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Abstract
Drought stress is one of the main threats to poplar plant growth and has a negative impact 
on plant yield. Currently, high-throughput plant phenotyping has been widely studied as a 
rapid and nondestructive tool for analyzing the growth status of plants, such as water and 
nutrient content. In this study, a combination of computer vision and deep learning was used 
for drought-stressed poplar sapling phenotyping. Four varieties of poplar saplings were 
cultivated, and five different irrigation treatments were applied. Color images of the plant 
samples were captured for analysis. Two tasks, including leaf posture calculation and 
drought-stress identification, were conducted. First, instance segmentation was used to 
extract the regions of the leaf, petiole and midvein. A dataset augmentation method was 
created for reducing manual annotation costs. The horizontal angles of the fitted lines of the 
petiole and midvein were calculated for leaf posture digitization. Second, multitask learning 
models were proposed for simultaneously determining the stress level and poplar variety. 
The mean absolute errors of the angle calculations were 10.7° and 8.2° for the petiole and 
midvein, respectively. Drought stress increased the horizontal angle of leaves. Moreover, 
using raw images as the input, the multitask MobileNet achieved the highest accuracy (99% 
for variety identification and 76% for stress-level classification), outperforming widely used 
single-task deep learning models (stress-level classification accuracies <70% on the 
prediction dataset). The plant phenotyping methods presented in this study could be further 
used for drought-stress-resistant poplar plant screening and precise irrigation decision-
making.

Keywords: Plant phenotyping; Deep learning; Drought-stress detection; Multitask learning; 
Image generation
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MAIN TEXT
1. Introduction

Poplar (Populus L.) is a widespread fast-growing forest tree [1, 2]. Poplar cultivation has 
received global attention because it is an important source of wood for industrial production 
and for the construction of protective forests [3-5]. Therefore, researchers have shown great 
interest in improving the woody biomass production of poplar. However, the productivity 
of poplar forests is limited by abiotic and biotic stresses [6]. Drought stress (or water deficit) 
is a severe abiotic stress that negatively affects material transport in plants and weakens 
photosynthesis, ultimately leading to a decrease in production [7, 8]. These plant-stress 
factors prompt us to explore innovative technologies for ensuring the growth and ultimate 
yield of plants. To overcome the challenges of drought stress in poplar plants, there are two 
typical solutions: improving plant management (e.g., water deficiency plant detection) and 
improving plants (e.g., cultivation of drought-resistant poplar varieties) [9, 10]. Under 
traditional planting methods, the discrimination of water-deficient plants or the screening 
of drought-resistant varieties rely on manual monitoring. The low efficiency and poor 
accuracy of these methods limit their application.

The phenotype, also known as the performance of a plant, is determined by the genotype, 
growth environment, and their interactions [11], which can reflect the structural and 
functional characteristics of plant cells, tissues, organs, plants, and populations. Under 
drought stress, plants may exhibit abnormal phenotypic characteristics, such as wilting, 
curling, and changes in color and other physical and chemical indicators. Therefore, plant 
phenotyping technology has been widely studied for determining the growth status of plants. 
Determination of the water supply or water status of plants based on phenotypic changes 
could be further used for irrigation decision-making and plant drought-tolerance evaluation.

