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Building, as an integral aspect of human life, is vital in the domains of urban management and urban 
analysis. To facilitate large-scale urban planning applications, the acquisition of complete and reliable 
building data becomes imperative. There are a few publicly available products that provide a lot of 
building data, such as Microsoft and Open Street Map. However, in East Asia, due to the more complex 
distribution of buildings and the scarcity of auxiliary data, there is a lack of building data in these regions, 
hindering the large-scale application in East Asia. Some studies attempt to simulate large-scale building 
distribution information using incomplete local buildings footprints data through regression. However, the 
reliance on inaccurate buildings data introduces cumulative errors, rendering this simulation data highly 
unreliable, leading to limitations in achieving precise research in East Asian region. Therefore, we proposed 
a comprehensive large-scale buildings mapping framework in view of the complexity of buildings in East 
Asia, and conducted buildings footprints extraction in 2,897 cities across 5 countries in East Asia and 
yielded a substantial dataset of 281,093,433 buildings. The evaluation shows the validity of our building 
product, with an average overall accuracy of 89.63% and an F1 score of 82.55%. In addition, a comparison 
with existing products further shows the high quality and completeness of our building data. Finally, we 
conduct spatial analysis of our building data, revealing its value in supporting urban-related research. The 
data for this article can be downloaded from https://doi.org/10.5281/zenodo.8174931.

Introduction

As important carriers in human life, buildings play a tremen-
dous role in fields such as urban sustainable development, build-
ing energy modeling, and urban planning [1–3]. To facilitate 
precise analysis and exploration of urban spatial structure across 
different disciplines, it is imperative to have access to high-
quality, accurate, and comprehensive vector data of buildings 
[4]. Furthermore, the urbanization in the digital age has led to 
an escalating demand for dependable information of building 
rooftops [5–7]. Acquiring precise building rooftops information 
is vital for assessing the trends of urban and rural development 
and safeguarding the development of urban and rural ecosys-
tems [8–10]. To provide urban planning suggestions in large-
scale applications, meticulous analyses of spatial distribution 
and development trends of buildings are necessary. However, 
the execution of these analyses requires a substantial amount of 
reliable building data that is currently lacking. Consequently, 
generating a highly accurate large-scale building product holds 
immense significance for ongoing urban research [11–13].

Some efforts have been made to generate large-scale building 
data. Nevertheless, there are still limitations that hinder their 
applicability in East Asian countries. For instance, Microsoft has 
developed online building data encompassing over a billion 
buildings across numerous countries worldwide but lacks build-
ings in East Asia and the neighboring regions, resulting in spatial 
deficiencies. The OpenStreetMap (OSM) proposed the global 
building data online, covering a substantial portion of the exist-
ing human settlements in the world [14]. However, OSM build-
ing data exhibits the highest completeness in European and 
North American regions but drastically low completeness in 
Asia, particularly East Asian countries [15,16]. Furthermore, 
while the information of buildings and various man-made struc-
tures has been readily available for urban areas, a important 
number of rural buildings remain unmapped in OSM systems 
[17]. In summary, the quality of existing data in East Asia is 
inadequate, failing to meet the requirements of relevant fields 
[18]. Therefore, it is crucial to enhance the completeness of 
building footprints data in East Asian countries, especially in 
China. Although Zhang et al. [19] has provided building data 
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in selected 90 Chinese cities, the coverage area still remains lim-
ited and the complete distribution of buildings is lacking, making 
it impossible to conduct urban analyses on a national scale. The 
availability of refined building footprints data holds important 
potential for various research applications, including rooftop 
photovoltaic (RPV) potential evaluation, building-level function 
classification, and analysis of urban building forms. However, the 
incomplete buildings footprints data in East Asia limits the preci-
sion of large-scale applications and analysis in this region. For 
instance, referencing to Zhang et al. [20], the evaluation of large-
scale RPV potential is hindered by insufficient detailed build-
ings data in certain areas, leading to inaccuracies in assessing 
specific buildings area and related information. They employ 
regression techniques to simulate and generate buildings area 
and other information as substitute data using a limited amount 
of error-prone buildings data. It is obvious that the presence 
of data errors impacts the accuracy of the final results. If more 
complete buildings footprints data can be used in these regions, 
more accurate large-scale analysis results can be obtained, 
and more valuable and accurate information can be provided 
to other studies. Therefore, further efforts are needed to generate 
more complete and accurate buildings data.

Based on the aforementioned analyses, it is evident that 
existing products primarily focus on European and American 
regions. Moreover, building completeness in East Asia is gener-
ally lower than in other regions. We identify 3 main factors 
contributing to this situation: (a) Training data in East Asia are 
scarce and of relatively poor quality, making it difficult to train 
a reliable model for large-scale mapping of buildings in East 

Asia. The Inria [21] and Massachusetts [22] datasets do not 
include East Asian data. The WHU [23], DeepGlobe [24], and 
Spacenet [25] datasets have limited coverage for these regions, 
and their image resolution and labeling quality are not sufficient 
to train a robust model and impede effective buildings extrac-
tion in East Asia. Given that existing building extraction mod-
els are predominantly supervised machine learning methods, 
discrepancies in training data significantly impact the mapping 
results in East Asian regions. Directly utilizing the model train-
ing by the current open dataset only allows for the extraction 
of a limited number of buildings in East Asia that possess clear 
boundaries, well-defined semantics, and standardized shapes. 
However, it fails to accurately extract the complex small-scale 
and diverse buildings that are characteristic of East Asia. 
Besides, the semantic information of these buildings is often 
lost, leading to significant errors. Accurate building extraction 
in East Asia still remains a huge challenge. As a result, in East 
Asian regions, the online building product is lacking and with 
subpar data quality. (b) The building appearances in European 
and American regions show great differences from those in 
East Asia. East Asian regions, particularly China, present 
diverse building appearances in terms of size, shape, and irregu-
lar distribution, making it challenging to accurately extract the 
features of buildings. Figure 1 illustrates the building appear-
ances with regularity and distinct characteristics, along with 
noticeable gaps between buildings in European and American 
regions. Conversely, the East Asian regions showcase complex 
building layouts, substantial differences in appearance, size, 
and density, blurry gaps between buildings, and inconsistent 

Fig.  1. Google Earth images with different distribution in different regions. (A) European and American regions. (B) East Asian regions. The images illustrate the building 
appearances with regularity and distinct characteristics, along with noticeable gaps between buildings in European and American regions. Conversely, the East Asian regions 
showcase complex building layouts, substantial differences in appearance, size, density, blurry gaps between buildings, and inconsistent characteristics. Images are from © 
Google Earth 2021.

