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Abstract

Accurate identification of plant diseases is important for ensuring the safety of agricultural 
production. Convolutional neural networks (CNNs) and visual transformers (VTs) can extract 
effective representations of images and have been widely used for the intelligent recognition of 
plant disease images. However, CNNs have excellent local perception with poor global perception, 
and VTs have excellent global perception with poor local perception. This makes it difficult to 
further improve the performance of both CNNs and VTs on plant disease recognition tasks. In this 
paper, we propose a local and global feature-aware dual-branch network, named LGNet, for the 
identification of plant diseases. More specifically, we first design a dual-branch structure based on 
CNNs and VTs to extract the local and global features. Then, an adaptive feature fusion (AFF) 
module is designed to fuse the local and global features, thus driving the model to dynamically 
perceive the weights of different features. Finally, we design a hierarchical mixed-scale unit-guided 
feature fusion (HMUFF) module to mine the key information in the features at different levels and 
fuse the differentiated information among them, thereby enhancing the model's multiscale 
perception capability. Subsequently, extensive experiments were conducted on the AI Challenger 
2018 dataset and the self-collected corn disease (SCD) dataset. The experimental results 
demonstrate that our proposed LGNet achieves state-of-the-art recognition performance on both 
the AI Challenger 2018 dataset and the SCD dataset, with accuracies of 88.74% and 99.08%, 
respectively.
Keywords

Plant disease recognition, visual transformers, convolutional neural networks, adaptive feature 
fusion, hierarchical mixed-scale unit-guided feature fusion.
MAIN TEXT

1. Introduction
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Safeguarding the agricultural production process has become an important economic 
imperative, and is aligned with the growing demand for improved quality and improved yields of 
agricultural products. Plant diseases are among the most important factors threatening the security 
of agricultural production [1]. At present, pests and diseases have led to a decline in the yields of a 
large number of crops [2]. Precise management of plant diseases could substantially reduce crop 
losses in the future. Accurate identification of plant diseases is a prerequisite for precision 
prevention and control [3, 4, 5]. However, traditional methods of plant disease identification, which 
are usually based on farmers’ long-standing experience, are time-consuming and have difficulty 
meeting the demands of large-scale cultivation [6, 7, 8, 9].

In recent years, image processing technology has developed rapidly, and image-based plant 
disease recognition tasks have become popular [4, 10, 11, 12, 13, 14, 15]. For example, identifying 
plant diseases using traditional machine learning methods achieved good performance in the early 
days [16, 17, 18, 19]. However, this method usually requires manual feature extractions, making 
the recognition accuracy low when coping with large-scale plant diseases or plant diseases in the 
field environment. With the rapid development of artificial intelligence, deep learning, with its 
strong feature representation capabilities, has been increasingly applied for image recognition tasks, 
such as image classification [20, 21, 22], object detection [23, 24, 25], and image segmentation [26, 
27, 28]. Currently, deep learning-based methods, which can be categorized into convolutional 
neural network (CNN)-based methods and visual Transformer (VT)-based methods, have become 
the mainstream methods for identifying plant diseases [29, 30, 31]. The CNN-based method uses a 
sliding window to extract features from plant disease images and therefore has excellent local 
feature perception with poor global feature perception [32, 33, 34]. The VT-based method 
transforms the image into multiple patches and then uses multi-head self-attention to extract the 
features of the plant disease image and therefore has excellent global feature perception with poor 
local feature perception [11, 35, 36]. However, some of the existing state-of-the-art (SOTA) 
methods for plant disease identification are based on a single CNN or VT, which severely limits 
their performance [35, 37, 38, 39, 40, 41, 42, 43]. This is because the symptoms exhibited by plant 
diseases are usually diverse, i.e., some plants are less infested with the pathogen, so the spots are 
localized, while some plants are more infested with the pathogen, so the spots are global, thus 
making it impossible for a single CNN or VT to strike a balance between local and global feature 
extraction. Although fusion architectures based on CNNs and VTs have been proposed, they still 
ignore the weights between features from different architectures [44].

