It is being used to 

handle HSI data and allows for an overview of complex multivariate data. t-SNE provides an understanding 

of the spatial organisation of the data in a high-dimensional space. In this case, t-SNE helps visualise 

high-dimensional data while preserving its essential structure. The dataset can be utilised for exploration 

because it gives a precise description of the complete dataset.    

2.3.4. Deep Learning Algorithm SHCFTT for Rice NPK Stress Identification

 In this work, a hyperspectral imaging-based deep learning framework named SHCFTT was developed 

to train and verify the recognition of rice stress modes. Fig. 3 depicts the configuration of the network. The 

system primarily has four components: an unsupervised feature extraction module, a spectral-spatial feature 

extraction module, a Gaussian weighted feature tokenizer, and a transformer encoder (TE) module.

(1) Unsupervised Feature Extraction Module

The original rice stress HSI image  is used as input, where M is the width, N is the height 

and D is the spectral frequency band/depth. Each pixel in I has D spectral bands, forming a single category 

vector . Here Z is the number of nutrient stress categories in rice. As a result, the 

D-bands that make up HSI include valuable spectral information. However, it also increases important 

computational complexity. In order to reduce computational complexity and dimensionality, we introduced 

an unsupervised feature extraction method based on superpixelwise PCA (SuperPCA) proposed by Jiang et 

al. [50]. SuperPCA first divided an HSI into multiple uniform regions by superpixel segmentation to obtain 
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the first principal component  that captured the most HSI information. Then, entropy rate super-pixel 

segmentation (ERS) was performed on  to achieve superpixel segmentation. Finally, these 

low-dimensional matrices were rearranged and combined to form a reduced-dimensional hyperspectral 

image. Due to the use of ERS method, when it comes to efficacy and efficiency, it performs better than 

conventional PCA-based overall images. Super PCA reduces the number of bands from D to B, leaving the 

spatial dimension intact. Therefore, we used to represent the Super PCA reduction data cube, 

where X is the modified input after SuperPCA processing and B is the spectral frequency band after 

SuperPCA processing.

Fig. 3. Proposed SHCFTT architecture for modal identification of nutrient stress in rice.

(2) Spectral-spatial Feature Extraction Module

The reduced HSI data cube processed by Super PCA was divided into small overlapping 3D blocks as 

input data for the model, with the actual label ascertained from the central pixel's label. The 3D neighboring 

patches from X were created, which were centered around the spatial position (α, β) and covered 

the window/spatial range and all B-bands. Edge pixels are not retrievable when extracting patches 
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encircling a single pixel, these pixels were thus subjected to filling procedures. The width of the filling was 

(S-1)/2. Therefore, the final quantity of 3-D neighboring patches generated by Super PCA was determined by 

given M × N. The width of each patch varied from α−(S−1)/2 to α + (S−1)/2 and height from β−(S−1)/2 to β 

+ (S−1)/2.     

Three three-dimensional convolution layers, a two-dimensional convolution layer and a Convolutional 

Block Attention Module (CBAM) could extract the spectral spatial features of each 3D neighboring patch. 

The three-dimensional convolution layer's input data was each training sample patch, which had a size of 

S×S×B. In a three-dimensional convolutional layer, the calculated value of the jth feature cube of the i-th 

layer at spatial position (α，β，γ) was determined by:

                        (5)

Here,  represents the activation function and k represents the characteristic cube associated with the 

jth characteristic cube in the (i−1) layer. The width, height and spectral dimension of the three-dimensional 

convolutional kernel are represented as Hi, Wi and Ri, respectively. represents the weight parameter of 

the position ( , , ) related to the k-th feature cube. The bi,j are the deviations.

The number of convolution kernels in the three-dimensional convolutional layer was determined in a 

ratio of 8, 16, and 32. In order to preserve the information from the preceding layer, the number of 

convolution kernels in the subsequent layer was doubled compared to the number in the layer above. The 

dimensions of the convolution kernel were 3 × 3 × 7, 3 × 3 × 5, and 3 × 3 × 3, representing. i.e., two spatial 

dimensions and one spectral dimension. The number of 2-D convolution nuclei was 64, and each nucleus had 

a size of 3×3, representing two spatial dimensions. Employing a diminutive convolution kernel can mitigate 

the superfluous depletion of input information. To increase the number of spectral-spatial feature maps and 

preserve the spectrum information from the input HSI data in the resultant volume, three times of 3D 
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convolutions were utilised. Performing a two-dimensional convolution before the flattened layer for HSI data 

is critical because a significant quantity of spectrum information is retained while successfully differentiating 

spatial information within distinct spectral bands. The CBAM attention module was employed to enhance 

spatial features by selectively emphasising key input information and reducing irrelevant regional responses. 