D
ow

nloaded from
 https://spj.science.org on July 03, 2024

https://doi.org/10.34133/remotesensing.0138


Shi et al. 2024 | https://doi.org/10.34133/remotesensing.0138 3

characteristics. Additionally, the coexistence of high-rise and 
low-rise buildings further amplifies feature differences, signifi-
cantly impacting model extraction capabilities. Furthermore, the 
presence of urban villages complicates precise building extraction. 
(c) The quality of open-access images in the East Asian regions, 
especially China, is inferior to that in European and American 
regions. Figure 2 demonstrates some Google Earth images at the 
same resolutions in different regions, highlighting the relatively 
poor quality of the images in East Asia, which poses challenges 
for accurate building feature extraction. The aforementioned dis-
parities in building characteristics contribute to the difficulty of 
building extraction tasks in East Asian regions, resulting in a scar-
city of publicly available large-scale building data. Hence, it is 
imperative to overcome the challenges associated with mapping 
buildings in East Asian regions and obtain complete vector data 
for buildings in East Asia to better support global research.

In recent years, compared with traditional methods, the 
ever-improving deep learning methods perform better in build-
ing extraction [26–28], making it possible for large-scale build-
ings mapping. For instance, Girard et al. [29] proposed a frame 
field learning network with a direction learning strategy that 
produces high-quality building footprints results. Jiang et al. 
[30] developed a boundary-enhanced network with a boundary 
postprocessing module to enhance the extraction of building 
boundaries. Guo et al. [31] introduced a coarse-to-fine bound-
ary refinement network for more accurate building contours. 
Liu et al. [32] incorporated vector line learning to focus on 
building boundaries. Lin et al. [33] proposed a novel buildings 
edge-aware refined network (BEARNet) by learning edge prior 
for building extraction from high-resolution remote sensing 

images. Chen et al. [34] proposed a contour-guided and local 
structure-aware encoder–decoder network (CGSANet) by edge 
information learning. Yu et al. [35] proposed an edge fine-tune 
module as postprocessing method for building extraction. Jung 
et al. [36] proposed a method to elaborate edges of buildings 
detected in remote sensed images to enhance the boundaries 
of segmentation masks by using information obtained from 
holistically nested edge detection network. Although these 
methods have made progress in building extraction, the fol-
lowing problems may still exist when applying to large-scale 
mapping: (a) Insufficient generalization ability: Using a single 
model to extract buildings of the entire East Asian region leads 
to poor results due to variations in building appearance, size, 
color, and density. (b) Inaccurate building boundary represen-
tation: Although these methods enhance the extraction results 
of building boundaries, they still differ from the geometric 
appearance of real buildings, requiring further improvements 
for more precise building data. Besides, these methods just 
consider the multiscale information of building boundaries by 
a simple supervision or a multitask learning strategy without 
deeply fusing the boundaries information and semantic feature. 
It will ignore the interaction between the multiscale boundaries 
and the semantic learning, affecting the final results. (c) High 
computational cost: The models with deep structures and mul-
tiple branches often perform well and can obtain more accurate 
results. However, due to the large model parameters and high 
computational costs, these models are always with low effi-
ciency, significantly impacting large-scale buildings mapping. 
To address these challenges and achieve large-scale building 
mapping in East Asian regions, we propose a comprehensive 

Fig. 2. Google Earth images with different resolution in different regions. (A) European and American regions. (B) East Asian regions. The images show the relatively poor quality 
of the images in East Asia. The visual sharpness and spatial resolution of some images in East Asia look inconsistent, which may be obtained by resampling. These images are 
not helpful for precise building extraction. Images are from © Google Earth 2021.
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large-scale mapping (CLSM) framework with 3 strategies: (a) 
Strong generalization ability: We propose a region-based adap-
tive fine-tuning strategy. Firstly, a pretraining model trained by 
our own dataset is used for initial inference in a subset of East 
Asian regions. The predicted results with high evaluation scores 
are then selectively utilized to generate pseudo labels, which 
are employed to fine-tune the models in specific regions and 
optimize the mapping results. (b) Stable boundary optimiza-
tion ability: We introduce a boundary guidance strategy and 
a regularization module. The boundary information is directly 
weighted to enhance the semantic features of buildings and 
improve the extraction of building boundaries. Additionally, a 
generative adversarial learning network (GAN) [37] is employed 
to enhance the regularity of building boundaries [38–40]. 
Finally, the building footprints are further constrained by pre-
defined shape features, resulting in more accurate geometric 
representation [41] (c) High model efficiency: We adopt model 
distillation [42] to transfer knowledge from an ensemble model 
to a lighter-weight model. This approach significantly improves 
efficiency while maintaining a high building extraction ability. 
By implementing these strategies, we have successfully gener-
ated high-quality and complete building footprints data with 
better coverage in East Asian regions. This fills the existing gaps 
in public products.