To address the above challenge, we propose a local and global feature-aware dual-branch 
network, named LGNet, for plant disease recognition. Specifically, to extract both local and global 
disease features, we develop a hybrid two-branch network based on a CNN and VT. In addition, 
we design an adaptive feature fusion module and a multilevel feature fusion module for local and 
global disease feature perception and multiscale feature fusion, respectively. LGNet achieves state-
of-the-art performance on two plant disease datasets. Our contributions are as follows:

(1) We propose a hybrid dual-branch network based on a CNN and VT for plant disease 
recognition.

(2) An adaptive feature fusion (AFF) module is designed for the adaptive perception of local 
and global features.

(3) We design a hierarchical mixed-scale unit-guided feature fusion (HMUFF) module to mine 
effective information in features and fuse it at multiple scales.
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(4) Our proposed LGNet achieves state-of-the-art performance on the AI Challenger 2018 
dataset and the self-collected corn (SCD) dataset.

2. Related work

2.1 Traditional machine learning methods

Recognizing plant diseases using traditional machine learning methods can be classified in 
three steps: image preprocessing, feature design, and classification using the obtained features [45]. 
Omrani et al. (2014) [46] used k-means to detect diseased areas in apple images and utilized a 
support vector machine (SVM) for classification. Rumpf et al. (2010) [17] used SVM and 
hyperspectral techniques to achieve early disease identification in sugar beets. Experiments showed 
that their method reached an accuracy of 97%. Phadikar et al. (2013) [47] selected rice disease 
features using rough set theory (RST). The experimental results showed that the RST method 
outperformed traditional methods in terms of feature selection. Plant disease identification using 
traditional machine learning methods usually has strong subjectivities and poor generalization 
abilities and has been gradually replaced by deep learning-based methods.

2.2 Deep learning-based methods

Unlike traditional methods, deep learning-based methods can automatically extract effective 
features of plant diseases and therefore have stronger generalizability. Nawaz et al. (2024) [48] 
proposed an improved CenterNet for coffee plant leaf disease recognition by introducing an 
improved ResNet-50. The accuracy and mean average precision (map) of their proposed model 
were 98.54% and 97%, respectively. Salamai et al. (2023) [11] developed a lesion-aware visual 
Transformer for paddy leaf disease detection. Their model achieved an average accuracy of 98.74% 
and an average f1-score of 98.18% on public paddy disease datasets. Thai et al. (2023) [49] 
proposed the least important attention pruning (LeIAP) algorithm to improve the Transformer 
model. Furthermore, they also used sparse matrix‒matrix multiplication (SPMM) to calculate 
matrix correlations. Their developed model was more accurate and had a smaller number of 
parameters than the other models. Moreover, Faisal et al. (2023) [50] developed DFNet for plant 
disease classification by using a double-pretrained CNN model. The DFNet model achieved 
97.53% and 94.65% accuracy on the two datasets, respectively. The abovementioned studies 
verified the feasibility of the deep learning-based methods. However, almost all these methods are 
based on a single CNN or VT. These methods are limited in their performance when applied to 
diverse plant disease datasets. For this reason, we develop a hybrid architecture based on a CNN 
and VT to address this challenge.

3. Materials and Methods

3.1 Dataset

AI Challenger 2018 dataset: The AI Challenger 2018 dataset is an open-source large-scale 
plant disease dataset containing a total of 36,258 plant disease images, of which 32,660 are in the 
training set and 3,598 are in the test set. The dataset can be categorized into 10 categories by disease 
type and 61 categories by disease severity. Representative samples are shown in Figure 1 (a). Plant 
diseases with severe symptoms exhibit global symptoms, and plant diseases with general symptoms 
exhibit local symptoms. In addition, we further divided the training set into a new training set and 
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a validation set at a ratio of 9:1. Thus, 29,394 images are used for model training, 3,266 images are 
used for model validation, and 3,598 images are used for testing the final performance of the model.