Recently, spectral analysis [12, 13], machine vision [14], laser scanning [15], and artificial 
intelligence technologies [16] have received widespread attention in the field of plant 
science, leading to the emergence of high-throughput plant phenotyping technology. This 
approach provides new solutions for plant drought-stress analysis [17-19]. Digital sensors 
capture the morphological, physiological, and biochemical traits of drought-stressed plants, 
and intelligent data processing algorithms extract abnormal information related to plant 
drought stress. For instance, spectroscopic diagnostic technologies determine plant water 
status by analyzing absorption or reflectivity at different wavelengths [20, 21]. Wong et al. 
predicted the water content of bean plants in outdoor fields using hyperspectral remote 
sensing, achieving R2 values of 0.20-0.55, and these methods were further used for 
analyzing the drought response of common and tepary beans [22]. Zhang et al. conducted 
tomato leaf moisture determination using terahertz spectroscopy, realizing an R2 value of 
0.972 and a root mean square error (RMSE) of 0.053 [23]. In these cases, satisfactory 
performances were obtained; however, the sensing devices and systems used are expensive 
and require much space to house. Computer vision could be considered an alternative low-
cost technology. Plants undergoing drought stress were identified using computer vision 
based on their morphological and color characteristics [24]. Some of the most important 
water content-related morphological traits, leaf angle and leaf wilting , can be calculated by 
plant image processing; however, fully automated implementation of this process is difficult 
[25]. There have been some published cases in which plants in images were directly 
classified as having different drought levels, but the compatibility of methods considering 
different varieties and different degrees of drought still needs to be studied [26, 27]. 
Currently, deep learning algorithms are among the most popular intelligent information 
processing tools [28-30], making it possible for us to extract more useful information from 
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color images. They are adopted to establish end-to-end predictive models that correlate the 
input image and the target output, such as plant variety, plant-stress degree, the position of 
different components, and plant disease level. However, the large number of annotated 
samples required to train high-performance deep learning models for plant phenotyping 
cannot be ignored. Generative adversarial networks can be used for generating realistic plant 
images and have achieved success in plant leaf counting tasks [31]. However, it is difficult 
to generate the corresponding ground truth for more complex tasks, such as leaf 
segmentation. Moreover, most of the existing studies have not explored the influence of 
plant variety on plant drought-stress detection models. The answer to the question: ‘Is the 
captured response signal derived from the differences in variety or from drought stress?’ 
remains unclear. There is still much room to explore in regard to the detection of poplar 
drought stress and the phenotyping of stressed poplar plants.

In this study, a combination of computer vision and deep learning was used for poplar 
sapling phenotyping and poplar drought-stress grading. The main contributions of this study 
are summarized as follows: (1) An exemplar-based synthetic poplar plant image generation 
method was proposed for dataset augmentation, reducing the number of manual image 
annotations involved in poplar leaf segmentation model training. (2) An automatic analysis 
method for leaf-level structural digitization and angle calculation based on segmented 
leaves was developed for detecting the response of plants to drought stress. (3) Multitask 
learning models were utilized to simultaneously discriminate the variety and level of 
drought stress experienced by poplar saplings, improving the performance of the stress 
detection models.

2. Materials and Methods
2.1 Poplar sapling samples

Four varieties of poplar saplings with different drought resistance abilities were selected for 
the experiment, namely, Siyang-1 poplar (SY1), 3804, 895, and 110. All the saplings were 
cultivated in an experimental field located at Baguazhou, Nanjing, Jiangsu, China. The 
plants were covered by a transparent plastic shed with a height of 3 m, preventing the impact 
of natural rainfall on the experiments. For each variety, 72 plants were selected for analysis, 
for a total of 288 plants. All these samples were supported using the same cultivation mode, 
with adequate irrigation and an appropriate amount of pesticides for disease and pest 
control. Before drought stress was implemented, all plants were watered every 3 days. After 
70 days (June 21, 2023), different levels of drought stress were applied to these plants. The 
plants were divided into five groups: control check (CK), moderate drought (MD), severe 
drought (SD), severe drought and normal rewatering (NW), and severe drought and 
moderate rewatering (MW). The CK group was maintained at the previous irrigation 
frequency and was watered every 3 days. The plants in the MD group were watered every 
6 days. The plants in the SD group were not watered until death. For the NW group, 
irrigation was stopped until the poplar saplings showed obvious symptoms of leaf yellowing 
and wilting, after which the plants were watered every 3 days. For the MW group, a similar 
process to that used for the NW group was applied, but the watering frequency was once 
every 6 days after resuming irrigation. The overall introduction of the experimental samples 
is summarized in Table 1.

Table 1. Profile of the analyzed poplar sapling samples
Variety Drought-stress level*
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Control 
check (CK)

Normal 
rewatering 

(NW)

Severe 
drought (SD)

Moderate 
rewatering 

(MW)

Moderate 
drought (MD)

SY1 16 16 8 16 16
3804 16 16 8 16 16
895 16 16 8 16 16
110 16 16 8 16 16

* For the SD stress level, only 8 samples of each variety were collected. The other 8 samples 
were completely destroyed by drought stress.
2.2 Data collection

A camera, ZED Mini 2 (Stereolabs, USA), was used to capture the RGB images of the 
studied poplar plant samples. The image resolution was set to 1920×1080. A black cloth 
with high absorbance was used as the imaging background. Images of the 288 selected 
plants were captured at two time points (at three and four weeks after the plants were 
subjected to drought stress). In total, 576 plant images of different varieties and under 
different stress levels were obtained.