We utilized high-resolution Google Earth images with a reso-
lution of 0.5 m to extract buildings in East Asia, including China, 
Japan, South Korea, North Korea, and Mongolia, and generated 
high-quality building footprints data. Our building dataset 
encompasses 2,897 cities across 5 countries, totaling 281,093,433 
buildings (the details for each countries can be shown in Table 1). 
To validate our proposed building data, we conducted a com-
prehensive evaluation encompassing quantitative assessment, 
visual inspection, and comparison with existing products. 
Analysis of the results demonstrates a high level of consistency 
between our product and the ground truth buildings of the cor-
responding images, with predicted building shapes closely 
resembling the actual geometric shapes. Furthermore, we con-
ducted manual annotations and accuracy evaluation in multiple 
sample areas, achieving an overall accuracy exceeding 87%. Our 
results outperform the existing products proposed by OSM and 
Zhang et al. [19], by displaying superior shape representation 
and completeness. Consequently, our proposed products satis-
factorily meet the current demands of complete building data 
in East Asia, bridging the gaps in publicly available building 
footprints data and offering valuable support for urban analysis 
and other related research [43–45]. Utilizing our proposed 

products, we conducted identification and analysis of the central 
business districts (CBDs) through kernel density analysis of the 
building data, which provides valuable insights for urban analy-
sis and other pertinent studies [46,47].

The contributions of this paper can be summarized as 
follows:

1. � We generate a high-quality and comprehensive build-
ings data in East Asian regions, filling the gaps in the 
existing public buildings data. Our buildings data can 
also serves as valuable data for relevant studies in vari-
ous domains.

2. � A comprehensive deep-learning-based large-scale map-
ping framework (CLSM) in view of the complexity of 
buildings in East Asia is designed, setting a reference for 
research in related fields.

3. � Our buildings data undergoes rigorous evaluation from 
multiple perspectives. We utilized our buildings data to 
analyze the CBDs of 2 select cities in China. The analysis 
results confirm the utility and effectiveness of our build-
ings data in facilitating urban-related studies.

Methods

Study area
The study area of this paper encompasses East Asia, specifically 
China, Japan, South Korea, North Korea, and Mongolia. The 
availability of publicly accessible building products in these 
regions is extremely limited, with existing data exhibiting 
incompleteness and low accuracy, thereby hindering related 
research applications. East Asia stands out as one of the most 
developed regions in Asia, experiencing rapid urbanization. 
Acquisition of large-scale building data in East Asia would sig-
nificantly contribute to urban management and spatial plan-
ning studies in the region. East Asia region is situated along the 
coastal region of East Asia, characterized by a considerably high 
level of overall development, particularly in Japan, South Korea, 
and China. Consequently, there is an urgent demand for com-
prehensive building data within East Asia.

Data
Goole Earth imagery
Google Earth, an open-source platform, offers global remote 
sensing images at various spatial resolutions. To obtain high-
quality building footprints data in the East Asian regions, it is 
necessary to extract detailed features from high-resolution 
remote sensing images. Consequently, we selected the most 
recent level 18 images available from 2020 to 2022 in the East 
Asian regions, which possess a spatial resolution of 0.5 m. The 
overall size of these images exceeds 100 TB. Due to the computer 
hardware performance limitations, we utilized a sliding window 
approach with a size of 512×512 to extract buildings. The final 
results were then merged to derive the desired vector data.

Global urban boundaries
The delineation of global urban areas in 7 years (i.e., 1990, 1995, 
2000, 2005, 2010, 2015, and 2018) is established by global urban 
boundaries (GUB) [48], which relies on the 30-m global arti-
ficial impervious area data [49]. Since the images acquired for 
this study span from 2020 to 2022, the GUB data from 2018 is 
selected as a reference to construct the training dataset. Given 

Table. 1. Statistic of our buildings data in East Asian countries

Location Count Size

China 248,856,847 68.90 GB

Japan 26,849,566 4.84 GB

North Korea 972,452 156 MB

South Korea 3,793,567 653 MB

Mongolia 621,001 255 MB

Total 281,093,433 74.75 GB
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the presence of diverse land use types within the East Asian 
imagery, we utilized the GUB data to classify urban and non-
urban areas into distinct sampling regions for positive and 
negative samples. This approach was adopted to enhance the 
scientific rigor of the training dataset.

Local climate zones
The local climate zone product, as introduced in [50], is devel-
oped through the utilization of Sentinel-1 and Sentinel-2 data 
alongside deep learning techniques. This local climate zone 
classification system incorporates various building catego-
ries characterized by distinct heights and densities. In the 
process of data preparation, these categories were employed 
to ensure the acquisition of diverse training samples with vary-
ing appearances, aiming to enhance the accuracy of large-
scale mapping.

A CLSM framework
In this paper, we present a comprehensive framework for large-
scale mapping, as illustrated in Fig. 3. Our focus lies specifically 
on generating high-quality building footprints data in the 
East Asian regions. The workflow encompasses 3 key steps: 
(a) data preparation, (b) model training, and (c) large-scale 
mapping. The data preparation stage holds crucial significance 

since contemporary building extraction techniques heavily rely 
on adequate training data [51,52]. Furthermore, the scarcity 
and complexity of building samples in East Asian regions, par-
ticularly in China, contribute to the deficiency and poor quality 
of existing public products. This challenges the accurate learn-
ing of essential features. To address this issue, we placed special 
emphasis on capturing the complexities of buildings in East 
Asian regions, particularly China, during the data preparation 
phase. This allows us to construct a diverse training dataset that 
encompasses various building types. Furthermore, during the 
model training phase, we employed specific optimization mod-
ules to enhance the performance of building extraction. Lastly, 
in the large-scale mapping stage, we adopted some strategies 
including region-based adaptive fine-tuning, to generate a 
refined and high-quality building footprints data in the East 
Asian regions.