Self-collected corn disease (SCD) dataset: The SCD dataset is available from four sources, 
namely, CD&S [51], PlantDoc [52], and websites. More specifically, we collected images of 
northern leaf blight, gray leaf spot, and northern leaf spot from the CD&S dataset, and corn 
embroidery disease images from PlantDoc. In addition, we obtained images of healthy corn and 
some diseased plants from the website. The SCD dataset contained a total of 3258 images of six 
corn leaf diseases. An 8:1:1 ratio is randomly used for division to obtain 2609 images in the training 
set, 324 images in the validation set, and 325 images in the test set. Representative samples of the 
SCD dataset are shown in Figure 1 (b). Corn leaf diseases are characterized by both local and global 
symptoms and are affected by complex conditions.

Figure 1. Representative examples from the AI Challenger 2018 and SCD datasets.

3.2 Proposed LGNet

Figure 2 shows the overall structure of LGNet, which consists of a dual-branch backbone 
network, adaptive feature fusion (AFF) modules, and hierarchical mixed-scale unit-guided feature 
fusion (HMUFF) modules. Specifically, we first crop the size of the input image to 224×224. Then, 
a dual-branch backbone network is used for multiscale feature extraction. In the dual-branch 
backbone network, we use ConvNext-Tiny [53] to extract the multiscale local features and Swin 
Transformer-Tiny [54] to extract the multiscale global features. Subsequently, the AFF modules 
are designed to achieve adaptive perceptual fusion of the local and global features, driving the 
model to dynamically perceive the local and global features. In addition, the HMUFF modules are 
designed to extract vital information from the features to guide efficient fusions between the 
multiscale features. More specifically, the HMUFF module mines differential features between 
different layers and then fuses them, thus providing each layer with a strong representation. Finally, 
the three scales of feature representations are fed into the pooling layers and classifiers to complete 
the identification of the plant disease.
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Figure 2. The overall architecture of LGNet consists of a dual-branch backbone network, 
adaptive feature fusion modules, and hierarchical mixed-scale unit-guided feature fusion modules.

3.2.1 Adaptive feature fusion (AFF) module

Usually, CNNs can capture local disease information, and VTs can capture global disease 
information. However, the diverse symptom representations of plant diseases make it necessary for 
the model to learn more appropriate feature representations for different plant diseases. To address 
this challenge, as described in the previous section, we designed a hybrid two-branch backbone 
network to extract the local and global features of plant diseases. Therefore, an efficient fusion 
module for fusing local and global features is needed. Here, we design the AFF module to 
implement the adaptive perceptual fusion of the local and global features, allowing the model to 
adaptively adjust the weights of the different features. Figure 3 illustrates the structure of the AFF 
module, which learns the adaptive weights of the two features and then weights the obtained 
weights on the original feature maps, enabling the model to adaptively perceive the local and global 
disease features, thus enhancing the model’s feature representation capability.

Figure 3. Structure of the AFF module.

Given a local feature input and a global feature input , C, W, and 
H denote the channel number, width, and height of the feature map, respectively. First, we cascade 
the two feature maps ( and ) along the channel direction to obtain the input feature . It can 
be written as:

C W H
LX   ¡ C W H

GX   ¡

LX GX Y
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                                                          (1)

where . Then, we map the number of channels of the output to 2 via a convolution 
operation and use softmax to obtain the weighted feature map . It can be written as:

                                                      (2)

where  denotes a 3×3 convolution. Subsequently, we separate the weight feature map  along 
the channel directions to obtain the local weights  and global weights . Finally, we apply the 
obtained weights to the original feature map and perform elementwise addition to obtain the 
adaptive output :

                                                         (3)

3.2.2 Hierarchical mixed-scale unit-guided feature fusion (HMUFF) module

In general, different scales of feature maps contain different key information, so fusing the 
multiscale features facilitates the performance of the model. In LGNet, we design three branches in 
the backbone network to extract three scales of feature maps. Therefore, an efficient feature fusion 
method is needed for fusing feature information at these three scales. Here, we design a hierarchical 
mixed-scale unit-guided feature fusion (HMUFF) module for the fusion of different scale features. 
Specifically, the key ground information in the different scale features is first extracted by the 
hierarchical mixed-scale unit (HMU) module, thus guiding the well-designed module to realize the 
fusion of the multiscale features. As shown in Figure 4, an HMU module is first used to mine key 
information in the feature map, and then a feature fusion (FF) module is employed to fuse the 
differential features between the different scales.