It was positioned in between the fully connected layer and the two-dimensional convolutional layer. This 

technique can be viewed as a dynamic process of selecting crucial input information.

(3) Gaussian Weighted Feature Tokenizer

The rice stress features extracted after multiple convolution operations consisted of spectral and spatial 

information. The Gaussian weighted feature tokenizer was used to further define the feature mapping as 

semantic markers. It can encode and interpret high-level semantic notions of rice stress HSI feature 

categories. For this part, the input flat feature map is defined as , where u is the height, v represents 

the width and z represents the number of channels. Feature tokens are defined as , where w is the 

number of tokens.

For the feature graph G, T can be calculated using the following formula:

                               (6)

Where, GWa is the execution of their 1×1 dot by dot product and  is the weight matrix 

initialised with a Gaussian distribution. The aim is to map G to semantic groups. The size of the semantic 

group created in this phase is . Comparatively significant semantic components of A are 

highlighted using  after A has been transposed. Finally, T semantic tokens are produced by 

multiplying A and G. Fig. 3 illustrates an example of the conversion process.

(4) Transformer Encoder Module
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To understand the connections between advanced semantic features generated by the Gaussian weighted 

feature tokenizer, the Transformer Encoder Module [36] was used. This module first used position 

embedding to label the location information of each semantic token. Then, the location information PEpos was 

encoded and attached to the token representation. The generated embedded semantic tokens sequence was as 

follows:

                                    (7)

Here, each token is represented by [T1 ， T2 ， … ， Tw]. The token was connected to a learnable 

classification token  that was used to perform the classification task.

Tin was processed through a TE module containing a multihead SA (MSA) block (Fig. 3), an MLP layer 

(MSA block and MLP layer with Residual skip connections). Two normalization layers were used to express 

the deep relationship between modeling semantic markers while having the same size input and output of this 

module. Among them, the SA (Self-attention) mechanism used by the transformer structure can effectively 

extract the correlation between stress feature sequences.

Each token underwent a linear transformation using three weight matrices (WQ, WK, and WV). These 

matrices were partitioned into three parts to construct a 3-D invariant matrix for each token. The components 

of the system consisted of three vectors: query (Q), key (K), and vector (V). The attention score for a certain 

token in Self Attention was computed by taking the dot product of the K vector and Q vector of the tokens. 

The score's weight was determined by the process of normalising the Softmax function. MSA blocks utilise 

multiple sets of weight matrices in the Q, K, and V maps. The multihead attention value was computed using 

the identical operating procedure. Subsequently, combine the attention outcomes of each head, as depicted 

below:

                                    (8)

  POSw
cls

in PETTTT  ,...,, 10

clsT0

   WSASASAConcatVKQMSA h,....,,,, 21

D
ow

nloaded from
 https://spj.science.org on July 01, 2024



Where, h is the head number, W is the parameter matrix and . Where, dK is the dimension 

of K, dw = w (number of tokens). 

Finally, the trained SHCFTT model was operated on new samples and the classification label vector 

was used as the input for the top linear layer of the final classification. By using a linear layer and the 

softmax function, the probability of each sample subjected to each nutrient stress mode was generated. For 

instance, a specimen may have a 90% likelihood of matching stress treatment E and an 8% probability of 

matching stress treatment D. Therefore, each sample was labeled with the most likely nutrient stress name. 

As a result, each pixel in the image was classified as a correlation nutrient stress treatment.

2.3.5. Ablation study

In order to fully demonstrate the superiority of the method and evaluate the interaction between the 

model component modules, ablation experiments of different component combinations were conducted on 

the 2021+2022 mixed data set. In order to highlight the differences of modules, a small sample training 

strategy was used. Seven combinations were considered. The influence of different module components on 

the whole model is analyzed from the perspective of classification accuracy. The whole model is divided into 

five parts: SuperPCA, CBAM, 3D+2D CNN architecture, tokenizer and TE. The specific combinations of all 

models are listed in Table 1. The ablation experiment of the proposed methods were all implemented in 

Python (3.6.5).