Boundary-enhanced network (BE-Net)
In order to achieve precise and high-quality mapping outcomes, 
we propose a boundary-enhanced network (BE-Net) for the 
building extraction task. The architectural representation of 
BE-Net can be observed in Fig. 4. Our design incorporates the 
Attention U-Net [53] as the baseline model, augmented with 
global attention, boundary enhancement, and regularization 
modules. The Attention U-Net has been proven effective in 

Fig. 3. Diagram of the CLSM to generate vector data of buildings in East Asia. It encompasses 3 key steps: (A) data preparation, (B) model training, and (C) large-scale mapping.
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semantic segmentation tasks within remote sensing domains 
[54]. Leveraging its structure as the foundational model greatly 
benefits the building extraction task. Based on Attention U-Net, 
we propose a boundary enhancement module and regulariza-
tion module to further improve the performance of the net-
work. The boundary enhancement module is designed for 
enriching the multiscale boundary information in the building 
extraction task. We designed a new branch for Attention U-Net 
to directly detect the multiscale boundaries of buildings in 
order to obtain more detailed features. We also added a global 
attention mechanism in this module to offer consideration for 
global dependencies among buildings, reducing the likelihood 
of omission. In the semantic branch of our network, we intro-
duced a regularization module to enhance the accuracy of pre-
dicted building boundaries. We employ adversarial learning 
techniques and utilize a polygonization module to enforce shape 
constraints on buildings, ultimately yielding more precise 
building data.

Boundary enhancement module
The East Asian regions, notably China, exhibit complicated 
building layouts, significant variations in appearance, size, and 
density, as well as blurry gaps between buildings, and incon-
sistent characteristics. Additionally, the coexistence of high-
rise and low-rise buildings further exacerbates these differences, 
greatly affecting the capabilities of model extraction. Therefore, 
to better capture more comprehensive boundary details for 
higher performance of buildings extraction in East Asia, we 
employed a multiscale building boundary learning strategy in 
this module. This strategy involves dividing the boundary 
labels into 3 levels and extracting boundary information at 
varying scales through 3 distinct convolution layers. Utilizing 
the multiscale boundary information learned by the boundary 
detection branch, we integrated it with the global attention 
module to augment the boundary feature of buildings and 
encourage a heightened focus on boundary pixels. As illus-
trated in Fig. 5, the different scales of boundary features were 
computed independently. They were then divided into 4 branches, 
which underwent dot product operations with the features 
within the attention module. Subsequently, a series of convo-
lution layers and down-sample layers were employed to strengthen 
these features

We added an attention mechanism in the boundary enhance-
ment module to further improve the performance of our pro-
posed model. The architecture of the attention mechanism is 
derived from the GC Block of the Global Context Network [55]. 
The global attention mechanism improves upon the Non-Local 
Block [56] by reducing parameters while enhancing attention 
module effectiveness. Additionally, it incorporates the channel 
attention mechanism structure from the SE Block [57], resulting 
in a remarkable performance. Therefore, we adopted the GC 
Block as the fundamental structure for our global attention 
mechanism, depicted in Fig. 6. The mechanism operates as 
follows: First, the input feature undergoes dimension transfor-
mation to calculate similarity, resulting in an attention map 
generated by a softmax classifier. Next, weights are assigned to 
corresponding query points through a multiplication operation. 
Subsequently, the related feature is obtained via narrow convolu-
tion. Finally, the original feature and the obtained feature are 
combined through an addition operation, yielding the final 
feature representation.

After acquiring the enhanced feature through the GC Block, 
we proceed to reinforce it using the multiscale boundaries infor-
mation obtained from the boundaries enhanced module. This 
process, as depicted in Fig. 5, can be described as follows:

where X represents the features obtained by the GC Block; Y 
represents the enhanced features; B represents the down-
sampling boundary information; and ∘ symbolizes the dot prod-
uct operation. To prevent excessive suppression of nonboundary 
pixel features and maintain accuracy in subsequent building 
extraction, a value of 1 is added to B. As shown in Fig. 6, the 
boundaries information is divided into 4 branches. Consequently, 
this process is iterated 4 times, targeting different scales to 
enhance the feature and improve the effectiveness of building 
boundary extraction.

Boundary regularization module
The regularization module achieves high-quality building shapes 
through adversarial learning, as illustrated in Fig. 7. This mod-
ule bears a resemblance to GAN, comprising a generator and 
a discriminator. During training, both the generator and the 

(1)Y = (1 + B)◦X

Fig. 4. Flowchart of the proposed BE-Net for building extraction. It includes 2 branches: (a) multiscale boundaries detection branch and (b) semantic segmentation branch. 
We designed the boundary enhancement module and boundary regularization module to obtain better results that is close to the real buildings.
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discriminator engage in adversarial learning. However, during 
inference, only the generator is utilized for optimizing building 
shapes. The shape learning process relies on a simple Res-Net 
[58] structure to produce optimized predictions. Due to the 
distinct data formats between real labels (with values [0, 1]) and 

prediction results (probability maps), the discriminator can eas-
ily distinguish them. To address this, we employed 2 separate 
encoders and a weight-sharing decoder to reconstruct the input 
data, reducing the disparity between the 2 formats. A simple 
convolutional neural network structure served as the discrimi-
nator, extracting features from the input result to discern 
whether it originates from the reconstructed mask or the regu-
larized output. Through adversarial learning, a balance was 
achieved between the generator and discriminator, resulting in 
high-quality building shapes within the model prediction.

Polygonization module
Following the acquisition of relatively regular building results 
using our model, corner information for each building is 
derived based on its boundary and semantic information. By 
connecting this corner information, a closed polygon building 
footprints is generated. Despite the regularization module’s abil-
ity to achieve satisfactory results, the vectorization process still 
yields numerous corners and relatively complex shapes. Given 

Fig. 5. Architecture of the boundary enhancement module. We utilize multiscale boundary information learned by the boundary detection branch to enhance the features 
obtained from the global attention mechanism.