Given two input feature maps and , where C, W, and H denote the 
channel number, width, and height of the input feature map, respectively. First, we use an HMU to 
identify and highlight key disease features:

                                                             (4)

                                                              (5)

Then, and  are flattened through the spatial direction to obtain  and 
. Here, and . Subsequently, we obtain the differentiated 

feature matrix of the two feature maps via matrix multiplication, inverse, and softmax operations:

                                         (6)

where  denotes matrix multiplication. Next, we perform matrix multiplication to obtain the fusion 
information corresponding to the feature map:

                                            (7)

{ ; }L GY Concat X X

2C W HY  ¡
W

3 3( ( ))W Softmax f Y

3 3f  W

LW GW

A

* *L L G GA X W X W 

1 1
1

C W HX   ¡ 2 2
2

C W HX   ¡

1
( )X 1H  = HMU X

2 2( )XH  = HMU X

1XH
2XH

1

1C S
XHF  ¡

2

2C S
XHF  ¡ 1 1 1S W H  2 2 2S W H 

1 2
( ( ( ) ))d X XM = Softmax Z Tanspose FH ,FH

Z

2

2
1 ( ( , ( )))d XReshape Z M Tanspo HeF s F
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                                                      (8)

where  denotes the fusion information corresponding to , and  denotes the fusion 
information corresponding to . Therefore, the output of the HMUFF module is as follows:

                                                                   (9)

                                                                  (10)

The HMU module was originally proposed in the field of camouflaged object detection to 
mine the discriminative semantic features of camouflaged objects [32]. In this study, we design 
three multiscale branches based on a hybrid backbone network, as shown in Figure 2. Therefore, 
we first use the HMU module to refine the multiscale features and mine the discriminative feature 
information in different branches. For example, mining detailed information such as textures and 
edges in shallow features, and semantic information in deep features, can guide the FF module for 
efficient multiscale feature fusion. As shown in Figure 4, the structure of the HMU module can be 
divided into two stages, namely, groupwise iteration and channelwise modulation. For the 
groupwise iteration stage, a convolution operation is first used to expand the number of channels 
of the input feature map . Then, we divide the feature maps into G groups  along the 
channel direction. Next, we divide the first group  into three parts  using the 
convolution operation. The first part, , is used for feature interaction with the next group, and 
the other two parts are used for channel modulation. With this continuous iterative approach, the 
key feature information in the channel is mined, enabling the module to be more discriminative 
with the semantic information. For the channelwise modulation stage, the features  are 
nonlinearly transformed to obtain the weights , which are then weighted on the features  
to further highlight the key information in the features. Finally, the output  of the HMU module 
can be written as:

                                            (11)

where  represents the activation function,  represents the normalization layer, and  
represents the convolution operation.

1

1
2 ( ( , ))d XReshape Z MF HF

2
1F 1X 1

2F

2X

2 2
1 1 1XX F 

1 1
2 2 2XX F 

X 1{ }G
j jg 

{ }jg 3
1 1{ }k

kg 
1

1g 

2
1[{ } ]G

j jg 

 3
1[{ } ]G

j jg 

H

  3

1

G

j j
H X g 



           
A N T

A N T
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Figure 4. Structure of the HMUFF module.

4. Results

4.1 Experimental environment and evaluation indices

We divided the parameters of LGNet into two parts for training. First, we initialized the 
weights of the dual-branch backbone network using the official model weights on ImageNet 1k. 
Therefore, for the parameters of the backbone network, we simply needed to fine-tune them using 
an initial learning rate of 2e-5. On the other hand, for parameters that were not loaded with the 
corresponding pretrained weights, we used an initial learning rate of 2e-4. SGD was adopted as the 
optimizer with momentum=0.9 and weight decay=5e-6. The batch size and number of iterations 
were set to 32 and 80, respectively. During the training process, we used online data augmentation 
with random rotation angles and random horizontal flips to enhance the generalization ability of the 
model. The cross-entropy function was used as the loss function for the three branches in the LGNet 
model. For all the experiments, we carried out training on a Windows 11 system with an NVIDIA 
GeForce RTX 3090 GPU and PyTorch.