Table 1 Improved model of ablation experiment
Improved models

Module
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 SHCFTT

Super PCA √ — — √ √ √ √
CBAM — √ — — √ — √

3D+2D CNN architecture √ √ √ √ √ — √
Tokenizer √ √ √ — — √ √

TE √ √ √ — — √ √

2.3.6. A Classification Model for Comparison (SVM, 1D-CNN, 3D-CNN)

wK ddRW  h

0
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  To evaluate the effectiveness of this method, we adopted a strategy of training and testing on the 2021 

dataset, the 2022 dataset, and the combined dataset of 2021 and 2022. The SHCFTT model's output was 

contrasted with traditional algorithms that spectral information modelling (SVM, 1D-CNN) and spatial 

spectral information modelling (3D-CNN) [51]. 70% and 30% of the data were randomly divided into 

training and testing groups while for small sample training scenarios, 5% and 95% of the data were randomly 

divided into training and testing groups, respectively. Additionally, 10-fold cross validation was used in this 

study to assess the performance of the model. Every experiment was carried out on a Lenovo Thinkpad P15V 

laptop with 16GB of RAM and an NVIDIA Quadro P620 graphics processing unit (GPU).

2.4 Model Assessment

The effectiveness of the model in identifying nutrient stress in rice was assessed in this study using three 

evaluation indicators: overall accuracy (OA), average accuracy (AA), and Kappa coefficient (Kappa). The 

ratio of accurately classified samples to total samples is represented by the OA. The AA is the ratio of the 

total number of samples in each class divided by the number of correctly predicted samples. The average 

accuracy for every class was taken into account at the end. A statistical metric called kappa can be used to 

determine how well the truth map and the classification map agree with one another.

                                            (9)
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In the formula,  represents the number of categories of real rice stress samples, 

 represents the number of categories for predicting rice stress samples, represents the total 

number of stress mode categories,  represents the number of class samples, but predicted as class  

and  represents the number of samples with both real and predicted classes .

3. Results and discussion

3.1 Spectral Diversity of Rice Under Different Nutrient Stress

The alterations in the optical properties of the reflectance spectrum of rice leaves are related to the subtle 

structural features and specific modifications of biochemical elements within the leaves [52]. Hyperspectral 

imaging can reveal a subtle shift in physiological data following stress. as depicted in Fig. 4 and 5. While 

stressed and unstressed rice plants show distinct spectral features, the general trend of the spectral curves is 

the same. In the visible green light region (520-600nm), rice plants have a lower photosynthetic effect, less 

light absorption, and a higher reflectance at 550nm, which results in the formation of a reflection peak, also 

referred to as a "green peak" [53]. At 680nm, in the visible red light region (630-690nm), a reflection valley 

known as the "red valley" forms. This is the spectral band where plants have the strongest chlorophyll 

absorption and photosynthetic activity while having more light absorption and lower reflectivity. The 

hyperspectral curve rises quickly in the 700-930nm near-infrared range, reaching its maximum point at 

760nm while forming a reflection platform. Mesophyll thickness, density, and stomatal structure are among 

the anatomical features that affect the internal light scattering of the leaves, which in turn affects the 

reflectivity of this region [54].

1,2,3, ,i n 
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ijx i j
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After collecting on-site data, the spectral reflectance curves of rice under various nutrient stressors were 

extracted and compared in Fig. 5. Fig. 5 shows the curves related to the spectral profiles of rice including the 

reference treated F (N2P2K2) and samples under extreme as well as compound nutrient stress. The spectrum 

responses of leaves varied under different nutritional stressors, resulting in distinct spectral profiles. During 

periods of nutritional stress, the leaves of A (N0P0K2) and B (N0P2K2) exhibited increased reflectivity in the 

green and red regions of the electromagnetic spectrum. This increase in reflectance suggests a decline in the 

photosynthetic process and a reduced capacity of rice plants to absorb red light. The stress treatments A and 

(a)

(b) (c)

Fig. 4. Spectral reflectance and PCA analysis of all datasets. (a) Average spectral reflectance and 

coefficient of variation (CV) of all datasets. (b) The first 10 principal components of rice reflectance 

under nutrient stress. (c) The principal component coefficient of the first three PCs with the horizontal 

green line indicates spectral regions with the highest proportion of variance of rice reflectance.
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B exhibited the least amount of reflectance in the 740-900nm range, indicating the potential breakdown of the 

mesophyll structure in rice leaves. The stress treatments A and B exhibited the most minimal reflectance 

throughout the 740-900nm range, indicating the presumed degradation of the mesophyll structure in rice 

leaves. Similarly, the spectral profiles of rice canopies exhibited distinct spectral responses when subjected to 

various nutrient pressures. The alterations in the visible light spectral profile, pertaining to health, can be 

regarded as either an augmentation or reduction in photosynthesis, this suggests that modifications in leaf 

characteristics resulting from nutrient stress can be identified and examined by observing variations in visible 

light reflectance. Furthermore, the reduction in photosynthetic activity can also be shown by a drop in the 