Fig. 6. Architecture of the global attention mechanism.
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that building shapes typically exhibit highly regular features, 
such as long straight lines and right angles, we employ the post-
processing method proposed in [41]. This method serves to 
further simplify the result, enabling the extraction of building 
footprints data with more accurate geometric shapes.

Loss function
Our method comprises 2 main stages: feature extraction train-
ing and adversarial training. In the first stage, BE-Net was 
trained on a labeled dataset to achieve accurate prediction 
results. Subsequently, the generator and discriminator under-
went adversarial learning to refine the predictions with improved 
spatial details. The aforementioned training processes contrib-
ute to the overall effectiveness and refinement of our method. 
The detailed information about the optimization process is as 
follows.

According to the description above, the overall loss can be 
defined as:

where LF and LR represent the loss of the feature learning part 
and the regularization module, respectively. According to the 
abovementioned model description, LF can be decomposed as:

where LS represents the loss of the semantic segmentation 
branch, and Li

R
 stands for the loss of the boundary extraction 

branch at specific scale. Both of these losses are combined with 
the cross entropy loss and dice loss, which can be denoted as:

where yi is the label of i, pi is the corresponding predicted result. 
In Eq. 5, Y is the label and Ŷ  is the corresponding prediction 
result.

According to the description of the regularization module, LR 
can be divided into 2 parts: (a) the reconstruction loss of the 
generator; and (b) the adversarial loss of the GAN. Therefore, 
based on [38], we can construct the LR loss function. The detailed 
information can be found in [38]

Large-scale buildings mapping
To enhance the accuracy of large-scale mapping, some strategies 
should be employed to aid the inference process. Within our 
proposed framework, CLSM, specific strategies are designed to 
address various inference problems and facilitate improved 
prediction accuracy.

Model ensemble
In large-scale mapping applications, it is crucial to ensure model 
stability. To achieve this, we have incorporated an ensemble 
strategy, building upon the approach presented in [19] with 
certain modifications. In [19], the authors utilized multiple 
checkpoints of the same model to obtain ensemble results. In 
our approach, we enhanced model stability by training 2 models 
with distinct parameter settings, creating a multiview prediction 
network. This additional ensemble approach further improves 
the overall stability of the model.

Model distillation
The utilization of a multimodel and self-model ensemble strategy 
results in substantial computational costs, posing limitations in 
practical applications, particularly for large-scale mapping tasks. 
To overcome this issue, it is imperative to enhance the efficiency 
of building extraction while maintaining performance. In address-
ing this challenge, we employed model distillation to transfer 
knowledge from an ensemble model to a more lightweight coun-
terpart. As depicted in Fig. 8, our approach involves 2 steps. Firstly, 
the prediction outputs of the ensemble model are utilized to gen-
erate pseudo labels, which serve as the learning target for the 
lightweight model. Subsequently, through backpropagation, the 
lightweight model is trained to approximate the performance of 
the ensemble model. This allows for efficient knowledge transfer 
and improves the effectiveness of building extraction while reduc-
ing computational overhead.

(2)L = LF + LR

(3)LF = LS +
∑

LiB

(4)LCE=
1

N

∑

i

−
[
yilog

(
pi
)
+
(
1−yi

)
log

(
1−pi

)]

(5)Ldice = 1 −
2
|||Ŷ

||| ∩ |Y |
|||Ŷ

||| + |Y |

Fig. 7. Architecture of the boundary regularization module. It can further enhance the boundary information of buildings by adversarial learning and obtain the high-quality 
results that resemble the shape of real buildings.
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Region-based adaptive fine-tuning
In large-scale mapping applications, the generalization ability of 
models plays a vital role in achieving effective transferability. To 
further enhance the transferability of our model, we proposed 
a region-based adaptive fine-tuning strategy to optimize its gen-
eralization capabilities. As illustrated in Fig. 9, our approach 
involves several steps. Firstly, each region undergoes a coarse 
extraction process through predetection, generating probability 
maps for individual regions. Subsequently, these probability 
maps are divided into blocks, and an adaptive evaluation metric 
is employed to quantitatively assess the quality of the prediction 
results. It is evident that accurate and stable prediction results 
should yield probabilities close to 1 for buildings and close to 0 
for backgrounds. Conversely, unstable and ambiguous predic-
tion results tend to yield probabilities close to 0.5. Leveraging 
this characteristic, we selected relatively stable prediction results 
to generate pseudo labels, which were then used for fine-tuning 
the model. This process yielded a submodel tailored to the spe-
cific region, enabling its effective utilization in large-scale map-
ping tasks.

Overlapping inference
In large-scale mapping applications, image clipping into patches 
is often necessary due to computer hardware limitations. However, 

this procedure can introduce significant discontinuities in the final 
merged results. To mitigate this issue, we adopted the concept of 
slide window prediction, as illustrated in Fig. 10. By defining win-
dows with a certain overlapping rate (represented by the orange 
boxes), we calculated the results of the overlapping regions (the 
green boxes) using a mean operation to enhance their continuity. 
The nonoverlapping regions (indicated by the blue boxes) were 
retained without further processing. This strategy greatly reduces 
the visual artifacts caused by splicing. Moreover, by avoiding the 
clipping and merging processes altogether, the efficiency of our 
model is further improved, resulting in faster and more stream-
lined operations.

Results
In this section, a comprehensive evaluation of our proposed 
building data is presented, including quantitative evaluation, 
visual evaluation, and comparison with existing products.

Quantitative evaluation
We conducted fine-scale mapping of buildings in the East Asia 
region and will publicly release the corresponding building 
products. For the Chinese region, where existing products are 
scarce, we performed model inference on buildings across the 

Fig. 8. Structure of the model distillation used in this paper. We utilize hard labels and the results obtained from the ensemble model to train a lightweight model, in order to 
improve the efficiency in the large-scale mapping process.