2.3 Image annotation preparation method

This study focused on reducing manual labeling costs for deep learning applications. A 
novel dataset augmentation method was created for automatically generating poplar plant 
images with annotations. The included steps are shown in Figure 1.

Figure 1. The proposed poplar plant image generation method.
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First, a small number of real images (32 individual plants were used) were manually 
annotated using the free image processing software Paint.net [32]. The regions of interest 
of each individual leaf, as well as the included regions of the midvein and the petiole, were 
annotated using green, yellow, and red, respectively. An example can be found in Step 1 in 
Figure 1. The annotated region of each individual leaf had to be separated, which was 
convenient for the subsequent ‘component segmentation’ step. Step 2 included only a 
simple connected component extraction method. After finishing Step 2, a database was 
constructed, covering subimages of leaves (350 images), trunks (32 images), and the 
corresponding annotations. Next, the leaves in the ‘database’ were randomly selected to 
construct a simulated plant; see Steps 3-6 illustrated in Figure 1. Since each of the 
components in the ‘database’ had been annotated with ROIs, the simulated plant images 
could be generated together with their annotations. Therefore, manual annotation could be 
avoided. An example of a generated plant image and the corresponding annotation maps is 
also shown in Figure 1. The generated plant image looks very similar to the real captured 
images. It should be noted that the annotations of this type are compatible with the 
MaskRCNN series [33] segmentation methods. The YOLO series [34, 35] segmentation 
methods require an annotation file with an ‘.txt’ extension, in which each row contains the 
object class index and object bounding coordinates; refer to 
https://docs.ultralytics.com/datasets/segment/. An annotation format conversion algorithm 
(MaskRCNN format to YOLO format) was created based on edge point extraction. The 
codes for conducting the proposed poplar plant image generation method and for annotation 
format conversion were uploaded to the GitHub platform (https://github.com/L-
Zhou17/Plant-Image-Generation).

2.4 Deep learning models

In this research, deep learning methods, including key phenotypic parameter measurements 
and drought-stress-level determination, were used for poplar saplings.

2.4.1 Instance segmentation for leaves

For the first objective, key component extraction (petiole, midvein, leaf) had to be 
completed first. Instance segmentation [36] was the best choice. Therefore, two kinds of 
typical instance segmentation models, namely, MaskRCNN [33] and YOLOv8 
segmentation [37], were adopted to extract the petiole, midvein, and leaf regions. Then, 
morphological parameters directly related to plant water status, including the angle of the 
petiole and that of the midvein, could be calculated. Based on the extracted components and 
the calculated key parameters, digital representation of the plant structure could be achieved.

For training and optimizing the MaskRCNN and YOLOv8 segmentation models, only the 
generated plant images obtained using the method described in Section 2.4 were used. In 
total, 600 images were generated, 400 of which were used for training, and the remaining 
200 images were used for validation. Then, 60 plants of different varieties and with different 
degrees of stress were manually annotated for prediction. Therefore, the proposed method 
used simulated images with annotations for training and real plant images for prediction and 
model performance evaluation. The initial weights and biases of the segmentation models 
were pretrained on the COCO dataset. The learning rate was 0.0005. The performance 
indicator AP0.5 (average precision using 0.5 as the threshold for intersection over union), 
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which is widely used in deep learning instance segmentation applications, was calculated in 
this study. The model with the highest validation AP0.5 value was saved as the best model.

2.4.2 Image classification

For the second objective, conventional single-task deep learning classification and multitask 
learning were used and compared in this study. Single task classification used raw plant 
images or the digital representation of plant structure as the input and only predicted the 
drought-stress level of the plants. However, the multitask learning methods had multiple 
expected outputs. These varieties were ‘poplar variety’ and ‘drought-stress level’ in this 
study. The fused loss calculated based on the cross-entropy losses of stress-level 
classification and poplar variety classification were adopted for tuning the weights and bias 
of the CNN models. Using such a supervised training mode, the CNN models were expected 
to extract deep features rich in both stress level-related and variety-related knowledge. The 
designed single-task and multi-task deep learning models are shown in Figure 2.