fluorescence energy around the wavelength of 760nm. Chlorophyll absorbs solar energy and utilises it for 

carbon fixation and heat dissipation, then releases longer wavelength emittance sources in the form of 

chlorophyll fluorescence [55]. The third stage of photosynthesis involves chlorophyll fluorescence, when 

plants emit low-energy photons that can provide information into their overall health. Except for stress 

treatment N (N2P1K1), other stress treatments showed a significant decrease near 760 wavelength compared 

to baseline treatment F (N2P2K2), indicating a reduction in fluorescence release due to the decline of 

photosynthesis. On the other hand, the near-infrared region of all nutrient treatment groups showed a sharp 

decrease and increase as well as very subtle changes. The above changes are related to the characteristics of 

NPK. A nitrogen deficiency in leaf cell proteins usually leads to a decrease in both leaf chlorophyll 

concentration and dry matter protein content [56], due to the substantial allocation of nitrogen in these 

proteins. Insufficient phosphorus levels have an adverse effect on both cell division and growth in plants, as 

well as the number of cells per unit of leaf area [57]. K is responsible for initiating and/or improving many 

enzymes that affect the levels of sugar and starch in plants [58]. These different biochemical and 

physiological changes are related to different nutritional stresses, which may lead to subtle differences in 

D
ow

nloaded from
 https://spj.science.org on July 01, 2024



canopy spectra.

The spectral diversity of leaves reflects the trend of changes in leaf reflectance under different nutrient 

stress types and levels. The PCA of all rice nutrient stress data showed that the first three principal 

components (pc) represented 99.72% of the sample reflectance variance (Fig. 4b). Fig. 4c further illustrates 

the spectral regions related to the first three PCs. PC1 and PC2 dominated the main changes in rice leaf 

reflectance in the visible and near-infrared regions. VIS spectra were related to the vibration, winding and 

twisting of O-H, C-H and N-H, respectively. The changes in NIR spectra reflected the stretching vibration of 

the third overtones of O-H and C-H of rice leaf structure and water [59]. PC1 was negative before 710nm and 

then positive except for the area near 940nm, having a larger amplitude in the near-infrared region. PC2 was 

negative after 880nm. The main spectral characteristics of PC3 corresponded to the visible blue-purple light 

region in the 400-520nm region, which was related to the auxiliary processes of photosynthesis such as lutein 

and carotenoids [17].

Specifically, leaf reflectance from NPK single or compound stress from stress treatment A (N0P0K2) to 

Fig. 5. Average spectral curves of rice under different nutrient stress.
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stress treatment N (N2P1K1) exhibited extremely complex patterns on the 3 PCs (Fig. 6). Fig. 6 B (N0P2K2) - 

C (N1P2K2) - F (N2P2K2) - K (N3P2K2) showed the changes in leaf reflectance in response from 0 levels to 3 

level N stress. Different N stresses showed similar PC1, but PC2 and PC3 showed different patterns, 

especially at around 550nm and in the VIS region. Fig. 6 D(N2P0K2)-E(N2P1K2)-F(N2P2K2)-G(N2P3K2) and 

H(N2P2K0)-I(N2P2K1)-F(N2P2K2)-J(N2P2K3) showed the spectral diversity of P and K stressed leaves from the 

0 levels to the 3 levels, respectively. P stress showed a similar pattern in the 750-900nm region of PC2 and K 

stress showed a similar pattern in the 900-950nm region of PC2. In addition, PK stress showed a similar 

pattern in the 900-1000nm region of PC3 but different patterns in other regions. Leaf spectral diversity also 

varied with stress types. The B(N0P2K2), D(N2P0K2), H(N2P2K0) exhibited similar patterns in the 398-700nm 

region at PC3, but exhibited different patterns at PC2. The proportion of variation covered by the first 3 pcs 

differed according to the type and extent of nutrient stress, with PC1 accounting for 98.18% - 98.97% of the 

variation in spectral reflectance due to the adoption of the same type of rice cultivars with similar proportions 

of variance. PC2 and PC3 covered only a small part of the spectral reflectance variance (0.54-1.03% and 

0.29-0.61%) but reflected the diversity of spectra from different stressed leaves. It might be related to some 

subtle absorption properties of proteins and tissue structures induced by NPK biochemical activities.
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3.2 Vegetation Index Analysis