Fig. 9. Flowchart of the region-based adaptive fine-tuning. It can adaptively select the stable prediction results as the pseudo labels to fine-tuning the pretraining model in 
order to obtain more excellent results in specific regions.
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entirety of China, generating a complete and high-quality 
building dataset. In Japan, South Korea, North Korea, and 
Mongolia, we optimized and supplemented the OSM data to 
obtain higher-quality building data in these regions. Throughout 
the large-scale mapping process, the data volume and workload 
of China were the largest, with no auxiliary data available for 
building mapping. Therefore, we primarily conducted a quan-
titative evaluation in China.

Firstly, to assess the accuracy of our product, we selected 
validation sampling areas in several Chinese cities and manu-
ally annotated reference building vector data based on reference 

images. Accuracy results were calculated for different cities to 
evaluate the performance across diverse regions. Figure 11 illus-
trates the accuracy evaluation results of Dalian and Hangzhou, 
demonstrating highly consistent predicted results with the ref-
erence data. Evaluation metrics reached a high level of perfor-
mance. Likewise, Fig. 12 presents the accuracy evaluation 
results of Zhuhai and Shanghai, exhibiting an overall accuracy 
exceeding 87% and close proximity between the predicted and 
annotated vector data. On average, the recall and precision rates 
reached 84.52% and 81.06%, respectively, proving the model’s 
ability to accurately identify buildings in various regions. The 

Fig. 10. Illustration of overlapping inference. By defining windows with a certain overlapping rate (represented by the orange boxes), we calculated the results of the overlapping 
regions (the green boxes) using a mean operation to enhance the continuity of the results.

Fig. 11. The evaluation results in Dalian and Hangzhou. Images are from © Google Earth 2021.
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evaluation results depicted in Figs. 11 and 12 highlight the 
model’s stability across diverse regions, consistently achieving 
multiple metrics over 80%. This capability enables detailed and 
reliable mapping of large-scale regions, further substantiating 
the high quality of our product.

Visual evaluation
Our proposed building data have been subjected to postpro-
cessing techniques such as regularization, resulting in geomet-
ric shapes that closely resemble real buildings. Hence, this 
section focuses on presenting visual results to further exemplify 
the high quality of our product through a visual evaluation of 
different regions and various types of buildings.

To visually showcase the detailed prediction results, we 
selected several representative cities in China for visualization, 
as demonstrated in Fig. 13. Beijing, Shanghai, Guangzhou, 
Shenzhen, Chengdu, Chongqing, Nanjing, and Suzhou were 
chosen as these cities encompass diverse characteristics. 
Overall, the model achieved remarkable visualization out-
comes in each city, accurately aligning with the imagery while 
portraying buildings with regular geometric shapes. However, 
varied building characteristics were observed across differ-
ent cities, resulting in distinct visual effects. In cities like 
Guangzhou and Shenzhen, located in Guangdong province 
with numerous urban villages, buildings tend to be small and 
densely clustered. Conversely, Chongqing, situated in a moun-
tainous region, exhibits a notable difference in the spatial 
distribution of buildings compared to other cities. Other cities 
also display variations in building appearance, yet the overall 
results remain complete with exceptional visualization quality. 
Figure 14 presents detailed results in different zoom-in areas, 

showcasing the buildings’ boundaries depicted by green lines 
with precise geometric shapes. It further signifies the excep-
tional quality of our product.

The proposed building product demonstrates exceptional 
detail and facilitates the accurate identification of buildings in 
densely populated areas. This attribute holds particular signifi-
cance for building mapping in China, especially within urban 
villages. Consequently, we have meticulously selected and pre-
sented results pertaining to several urban villages, as depicted in 
Fig. 15. We intersected the urban village areas with our buildings 
data, thereby preserving and exhibiting the buildings exclusively 
within these areas while temporarily concealing data pertaining 
to external buildings. It is worth noting that the urban village 
areas utilized in this study were derived from our own research 
and on-site surveys. Upon examining the imagery showcased in 
Fig. 15, we observed that buildings within urban villages exhibit 
dense packing and a chaotic layout, primarily comprising small-
scale structures. Extracting buildings within such areas presents 
a significant challenge, primarily due to the poor quality or even 
absence of data in existing products. Despite this, our product 
yields diverse and plentiful building information specifically 
within urban villages, aligning remarkably well with the corre-
sponding imagery. Notably, it excels in identifying individual 
small buildings characterized by regular geometric shapes, 
underscoring the robust performance of our model. This further 
highlights the superiority of our product and provides invaluable 
data support for research applications related to urban village 
analysis and other pertinent studies.

We have also included the corresponding results for visual 
analysis in regions such as Japan, South Korea, North Korea, and 
Mongolia, as illustrated in Fig. 16. Notably, noticeable variations 

Fig. 12. The evaluation results in Zhuhai and Shanghai. Images are from © Google Earth 2021.

D
ow

nloaded from
 https://spj.science.org on July 03, 2024

https://doi.org/10.34133/remotesensing.0138


Shi et al. 2024 | https://doi.org/10.34133/remotesensing.0138 12

exist in the building characteristics across these different coun-
tries. In the case of North Korea and Mongolia, the number of 
buildings is comparatively lower, and their distribution appears 
more scattered. Our results demonstrate the accurate identifica-
tion of buildings within these 2 countries. Conversely, South 
Korea and Japan exhibit a higher density of buildings, with a more 
orderly distribution, thereby yielding superior visual effects in 
the results obtained. Furthermore, our model showcases the abil-
ity to distinguish individual buildings within densely populated 
areas, capturing more intricate building data. This further vali-
dates the exceptional performance of our product.