The details of the classification models used are introduced below. The input was RGB 
images of a single poplar plant. For the backbone of classification models, the popular 
ResNet [38] and MobileNet [39] models were used and compared. In the single-task 
classification models, the output layer (considered a feature classifier) was a simple linear 
mapping unit. The output dimension of the backbone was 1024. The loss function was the 
SoftMax cross-entropy loss. In the multitask classification models, there were two output 
channels. Each of them was a fully connected neural network with one hidden layer. The 
fused loss of two classification tasks was the final loss function for the multitask learning 
models. There were 64 neurons inside the hidden layer. The output dimension of the 
backbone was also 1024, the same as that of the studied single-task learning models.

The same training configuration was used to train all the mentioned classification models. 
For the 576 captured images of poplar saplings, the samples of each variety were divided 
into training, validation and prediction sets at a ratio of 6:2:2. The backbone was pretrained 
based on the ImageNet dataset. The initial learning rate was 0.0005 (decreased to 1/10 after 
20 epochs). The number of training epochs was set to 60 according to the trial-and-error-
based experiment. The batch size was 16. During the training procedure, the model with the 
highest validation accuracy was saved as the best model. All the programs for deep learning 
were developed using Python 3.9 and the PyTorch framework.
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Figure 2. Convolutional neural networks for poplar drought-stress detection. (a) 
Conventional single-task learning model and (b) multitask learning model.

2.5 Digital representation of leaf growth posture

In this study, the horizontal angles of the petiole (α) and that of the midvein (β) were 
calculated to describe the posture of the leaves, which were highly correlated with the water 
status of the poplar saplings. This procedure had to be performed based on the instance 
segmentation results. First, a group of segmented regions of the petiole and midvein from 
the same leaf had to be retrieved, which could be achieved by (1) selecting a segmented leaf 
region, (2) finding a petiole region that had the highest value of intersection over union 
(IoU) with the current leaf region, and (3) finding the corresponding midvein in the same 
way.

The horizontal angle of the petiole could be calculated by the following steps. (1) The pixels 
covered by the petiole of the target leaf were extracted. (2) The best fitting straight line (y 
= kx+b) for the mentioned pixel points was established using a linear regression algorithm. 
(3) The horizontal angle of the fitted line was calculated using Arctangent(k). These steps 
are also illustrated in Figure 3.

Figure 3. The designed method for leaf growth posture calculation.
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3. Results
3.1 Results of instance segmentation and leaf posture digitalization

Two images involving four healthy poplar saplings and another four stressed saplings were 
selected as examples. Figure 4 displays some results of poplar leaf segmentation and single 
leaf posture estimation. Figure 4 (a) and (b) shows that the leaf, midvein and petiole regions 
were segmented from the background. The data output from the MaskRCNN and from the 
YOLOv8 segmentation both separated each individual leaf by assigning different indices, 
although the colors of the segmented leaves are all ‘blue’ in Figure 4. The corresponding 
performance metrics are listed in Table 2. The AP0.5 values were used to select a better 
model for subsequent steps. The final performance was evaluated by the error of the angle 
calculation. The results showed that the FasterRCNN models performed slightly better than 
the YOLO models for leaf segmentation, while the YOLO models performed slightly better 
for detecting the midvein and petiole. The overall performances of these models were 
similar. Therefore, the subsequent steps for poplar leaf angle calculation were conducted 
based on the FasterRCNN model. A potential solution for improving segmentation accuracy 
could be explored in future studies.

Table 2. Performances of MaskRCNN and YOLOv8 segmentation

AP0.5
a

Training Validation PredictionModel Target
box segmentation box segmentation box segmentation

Leaf 0.908 0.819 0.892 0.806 0.479 0.589
Midvein 0.692 0.336 0.701 0.332 0.643 0.333YoloV8-seg
Petiole 0.762 0.49 0.767 0.447 0.77 0.354
Leaf 0.949 0.905 0.949 0.905 0.438 0.633

Midvein 0.803 0.179 0.775 0.154 0.676 0.12MaskRCNN
Petiole 0.766 0.689 0.766 0.689 0.542 0.475

a ‘Box’ indicates that the AP0.5 values were calculated for the bounding boxes predicted by 
the models. ‘segmentation’ indicates that the AP0.5 values were calculated for the masks 
predicted by the models.