The hyperspectral images collected by SPECIM IQ can provide a rich spectral message, especially in the 

visible and near-infrared spectral regions. Apart from the 204 spectral bands of HSI, three vegetation indices 

were calculated to heighten the spectral feature space and study stress patterns by combining information 

from different bands. Fig. 7 showed a representative pattern of changes in rice plants under different nutrient 

stresses over a two-year period using NDVI, PRI and PSRI. For example, Fig. 7 B (N0P2K2) - C (N1P2K2) - F 

(N2P2K2) - K (N3P2K2) showed an NDVI trend of N stress from 0 to 3 levels, with treatment B being the 

lowest, treatment C reaching its peak, and treatment F as well as treatment K both being similar in the middle 

position. Stress treatment D (N2P0K2) - E (N2P1K2) - F (N2P2K2) - G (N2P3K2) showed a NDVI trend from 0 

Fig. 6. The first three principal components (PCs) explain the highest variance ratios for different spectral 

regions obtained from different nutrient stress types and levels.
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to 3 levels of P stress, with the exception of treatment F, which was the lowest, the other three levels showed 

similar values. The stress treatment H (N2P2K0) - I (N2P2K1) - F (N2P2K2) - J (N2P2K3) showed an NDVI 

trend from 0 to 3 levels of K stress, with NDVI values sorted as F<G<H<I. As the degree of K stress 

increased, the PRI index continued to decrease for the PRI index. In addition, PSRI also had a good indicator 

for K stress. The PSRI index continued to rise with the increase in the degree of stress. During the growth 

stage of rice, almost all stress-treated rice leaves exhibited high reflectance in the upper part of the canopy, 

making it difficult to distinguish between diverse stresses. But the upper canopy spectrum of rice varied due 

to different types and degrees of nutrient treatment, which created the possibility of distinguishing different 

nutrient stress. In addition, during the growth period of rice, the lower part of the canopy and the root system 

are hidden in the water. Therefore, the spectral response of rice under different nutrient stresses is mainly 

composed of the upper canopy and exhibits differences between different nutrient stresses.

(a) NDVI

D
ow

nloaded from
 https://spj.science.org on July 01, 2024



(b) PRI

(c) PSRI

Fig. 7. Three Vegetation index of rice under different nutrient stress. (a) Normalized difference 

vegetation index (NDVI). (b) Photochemical reflectance index (PRI) and (c) Plant senescence 

reflectance index (PSRI). For 14 nutrient stress treatments, the average vegetation index 

(represented by a green triangle) comes from all samples under one stress treatment. The x-axis 

label displays the stress treatment and the y-axis represents NDVI, PRI and PSRI.

3.3 Unsupervised Data Visualization

Fourteen clusters were identified in the rice nutrient stress spectrum, each of which was assigned a stress 

label. In order to comprehend variations in spectral response, the unsupervised visualisation process looked 

more closely at natural patterns between sample data. Fig. 8 showed a complex cluster scenario. In line with 
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the data shown in the previously mentioned original spectral map, all of the stressed sample's clusters were 

extremely close to one another and poorly separated. The similarity of fingerprints under various stress 

conditions could be the cause. The spectral data of rice leaves under various nutrient stresses showed varying 

degrees of correlation and overlapped information, which could potentially impede the classification process. 

Furthermore, disparities were observed in the nutrient stress data, which could be explained by a variety of 

factors, including the structural alterations in leaves brought about by various NPKs, the "fingerprint" 

features of the samples, and the great degree of variability found in natural samples. These data visualisation 

graphs have demonstrated, on the whole, the separability and aggregation pattern of rice data under various 

nutrient stresses. It is challenging to fully differentiate between them using the original spectrum alone, 

though, regardless of the type of stress. As such, identification via end-to-end modelling is required.

3.4 Ablation Experiments Results

Models without 3D+2D CNN architecture and CBAM have the worst classification accuracy (Case 6). 

In the absence of SuperPCA and CBAM, this model (Case 3) outperforms the first Case (Case 6). On the 

Fig. 8. Unsupervised visualization of rice spectral information under 14 nutrient stress treatments using 

t-SNE.
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basis of Case 3, by adding Case 2 of CBAM module, the classification accuracy AA is increased by 1.54%. 

The comparison of Case 1 and Case 4 models shows that using Tokenizer and TE modules, the classification 

accuracy of the model is improved by 3.86%. The comparison between Case 2 model and SHCFTT shows 

that SuperPCA, the unsupervised feature extraction module, improves the classification accuracy of the 

model by 6.65%. Compared with Case 1 and Case 6, the role of 3D+2D CNN architecture in spectrum-space 

feature extraction module is highlighted, and the classification accuracy of the model increases by 11.1%, 

which indicates that the CNN architecture contributes to the improvement of performance. Case 1 achieves a 

classification accuracy of 93.17%, which is considered relatively good, but this accuracy is slightly lower 

than our proposed method. In summary, the analysis of the ablation results (Table 2) further confirms the 

validity of the proposed SHCFTT model and clearly demonstrates the role and function of these key modules.