Comparison with existing products
To effectively highlight the superior performance of our prod-
uct, we conducted a comparative analysis with several existing 

products. Given the disparities among the compared products, 
separate comparisons were undertaken for China and Japan.

The description of the 2 existing products is as follows: 
(a) The availability of OSM building data on a global scale 
provides researchers with valuable information. Nevertheless, 
the quality of this data in the East Asian regions is considered 
to be comparatively lower than that of other countries. In 
order to showcase the superior quality of our building data 
specifically in East Asia, we conducted a comparative analy-
sis with OSM product. (b) The building data produced in 
[19] contains 90 cities in China by using deep learning meth-
ods and high-resolution remote sensing imagery. By con-
ducting a comparison with this dataset within the same 
regions, we aimed to evaluate the quality of our proposed 
building data.

Fig. 13. The visual results in different cities. (A) Beijing. (B) Shanghai. (C) Guangzhou. (D) Shenzhen. (E) Chengdu. (F) Chongqing. (G) Nanjing. (H) Suzhou. Images are from 
© Google Earth 2021.
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In China, the quality of OSM data is notably inadequate, lead-
ing to incomplete building results. In order to address this limita-
tion, we included the building footprints data proposed in [19] 
encompassing 90 cities in China for comparison purposes. Since 
our study encompasses the entirety of China, while other products 
only cover specific regions, we selected common areas of coverage 
for comparison, as illustrated in Fig. 17. Evidently, our product 
exhibits the highest level of building completeness, aligning 
remarkably well with the corresponding imagery, particularly 
when contrasted with OSM data. Moreover, in terms of visual 
effects, our results outperform the others, boasting accurate geo-
metric shapes that closely resemble real buildings. Conversely, the 
results of Zhang et al. are comparatively less refined. Furthermore, 
the results of Zhang et al. are chaotic and lack the ability to distin-
guish individual buildings in certain densely populated areas com-
prising small buildings. In contrast, our results accurately capture 
diverse building characteristics and successfully differentiate indi-
vidual buildings. In conclusion, our product surpasses existing 
alternatives in China with respect to both data quality and visual 
effects. Importantly, we have provided comprehensive building 
data for the entire nation, which is a significant advancement com-
pared to the deficient offerings of the existing products.

Figure 18 showcases a comparative analysis conducted in 
Japan, with blue areas representing the results obtained from our 

proposed product and yellow areas denoting the outcomes of 
OSM products. Notably, our product has significantly enhanced 
and supplemented the publicly available OSM data, resulting in 
a more precise and comprehensive dataset. Specifically, the origi-
nal OSM results displayed notable omissions in certain regions, 
whereas our product rectifies these deficiencies. Moreover, the 
extracted building shapes derived from our model exhibit a 
remarkable alignment with the geometric characteristics of 
actual buildings, thereby showcasing exceptional visualization 
effects. Figure 18 also demonstrates the stability of our model in 
accurately mapping buildings of diverse forms and sizes. The 
selected imagery depicts a high building density, distinct roof 
color variations, and a variety of building sizes and characteris-
tics. Our predicted results closely correspond to buildings in 
imagery, providing further substantiation of the outstanding 
performance delivered by our product.

Discussion

Description and analysis of statistical information
To further elucidate the value of our product and showcase its 
exceptional performance, kernel density analysis was conducted 
to approximate the distribution of urban centers. By taking China 
as an illustrative case, we specifically selected 2 well-developed 

Fig. 14. The visual results in zoom-in areas. Images are from © Google Earth 2021.
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cities, namely Guangzhou and Shanghai, and performed kernel 
density analysis on their respective building datasets, as displayed 
in Fig. 19. The results indicate the identification of hotspots 
within the delineated red box regions for both cities, which can 
serve as rough representations of the urban centers. Subsequent 
investigation reveals that these identified regions correspond to 
Zhujiang New Town in Guangzhou and Lujiazui in Shanghai, 
which are recognized as the CBDs of the respective cities. This 
correlation further substantiates the capability of our building 
product in facilitating urban center analysis and providing essen-
tial insights into the spatial layout of urban areas.

To further validate the accuracy of the building data pre-
sented in this paper, we conducted cross-verification and 
analysis by comparing it with population data. Following the 
methodology proposed in [14], we calculated the correlation 
using Landscan population data. To illustrate this, we selected 
2 cities in China for analysis. The approach involved dividing 
the study area into grid cells and categorizing them into 4 types 
based on the buildings data in this paper and the Landscan 
population data.

1. Type I: With low building density and low population 
density

Fig. 15. The visual results in urban villages. (A) Images. (B) Results in urban village areas. (C) Results in urban village areas (the region of urban village is hidden). We intersected 
the urban village areas with our buildings data, thereby preserving and exhibiting the buildings exclusively within these areas while temporarily concealing data pertaining to 
external buildings. Images are from © Google Earth 2021.
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2. Type II: With high building density and low population 
density

3. Type III: With low building density and high population 
density

4. Type IV: With high building density and high population 
density

Then, the relationship between buildings and population is 
calculated according to Eq. 6 to further verify the accuracy of 
building data:

According to the calculated results, Shenzhen and Yinchuan 
were selected as exemplars, representing regions with well-
developed population and economy and regions with average 
population and economy, respectively. The calculated results, 
as depicted in Fig. 20, demonstrate a strong correlation between 
the building data presented in this paper and the Landscan 
population data for both city types. This finding further vali-
dates the accuracy of our data.

We also conducted data analysis to determine the building 
coverage rates in various cities across China. Table 2 presents the 
top 10 cities with the highest building coverage rates in China. 
It is evident that cities characterized by a denser distribution of 
buildings and higher levels of development tend to exhibit higher 
building coverage rates. Notably, Dongguan gets the highest 
building coverage rate, reaching an impressive 13%. Additionally, 
the table highlights the prevalence of higher building coverage 
rates in cities within Guangdong Province, indicating significant 
building development in this region, likely influenced by its large 
population. The information provided by our product holds 

promise for facilitating research in urban scale analysis and offers 
valuable applications in this domain.