Based on the method described in Section 2.6, the fixed lines of the petiole and midvein of 
each leaf could be found. Then, the angles α and β, which indicate the leaf growth posture, 
were calculated. It should be noted that some errors could be detected before leaf angle 
calculation. Inside a selected segmented leaf region, the segmented midvein region covering 
less than a certain number of pixels had to be moved, which was not enough to conduct 
linear regression. Moreover, segmented leaf regions without effective midvein or petiole 
areas had to be considered invalid leaf individuals. Therefore, in Figure 4 (c) and (d), there 
are some leaves not annotated with lines and angle values.

The accuracy of the leaf angle calculation was further evaluated. A new group of captured 
poplar sapling images was annotated manually (10 images not used in the model training 
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procedure; a total of 40 plants were processed), defined as the Dangle test. The MaskRCNN 
model trained only on the simulated dataset was used to process the new Dangle-test dataset. 
Then, the values of leaf angle calculated based on the manual annotation and those based 
on the segmentation output were compared. The mean absolute error (MAE) was used as 
the performance indicator.

In total, 256 complete leaves were segmented from the Dangle test dataset. Figure 5 (a) and (b) 
shows that the MAEs of the petiole angle calculation and midvein angle calculation were 
approximately 10.7° and 8.2°, respectively. Most of the scatter points were located near the 
line y=x. Some of the points far from the y=x line increased the MAE values. Figure 5 (c) 
and (d) shows the frequency distribution histograms of the error of the petiole angle 
calculation and midvein angle calculation. Approximately 70% of the error values were 
within a range of [-5°, +5°]. There were very few points with errors greater than 50°, which 
could be attributed to incomplete segmentation of the target areas (leaf, petiole, and 
midvein). Especially for processing severe drought-stressed samples, the petiole exhibited 
a parabolic shape. Fitting with the linear regression method resulted in significant angle 
deviation when the petiole was not fully segmented. Afterward, the deep learning 
segmentation model was trained using a simulated dataset generated from very few 
manually annotated images; therefore, these results are promising.

Figure 4. Poplar leaf growth posture calculation results. (a) and (c) are the 
segmentation results and the calculated leaf growth posture of samples in the CK 

group, and (b) and (d) are those of samples in the MD group.
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Figure 5. Leaf posture calculation results. (a) petiole angle calculation result, (b) 
midvein angle calculation result, (c) distribution of petiole angle calculation errors, 

and (d) distribution of midvein angle calculation errors.

Then, the calculated leaf posture information of the different groups of plants was further 
analyzed. Figure 6 shows the statistics of SY1 and 110 for comparison and discussion. The 
plants in the severe drought-stress group exhibited the smallest midvein angle and petiole 
angle among the five groups. After the plants were subjected to drought stress, the amount 
of water needed for rewatering increased at both angles. These results were consistent with 
the fact that drought caused wilting of the leaves and that reirrigation could restore leaf 
conditions. By comparing Figure 6 (a) and (b), the impact of drought stress on the horizontal 
inclination angle of the midvein was greater than that on the horizontal inclination angle of 
the petiole. Therefore, the leaf posture calculation method was useful and valuable for plant 
status analysis.

(a) (b)
Figure 6. Statistical results of the horizontal inclination angles of different leaves for 

SY1 and 110. (a) Angle of the midvein and (b) angle of the petiole.
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3.2 Poplar drought-stress grading results based on image classification

The results of poplar plant drought-stress detection using image classification are discussed 
in this section. Three kinds of modeling strategies were used. In addition, two CNN 
backbones (MobileNet and ResNet) and two kinds of modeling strategies (single-task 
learning and multitask learning) were compared. The results are listed in Table 3.

(i) Modeling without considering the differences in plant variety. One variety of plant was 
selected for prediction. For example, SY1 was used for prediction, and samples of the 
remaining 3 varieties (3804, 895, and 110) were divided 3:1 for training and validation for 
training the MobileNet model. This model was defined as MobileNet-1. The ResNet model 
using samples of the ‘895’ variety as the prediction dataset was defined as ResNet-3. The 
corresponding results are shown in the 1st to 8th rows in Table 3.

(ii) Single-task learning-based modeling that considers differences in plant variety. The 
samples of each variety were divided into training, validation and prediction sets at a ratio 
of 6:2:2, as described in Section 2.5.2. The corresponding results can be seen in the 9th and 
10th rows in Table 3.