For the quantitative evaluation of models, the evaluation indices used in this study are as 
follows:

                                                      (12)

                                                                 (13)

                                                                 (14)

                                                             (15)

where denotes the number of true-positive samples,  denotes the number of false-positive 
samples,  denotes the number of false-negative samples, and  denotes the number of true-
negative samples.

4.2 Comparisons with single models

To verify the better performance of LGNet compared to a single deep learning model, we 
conduct comparison experiments using ConvNeXt-Tiny and Swin Transformer-Tiny (the backbone 
networks in LGNet). Figure 5 illustrates the accuracy of each epoch on the validation set. All three 
models are initialized with pretraining weights during the training process, so the accuracy at the 
beginning of training can also be maintained at a high level. For example, the accuracy of the first 
epoch of all three models on the AI Challenger 2018 dataset is greater than 84%, and the accuracy 
of the first epoch of all three models on the SCD dataset is greater than 88%. However, more 
parameters need to be fine-tuned during the training of the LGNet model; thus, the initial accuracy 
of LGNet is slightly lower than that of the other two single models. More importantly, when the 
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TP FP TN FN
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model converges to fit, LGNet's accuracy substantially improves, with its accuracy being 
approximately 1-2% higher than that of the single models on both datasets. These findings validate 
that LGNet has a more powerful feature extraction capability compared to a single model.

Figure 5. The accuracy of each epoch. (a) Results on the AI Challenger 2018 dataset. (b) 
Results on the SCD dataset.

Table 1 illustrates the comparison results with single deep learning models on the test set. For 
the AI Challenger 2018 dataset, the recognition accuracies of LGNet are 1.34% and 1.65% higher 
than those of ConvNeXt-Tiny and Swin Transformer-Tiny, respectively. For the SCD dataset, the 
recognition accuracy of LGNet is 1.55% and 1.88% higher than that of ConvNeXt-Tiny and Swin 
Transformer-Tiny, respectively. These results are almost the same as those analyzed on the 
validation set, further validating that our proposed LGNet has better performance advantages for 
plant disease identification tasks.

Table 1. Comparison results with single deep learning models on the test set
Model Acc (%)

AI Challenger 2018 dataset SCD dataset
ConvNeXt-Tiny 87.4 97.53

Swin Transformer-Tiny 87.09 97.2
LGNet 88.74 99.08

4.3 Ablation analysis

To validate the impact of the AFF modules and the HMUFF modules on the performance of 
the model, we perform ablation experiments on the AI Challenger 2018 and SCD datasets. Table 2 
exhibits the comparison results of the ablation experiments. Both the use of the AFF modules and 
the use of the HMUFF modules improved the performance. In contrast, using the AFF modules on 
the benchmark model provides a better performance improvement than using the HMUFF modules 
on the benchmark model, with accuracies of 88.33% and 98.46% on the AI Challenger 2018 and 
SCD datasets, respectively. This may be because the dual-branch backbone network extracts rich 
disease features, and the AFF module allows LGNet to adaptively extract key global and local 
features, whereas the model using only the HMUFF module extracts a large amount of redundant 
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information, which limits the performance of the model. Overall, the model that includes both the 
AFF modules and the HMUFF modules achieves a state-of-the-art performance in most of the 
metrics, with accuracies of 88.74% and 99.08% on the AI Challenger 2018 and SCD datasets, 
respectively, which are 0.77% and 1.23% better than those of the benchmark model.

Table 2. Comparison of the results of ablation experiments

AFF HMUFF AI Challenger 2018 dataset SCD dataset
Acc 
(%)

Pre 
(%)

Rec 
(%)

F1 
(%)

Acc 
(%)

Pre 
(%)

Rec 
(%)

F1 
(%)

87.97 84.03 82.08 82.68 97.85 97.85 97.76 97.79
 88.33 85.71 84.03 84.55 98.46 98.6 98.48 98.53

 88.07 82.59 84.38 82.97 98.15 98.23 98.18 98.18
  88.74 85.58 84.68 84.94 99.08 99.31 99.18 99.23