Table 2 Results of ablation experiment

IndicatorsMethods

Average accuracy AA (%) Overall accuracy OA (%) Kappa coefficient (×100)

Case 1 93.17 93.19 92.66

Case 2 87.44 87.41 86.44

Case 3 85.90 85.86 84.78

Case 4 89.31 89.32 88.50

Case 5 90.04 90.02 89.25

Case 6 82.07 82.07 80.69

SHCFTT 94.09 94.08 93.94

3.5 A Deep Learning Classification Network for Identifying Nutrient Stress in Rice

The test 8 nutrient stress identification models were trained for each round of sampled dataset. By 

combining nutrient stress datasets from different years (2021+2022), the other 4 models were trained and 

tested. The overall accuracy (OA), average accuracy (AA) and kappa coefficient were introduced to evaluate 
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the performance of the model. The larger the values of each indicator, the better the identification effect. 

Table 3 presented the rice stress recognition results of SVM and 1D-CNN models trained using spectral data 

as well as 3D-CNN and SHCFTT models trained using spatial spectral data. All models had shown very high 

accuracy in training and testing Single year datasets. The overall training accuracy OA of a single model was 

between 99.54 and 100%. The overall validation accuracy OA was between 89.85 and 100%. The overall 

accuracy OA, average accuracy AA and Kappa coefficient of the SHCFTT model in the Single year datasets 

were all 100%. The performance of the developed rice nutrient stress deep learning recognition model was 

evaluated using hyperspectral images from a biennial dataset (2021+2022). The overall accuracy OA of all 

classification models was above 90.21%. The average accuracy of AA was above 90.20% and the Kappa 

coefficient was above 89.46. This indicates that the classical classification model can accurately identify rice 

with different stress levels. However, the SHCFTT model designed in this article had higher recognition 

accuracy than other models in the biennial dataset while having 100% overall accuracy OA, average accuracy 

AA and Kappa coefficient OA. This indicates the positive role of the proposed model architecture in 

identifying nutrient stress in rice.

Table 3 Results of rice nutrient stress identification model.

Training set Testing set

Average accuracy AA 

(%)

Overall accuracy OA (%) Kappa coefficient (×100) Average accuracy AA (%) Overall accuracy OA (%) Kappa coefficient (×100)

2021 99.82 99.82 99.82 89.81 89.85 89.07

2022 100.00 100.00 100.00 90.90 90.25 89.50 

SVM

2021+2022 99.54 99.54 99.51 90.20 90.21 89.46

2021 99.94 99.94 99.94 93.30 93.32 92.81

2022 99.88 99.88 99.88 94.11 94.12 93.67

1D-CNN

2021+2022 99.88 99.88 99.88 92.87 92.92 92.38
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2021 100.00 100.00 100.00 97.78 97.76 97.60 

2022 100.00 100.00 100.00 97.32 98.28 97.08

3D-CNN

2021+2022 100.00 100.00 100.00 96.33 96.33 96.05

2021 100.00 100.00 100.00 100.00 100.00 100.00

2022 100.00 100.00 100.00 100.00 100.00 100.00

SHCFTT

2021+2022 100.00 100.00 100.00 100.00 100.00 100.00

3.6 Identification Results Under Small Training Samples  

Most of the practical problems can now be solved using machine learning techniques, especially deep 

learning techniques, as long as the available data adequately represents the changes taking place in practice. 

Therefore, the major bottleneck in utility development is the size and quality of the data set used to train and 

test the model [60]. In general, the data available is too limited to generate robust models. Moreover, 

supervised learning requires proper labeling of this data. In agriculture, the task is even more challenging 

because of the harsh field environment, test cycles and costs. Moreover, visual markers of interest are not 

always present. Controlled trials can minimize this problem by limiting the presence of empty spectrum 

signals of interest induced by nutrient inputs. However, few labeled instances still pose significant challenges 

in practical scenarios. Therefore, we discussed the results of classification models with small training 

samples, where the training samples only account for 5% of the total samples and summarized the results in 

Table 4. At this point, the classification results of all models in a single dataset showed varying degrees of 

decline, but surprisingly, the overall accuracy of the developed SHCFTT model was over 93.92%, the 

average accuracy was over 93.93% and the Kappa coefficient was above 93.77%. The accuracy rates of 

SVM, 1D-CNN, 3D-CNN and SHCFTT in the two-year dataset (2021+2022) were 35.99%, 28.01%, 71.73% 

and 94.08%, respectively. From the experimental results, it can be seen that with the sharp decrease in 

training data, the performance of each model decreased, whether in a single dataset or a two-year dataset. 