(iii) Multitask learning-based modeling that considers the impact of different varieties on 
drought-stress grading. The same dataset configuration used for single-task learning-based 
modeling was employed. The models were expected to simultaneously predict the poplar 
variety and drought-stress level; see the results in the 11th and 12th rows in Table 3.

First, modeling method (i) was analyzed. The 1st to 8th rows in Table 3 show that the 
accuracy values on the training dataset were good. However, lower accuracies were found 
for the validation and prediction sets. The prediction accuracies were all lower than 65%. 
These findings indicated that different varieties of poplar might respond differently to the 
same level of drought stress. This factor must be considered in modeling.

Table 3. Performances of the deep learning models on the training, validation and 
prediction datasets

Classification accuracy (%)
Model a Task

Training Validation Prediction

MobileNet-1 Stress degree 78.52 70.99 39.58

MobileNet-2 Stress degree 83.70 61.11 50.00

MobileNet-3 Stress degree 95.19 67.28 62.50

MobileNet-4 Stress degree 95.93 74.07 62.50

ResNet-1 Stress degree 81.11 70.37 43.06

ResNet-2 Stress degree 85.19 64.20 50.69

ResNet-3 Stress degree 95.56 70.99 64.58

ResNet-4 Stress degree 92.96 69.14 56.94

Stress degree 100 70.04 68.52
S-MobileNet

Variety / / /

Stress degree 100 72.01 68.52
S-ResNet

Variety / / /

M-MobileNet Stress degree 100 75.93 75.93
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Variety 100 97.22 99.07

Stress degree 100 75.00 73.15
M-ResNet

Variety 100 100 99.07

a. MobileNet-1 to -4 and ResNet-1 to -4 represent the models trained with different sources. The 
suffix ‘-1’ indicates that the first variety was for prediction, and the remaining 3 varieties were for 
training and validation. The same is true for the other suffixes. ‘S’ and ‘M’ denote single-task and 
multitask learning, respectively.

Then, modeling methods (ii) and (iii) were examined in detail; see the 9th and 12th rows in 
Table 3. The curves of training loss (cross-entropy loss for stress degree classification) and 
validation accuracy of the studied models are plotted in Figure 7. Figure 7 (a) shows that as 
the number of iterations increased, the loss values of all four compared models gradually 
converged. After training for 60 epochs, the training losses of these models decreased to 
values lower than 7×10-4. In Figure 7 (b), the corresponding validation accuracies of each 
epoch are plotted. From epochs 1 to 20, the accuracy values showed a rapid oscillating 
upward trend. During subsequent cycles, these values slowly increased and tended to 
stabilize. Within a range of 40 to 60 epochs, the accuracy curve of the multitask learning 
MobileNet was greater than that of the single-task learning MobileNet (a comparison 
between the solid curves and dotted curves). A similar situation could be observed for the 
ResNet models.

During model training procedures, the model (more specifically, a group of parameters) that 
achieved the highest validation accuracy was saved. Then, the optimized models were 
evaluated on training, validation and prediction datasets. For the studied deep learning 
models trained using methods (ii) and (iii), the accuracies on the validation dataset were 
very close to those on the independent prediction dataset. Multitask learning models also 
outperformed single-task learning models on the individual prediction dataset, for which the 
improvements in prediction accuracy were greater than 5%. Therefore, it could be 
concluded that multitask deep learning reached higher accuracies for the studied poplar 
stress detection task than single-task learning methods. The selected backbone of the CNN 
models also influenced the modeling accuracy. In this study, M-MobileNet (accuracy = 
75.93%) performed slightly better than ResNet (accuracy = 73.15%).

On the other hand, both M-MobileNet and M-ResNet achieved perfect accuracies (close to 
100%) for the poplar variety discrimination task. It could be inferred that the differences 
between different varieties were relatively obvious; therefore, it was easy for the CNN 
models to extract the deep features that could represent such differences. In summary, the 
results shown in Table 3 prove the effectiveness and progressiveness of multitask deep 
learning for poplar drought-stress detection.