The application and significance of our data
The availability of buildings footprints data plays a crucial role 
in various studies by providing comprehensive and detailed 
buildings information, thereby enhancing the accuracy of 
related analyses. Our supplementary buildings footprints data 
specifically focuses on East Asia and serves as a pivotal resource 
for research in this region and beyond. It facilitates large-scale 
analyses and enables to obtain more comprehensive and detailed 
outcomes. For example, the direct utilization of buildings foot-
prints data allows for the evaluation and analysis of RPVs, con-
tributing to improved urban planning and energy management 
[20]. RPVs are crucial in achieving energy transition and cli-
mate goals, especially in cities with high building density and 
substantial energy consumption. Estimating RPV carbon miti-
gation potential at the city level of an entire large country is 
challenging given difficulties in assessing rooftop area. By pro-
viding our data directly to these relevant studies, we enable 
more accurate assessments of photovoltaic potential and carbon 
emission analysis, offering valuable insights for national plan-
ning. Moreover, buildings footprints data can be employed to 
predict future building development through geographic simu-
lation, allowing for proactive urban planning and management. 
Analyzing building trends on a larger scale using our East Asia 
buildings footprints data enables the formulation of more pre-
cise plans. Additionally, our provided buildings footprints data 
is instrumental in the building-level function classification in 
East Asia [59]. Understanding the actual building functions is 
essential for many urban applications, such as city management, 
urban planning, and optimization of transportation systems. 
Leveraging our buildings footprints data, these related studies 

(6)Cestimate =
NTypeIII +NTypeIV

NTypeII +NTypeIII +NTypeIV

× 100%

Fig. 16. The visual results in different cities. (A) North Korea. (B) Mongolia. (C) South Korea. (D) Japan. Images are from © Google Earth 2021.
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Fig. 17. The comparison results with different products in China. Images are from © Google Earth 2021.
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Fig. 18. The comparison results with OSM in Japan. The blue blocks denote the results generated by our method, whereas the yellow ones represent the results derived from 
OSM. Images are from © Google Earth 2021.

Fig. 19. The kernel density analysis results of different cities in China. (A) Guangzhou. (B) Shanghai.

Fig. 20. The cross-validation results with Landscan population data. (A to C) We choose Shenzhen and Yinchuan as examples, representing the areas with more developed 
population and economy and the areas with ordinary population and economy respectively.

D
ow

nloaded from
 https://spj.science.org on July 03, 2024

https://doi.org/10.34133/remotesensing.0138


Shi et al. 2024 | https://doi.org/10.34133/remotesensing.0138 18

can undertake comprehensive, large-scale analyses, facilitating 
macro-level management of cities. In summary, the supplement 
of buildings footprints data in East Asia empowers related 
research to conduct extensive investigations in this region, which, 
as one of the world’s most significant economic zones, contributes 
greatly to global research.

Limitations and future work
Limitations such as cloud cover and inadequate temporal reso-
lution can impact the imagery used in deep-learning-based 
building extraction, leading to discontinuities and impaired 
quality. As a result, obtaining precise building products for 
specific periods remains challenging. The current findings are 
based on a particular timeframe, and there is room for improve-
ment in terms of accuracy. Furthermore, the significant vari-
ability in imagery and building characteristics across different 
regions makes it arduous to achieve highly generalized results 
using a single model. While this study has enhanced the gen-
eralization capability of our model through strategies like adapt
ive fine-tuning, limitations still exist in current deep learning 
methods. The semisupervised fine-tuning approach has intro-
duced considerable uncertainties, making it challenging to 
guarantee substantial improvements across all regions. For 
future work, our focus will be on developing novel and reliable 
methods for large-scale mapping by harnessing advancements 
in deep learning technology and leveraging the availability of 
high-quality remote sensing data. This includes exploring more 
stable and versatile approaches, such as incorporating universal 
big models like Segment Anything [60]

Building data plays a critical role in various urban-related 
studies. However, single-temporal building products may 
not fully satisfy the requirements of certain research applica-
tions. As the need for long-term building data is expected 
to rise in the future, our forthcoming work will involve inte-
grating temporal inference methods like change detection 
and sequential interpolation with extensive time series data. 
This integration aims to analyze the construction years of 
buildings comprehensively. By leveraging the outcomes of 
this analysis, we will generate long-term building products 

that offer more precise, detailed, and superior-quality data 
for urban research.

In addition, the functions and classifications of buildings are 
crucial considerations in numerous relevant studies. However, 
the building products presented in this paper lack information 
pertaining to building categories. To further explore the potential 
application of building data, we will conduct a comprehensive 
analysis by integrating diverse sources and modes of data in 
future work. By employing cutting-edge methods, we aim to 
ascertain the functions of buildings, thereby facilitating addi-
tional research in this domain.
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Table. 2. Statistical results of our buildings data in China. The results show the top 10 cities with the highest building coverage rates. The 
forward slash in the province column denotes a municipality city.

ID City Province City area (km2) Building area (km2)
Building coverage 

rate (%)

1 Dongguan Guangdong 2,422.02 315.16 13.01

2 Macau / 33.9 3.84 11.32

3 Shenzhen Guangdong 1,920.12 201.83 10.51

4 Zhengzhou Henan 7,523.89 736.54 9.79

5 Foshan Guangdong 3,883.37 363.49 9.36

6 Shanghai / 7,049.01 643.84 9.13

7 Jiaxing Zhejiang 4,062.56 367.09 9.04

8 Zhongshan Guangdong 1,755.81 151.32 8.62

9 Langfang Hebei 6,429.87 533.55 8.30

10 Changzhou Jiangsu 4,458.50 326.63 7.33
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