Even with extremely limited training samples, SHCFTT can still achieve identification accuracy that exceeds 
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the comparison method. This proves the effectiveness and robustness of the proposed SHCFTT in this article 

under small sample conditions. It will be useful for its application in practical scenarios. 

Table 4 Identification results under small training samples

Training set Testing set

Average accuracy AA (%) Overall accuracy OA (%) Kappa coefficient (×100) Average accuracy AA (%) Overall accuracy OA (%) Kappa coefficient (×100)

2021 100.00 100.00 100.00 37.81 37.80 33.02

2022 100.00 100.00 100.00 37.17 37.15 32.32

SVM

2021+2022 100.00 100.00 100.00 35.99 35.99 31.06

2021 100.00 100.00 100.00 31.01 30.99 25.68

2022 100.00 100.00 100.00 34.35 34.37 29.32

1D-CNN

2021+2022 100.00 100.00 100.00 28.02 28.01 22.48

2021 100.00 100.00 100.00 74.79 74.73 72.79

2022 100.00 100.00 100.00 75.25 75.20 73.30 

3D-CNN

2021+2022 100.00 100.00 100.00 71.75 71.73 69.56

2021 100.00 100.00 100.00 93.93 93.92 93.77

2022 100.00 100.00 100.00 94.32 94.28 94.08

SHCFTT

2021+2022 100.00 100.00 100.00 94.09 94.08 93.94

4. Discussion

4.1 Spectral Diversity of Rice Leaves Under Nutrient Stress

The spectral properties of plants change with various nutrient stresses and levels. In agricultural 

environments, variations in vegetation phenology and productivity are driven by the shedding of old leaves 

and the emergence of new leaves while the specificity of photosynthesis is explained by the growth of leaves 

and the accumulation of matrix elements [61]. Most nutritional stresses lead to apparent chlorosis [62-64], 

resulting in similar spectral characteristics. Masoni, Ercoli and Mariotti [65] examined the effects of iron 

(Fe), sulfur (S), magnesium (Mg) and manganese (Mn) deficiency on leaf reflectance of barley, wheat, corn 

D
ow

nloaded from
 https://spj.science.org on July 01, 2024



and sunflower. They found that nutrient shortage lowered Chl concentration in all species, resulting in an 

increase in reflectance between 400 and 1100nm and a shortened red edge location. This makes it tough to 

differentiate distinct nutritional stress states using canopy spectra. Nevertheless, the biochemical and 

physiological changes caused by different nutrient stress in crops are different. In Fig. 4, 5, 6, and 7 of this 

article, the spectral profiles, vegetation indices and PCA data of rice leaves under different nutrient stresses 

were presented, which showed that the visible light region of 500-670nm and the near-infrared region were 

the most prominent areas of rice nutrient stress. They can reflect the spectral diversity of rice nutrient stress 

leaves and indirectly reflect the physiological activity of rice, which may play a crucial role in identifying 

rice nutrient stress. In addition to the diversity of rice nutrient stress spectra, the characteristics of nutrient 

stress spectra may also vary with changes in plants [63,66]. However, the leaf spectrum of plants is a 

phenotypic expression of the total signal of chemical and structural components generated over time, 

reflecting the chemical adaptability of plants to environmental conditions, including factors such as climate, 

nutrient availability and biological interactions [67]. Therefore, as the external environment or the plant's 

internal nutritional pattern changes, spectral variation will also provide greater differentiation ability. 

high-resolution terrestrial hyperspectral techniques can even extend plant phenotype monitoring from nutrient 

stress identification to species, function, and gene diversity dimensions [68]. For the purpose of remote 

agricultural nutrient stress analysis, a thorough grasp of the physiological and biochemical reactions of crops 

to various nutritional stresses as well as the connection between their spectrum properties, is thought to be 

essential. Future studies should focus on bridging the gap between sensitive spectral characteristics and 

possible physiological and biochemical responses of crops to various nutritional stressors.

4.2 SHCFTT Model Capability for Identifying Nutrient Stress in Rice 

The classification of HSI is a fundamental analytical task, which has gained a lot of traction. 
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Nevertheless, because of the similarity between high-dimensional features, spectra and difficulty in obtaining 

labeled samples, it has been difficult to classify HSI data in an efficient and precise manner for many years. 