Due to the similarities between the poplar samples under different degrees of drought stress 
(e.g., the CK group and the normal rewatering group), the difficulty of discriminating 
drought-stress levels was relatively high. The highest prediction accuracy, 75.93%, was 
realized by M-MobileNet. Figure 8 shows the confusion matrices of the best model for 
further analysis. The highest error classification rate could be observed for the ‘MW’ stress 
level on both the validation dataset and prediction dataset. The lowest error rate was located 
in the ‘SD’ row. Hence, the distribution of error classifications on the validation dataset was 
similar to that on the prediction dataset, which illustrated the stability of the trained model.
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Figure 7. Comparison of modeling performances between different CNN models and 
different modeling strategies. (a) Training loss values and (b) stress grading accuracy 

values on the validation dataset. ‘S’ denotes single-task learning, and ‘M’ denotes 
multitask learning.

 

Figure 8. M-MobileNet confusion matrices. (a), (b), and (c) Poplar variety 
identification results on the training, validation and prediction datasets, respectively. 

(d), (e), and (f) Poplar drought-stress-level classification results on the training, 
validation and prediction datasets, respectively.

4. Discussion
In this study, two tasks were carried out for the phenotyping of drought-stressed poplar 
saplings. The first task involved determining the poplar leaf posture. There have been 
several published deep learning-based human posture detection algorithms [15, 40]. Key 
points included the head, shoulder, elbow, wrist, knee, foot, fingertip, and so on. For human 
posture analysis, the quantity of these points is fixed. However, when processing the posture 
estimation of poplar plants, the number of leaves is variable. New solutions should be 
studied for processing plant samples. For plants with simple structures, such as maize, 
posture can be quickly described by a skeletonization algorithm [25], which can be 
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conducted using existing image processing tools (e.g., MATLAB). To calculate the leaf 
angle in a more precise way, the leaf collar can first be detected as a region of interest (ROI). 
Then, key point detection can be performed inside this extracted ROI. The form of poplar 
leaves differs from that of maize leaves, which are very difficult to digitalize via a skeleton 
extraction algorithm. Hence, the key components of poplar plants, such as single leaves, 
should first be separated from the whole plant. Then, the parameters of a single leaf can be 
calculated. Next, the statistical results of the leaf parameters can be used to describe the 
status of one plant or a group.

Commonly, leaf instance segmentation model training requires a large number of manual 
annotations [41, 42], and there is a major shortage of such methods. Although popular 
generative adversarial networks can generate realistic plant images [31], ground-truth mask 
preparation for leaf segmentation still requires much manual work. Such methods are more 
suitable for generating plant images for classification tasks. Exemplar-based data generation 
methods were studied to realize dataset augmentation, utilizing touching seed segmentation 
[43] and leaf counting [44] tasks. A small batch of plant images were annotated and used to 
construct the component pool (e.g., leaf image pool and seed image pool). A large number 
of synthetic image-annotation pairs could be rapidly generated by combining these 
annotated components. However, in these mentioned cases, the components (leaves and 
seed kernels) were randomly arranged in the background images, which might make the 
‘pattern’ of synthetic images different from that of real images, leading to missing detection 
issues. In addition, complete codes or programs for synthetic image-annotation pairs were 
rarely provided in the existing articles. In this study, a small number of annotated plant 
leaves and plant trunks were used as the basic components to generate a large number of 
simulated poplar sapling images for model training. All the leaves were ‘mounted’ on the 
plant trunk, promoting the pattern of synthesized images to be closer to that of real ones. 
The proposed image and annotation generation method reduced the manual workload for 
labeling, which can also be regarded as a few-shot learning strategy [45]. The complete 
codes for dataset augmentation were published. The published program can output 
annotated files of different formats required by the most popular instance segmentation 
networks, including MaskRCNN and YOLOv8-seg. In future studies, the proposed methods 
could be further used for synthesizing images and ground-truth values of other objects, such 
as fruit trees densely covered with fruits, leaves covered with disease spots, and edible fungi 
growing on substrates, assisting in fruit picking [46], disease identification [32] and 
mushroom production estimation [47], respectively.

The second task was to assess the drought-stress level of the poplar saplings. Some studies 
have used one variety of plant for drought-level classification or other plant-stress detection 
[48, 49]. Although a good performance was achieved, this kind of method might not be 
applicable for stress detection in multiple plant varieties. Different varieties of plants have 
different stress tolerances. For instance, when plants suffer from the same level of drought 
stress, their degree of change in phenotypic information varies. If a deep learning model 
was applied for irrigation level classification of different varieties of plants, the model might 
learn the phenotypic features originating from variety differences rather than drought-stress-
related features. In similar studies, it was found that the variety of plants had a certain impact 
on nutrient content inspection and disease detection tasks [50]. Hence, variety-related 
responses should be considered when performing plant-stress detection tasks. Multitask 
learning models are trained using multiple label constraints [47], which forces the models 
to extract deep features simultaneously associated with multiple expected outputs. These 
models have been widely applied for multiple phenotypic trait determination using only one 
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model [51]. However, there is a relative lack of research that uses multitask learning to 
reduce the impact of plant variety on plant drought-stress grading. In this study, multitask 
learning was adopted for simultaneously predicting poplar variety and drought level. The 
subnetworks for variety classification and drought grading shared the same feature map, 
which included both variety-related and drought-related information. Therefore, the 
multitask learning model performed better than conventional single-task deep learning 
models. The methods proposed in this study have great potential for drought-resistant poplar 
sapling screening and for precise irrigation of poplar samples with different drought 
tolerances.

The impacts of drought on the midvein angle and petiole angle were also evaluated. In 
Figure 9, the midvein angle and petiole angle were considered two characteristics for 
visualizing the differences between samples under different stress levels. Overall, the scatter 
plots representing the same group of samples tended to cluster together. When considering 
only the CK, SD, and MD groups, these three groups were relatively easy to separate. The 
results indicated that obvious differences in leaf angles (midvein and petiole) existed 
between these three groups. Considering only the other two groups (NW and MW groups), 
different frequencies of rewatering had a certain impact on leaf posture. However, the leaf 
posture of the samples from the NW and MW groups was similar to that of the CK group. 
The leaf angles of the plants subjected to severe drought followed by normal rewatering 
were greater than those of the plants in the CK group. Therefore, based only on the angles 
of the midvein and petiole, it was still difficult to separate the samples under the studied 
five drought-stress levels. Nevertheless, leaf posture is an important drought-related 
phenotype. Future studies can be conducted using the time-series sequence of posture 
information [52]. The inspection of dynamic changes in plant posture might be a promising 
approach for accurately grading drought stress.

(a) (b)
Figure 9. Scatter plots of midvein angles and petiole angles of different poplar 
varieties under different levels of drought (SY1 and 110). (a) SY1 and (b) 110.

There were also some limitations in this study, which can be addressed in future studies. 
First, the ZED Mini 2 camera used was a binocular camera that could provide both color 
images and the corresponding 3D cloud points. Only the color images were processed in 
this study to establish a low-cost phenotyping method. In future research, the 3D posture of 
plants can be analyzed to better understand the growth status of plants. Other water content-
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sensitive phenotypes, such as leaf wilting [52], should also be considered to improve 
drought-stress detection methods. Moreover, limited samples of poplar plants were studied. 
More samples should be cultivated, observed, and analyzed in the future to further improve 
the robustness of the deep learning models and identify more reliable patterns of phenotypic 
changes in poplar plants originating from drought stress.

5. Conclusion
This paper proposes new methods for drought-stressed poplar sapling phenotyping and 
drought-stress-level determination. The leaf posture analysis task incorporates two unique 
techniques. The first part is synthesizing a training dataset using a combination of plant 
organ segmentation. The image-annotation pairs are automatically generated, significantly 
reducing manual labeling. The second part is plant structure-based analysis, which evaluates 
the angle of leaves obtained by segmenting leaves and the corresponding stems. Promising 
results showed that the mean absolute errors of the angle calculations were 10.7° and 8.2° 
for the per-leaf estimations of the petiole and midvein, respectively. With the published 
codes for dataset augmentation, the proposed plant image-annotation-pair synthesis method 
can be transferred quickly to other areas. For instance, disease spots and fruits can be 
generated for diseased leaf segmentation and vision-based fruit detection and picking, 
respectively. In addition, the multitask deep learning classification algorithm can be utilized 
to improve the drought-stress-level classification performance. The model was trained using 
both variety information and stress-level information as supervision constraints, producing 
deep features that simultaneously revealed the stress level and poplar variety. Considering 
the impact of poplar variety, the multitask learning-based models outperformed single-task 
learning models, reaching the highest accuracy, 99% for variety discrimination and 76% for 
stress-level grading. The proposed phenotyping methods can benefit applications such as 
drought stress-resistant plant screening and irrigation decision-making in regard to broader 
kinds of plants.
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