To address these issues, some classic classification models and deep learning classification models have been 

used. In this work, we provided evidence that the nutrient stress mode of rice can be accurately identified 

through rapid and non-destructive HSI measurements, and the methods such as spectrum profile, vegetation 

index, and no supervision and visualization were used as mappings for nutrient stress responses. Three classic 

classification algorithms were studied and SHCFTT models were developed to determine the relationship 

between target stress modes, and spectral and spatial features. The overall accuracy OA, average accuracy 

AA and Kappa coefficient of each round of classification indicated that classic hyperspectral classification 

methods based on spectral information did not utilize the spatial information of hyperspectral images, 

resulting in limited classification accuracy. Specifically, the classic methods used in this article for 

identifying rice stress using spectral information, SVM and 1D-CNN had an overall accuracy OA of less than 

94.12% under 70% training sample conditions and less than 37.80% under small sample training conditions. 

The deep learning classification model 3D-CNN, which utilized the spatial spectral feature information of 

hyperspectral images had an overall accuracy OA of over 96.33% and 71.73% under 70% training sample 

conditions and small sample conditions, respectively. It was compared with advanced plant nutrient stress 

detection. For example, Anusia et al. [69] used artificial neural network (ANN) to identify nutrient stress in 

oil palm plants, and the accuracy of the established model for the detection of optimal nitrogen and excess 

nitrogen in oil palm plants reached 100%. However, the accuracy of this model is only 70% for the 

classification of nitrogen and potassium deficiency. The SHCFTT model developed in this article was based 

on a transformer network architecture, and demonstrates the role of each module in SHCFTT network 

architecture through ablation experiment. In general, the model combines unsupervised feature extraction, 
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spectral-spatial feature extraction based on CNN and CBAM with transformer-based feature learning. The 

network's underlying feature selection was guided by extracting deep-level abstract spectral spatial features, 

utilizing feature labeling and TE modules for feature learning. A 100% classification accuracy of a single 

year and biennial datasets was achieved under 70% training sample conditions. The classification accuracy of 

a single year and biennial datasets was greater than 93.92% under small sample training conditions. This 

model can distinguish nutrient deficiency/excess from appropriate rice in the early stages before obvious 

symptoms of nutrient stress appear. In addition, such predictions can be used in the area of global food 

security, especially in the detection of crop stress in the field. This model can also provide a more reliable 

way for high-throughput and non-destructive phenotype research.

4.3 Potential Applications and Future Prospects

The SHCFTT model has demonstrated a high level of accuracy in hyperspectral analysis. Consequently, 

it is expected to yield superior results in recognising rice nutritional stress compared to the use of 

multispectral aerial images in rice nutrient stress tests. Multiple investigations, for example, Ferreira et al. and 

Awad et al. used different remote sensing data to map tree species in forests, have shown that the precision of 

plant mapping has been enhanced by utilising plants with higher spectral resolution [70,71]. However, one of 

the main limitations of the widespread use of hyperspectral for nutrient stress identification is that it is 

difficult to determine a reliable calibration procedure and spectral algorithm under many growth conditions 

such as soil type, growth stage, variety and weather. In the operating environment, remote sensing alone 

cannot distinguish whether the nutrient status of time and location is related to soil, growth period, weather, 

variety and management. Therefore, it is crucial to understand the differences between these factors and 

develop a universal algorithm, which may be achieved by physiological analysis, crowdsourcing technology 

and transfer learning. We could achieve this in the future by developing objective solutions, resource 
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productivity improvements and serving sustainable agriculture.

5. Conclusions

This study utilized terrestrial hyperspectral remote sensing technology to collect a total of 420 

hyperspectral images of rice under different nutrient stresses from 2021 to 2022. Spectral profiles, vegetation 

indices, PCA and other methods were used as mappings for nutrient stress responses to characterize the 

spectral diversity and physiological activity of rice leaves under nutrient stress. In addition, a 

transformer-based deep neural network SHCFTT was developed to identify and classify rice nutrient stress 

patterns from hyperspectral images. The results were compared with classical SVM, 1D-CNN and 3D-CNN 

in different year datasets. Considering the identification of nutrient stress in rice regardless of the modeling 

strategy, the SHCFTT model always maintained the best predictive performance with an overall accuracy OA 

ranging from 93.92 to 100%. The proposal of these methods not only has a positive effect on identifying 

nutrient stress in rice but also has implications for monitoring and decision-making of crop health status in 

the field and precision agriculture. In addition, this was a typical case study of rice nutrition coercion in a 

highly diversity in intense field conditions. Contributed to the development of hyperspectral imaging crop 

phenotype research and precision agriculture field information perception.
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