To show the effectiveness of the HMUFF modules, we visualize the feature maps of the three 
branches in LGNet. The visualization results are shown in Figure 6. B1, B2, and B3 represent the 
three scales of the branches. The model with the HMUFF module not only captures more detailed 
texture information but also retains richer disease information than the model without the HMUFF 
module. On the one hand, the HMU module in the HMUFF module is able to mine more detailed 
texture information; on the other hand, we utilize the differentiated matrix to fuse features at 
different scales, which enables different branches to fuse key information they do not have; 
therefore, the obtained feature maps are richer in disease information. These findings demonstrate 
the effectiveness of our designed HMUFF module.
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Figure 6. Visualization of feature maps for different branches. (a) represents the original 
image. (b) Model without the HMUFF module. (c) Model with HMUFF modules

The AFF module is designed to adaptively fuse the weights of the local and global features. 
Therefore, we validate the effectiveness of the AFF module using Grad-cam [55]. Figure 7 
illustrates the obtained results. The model with the AFF module is able to localize the lesion area 
better and has a strong lesion perception ability. The model without the AFF module can only focus 
on part of the lesion area and has a poor lesion perception ability. These findings demonstrate the 
effectiveness of our designed AFF module.
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Figure 7. Class-activation mapping of the two models. (a) represents the original image. (b) 
Model without AFF modules. (c) Model with AFF modules

4.4 Impact of multiscale branches on LGNet

As shown in Figure 2, we use the multiscale features in LGNet to enable the model to learn 
features of different granularities. Specifically, there are three scales of branches. Therefore, to 
verify the impact of the multiscale branches on LGNet, we conduct comparative experiments using 
different combinations of the three branches, and the results on the test set are shown in Table 3. 
The performance of the combination "B1+B3" is slightly better than that of the combination 
"B2+B3". This may be because the B1 branch represents shallow features, which can provide a 
more subtle feature representation. In addition, both the "B1+B3" and "B2+B3" combinations had 
greater recognition performance than did the "B1+B2" combination, which indicates the greater 
importance of the F3 branch in the disease recognition task. Finally, the combination of B1+B2+B3 
achieves the highest performance for most of the metrics, with accuracies of 88.74% and 99.08% 
on the AI Challenger 2018 and SCD datasets, respectively. These findings demonstrate the 
effectiveness of using the multiscale branches on LGNet.

Table 3. Experimental results using the multiscale branches on the test set

AI Challenger 2018 dataset SCD dataset
Acc (%) Pre (%) Rec (%) F1 (%) Acc (%) Pre (%) Rec (%) F1 (%)

B1 + B2 87.99 84.76 83.26 83.72 98.15 98.23 98.18 98.18
B2 + B3 88.52 84.92 83.82 84.1 98.46 98.46 98.45 98.44
B1 + B3 88.55 86.08 84.38 84.91 98.77 98.93 98.87 98.88

B1 + B2 + B3 88.74 85.58 84.68 84.94 99.08 99.31 99.18 99.23
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4.5 Visualization Analysis

In this section, we visualize the class activation mapping for some of the samples using Grad-
CAM to demonstrate the regions of interest for different models. As shown in Figure 8, we chose 
the two samples with local disease features and global disease features from the AI Challenger 2018 
dataset and SCD dataset, respectively. It can be seen that ConvNeXt-Tiny focuses on inaccurate or 
incomplete lesion areas and has weak lesion feature perception in complex scenes. Although Swin 
Transformer-Tiny can localize the lesion area, it also focuses on a large amount of redundant 
information. In contrast, our proposed LGNet not only focuses on global disease features but also 
accurately captures local features while suppressing complex background information.

Figure 8. Class activation visualization results on the AI Challenger 2018 dataset and SCD 
dataset

To demonstrate the intra- and interclass distances in the test samples. We extract the last layer 
of the model and use t-distributed stochastic neighbor embedding (t-SNE) [56] to reduce the test 
set on the AI Challenger 2018 dataset to two dimensions. The t-SNE visualization results for the 
three models are shown in Figure 9. All three models can effectively distinguish between different 
disease types. However, for subtypes of the same disease, it is usually difficult for ConvNext-Tiny 
and Swin Transformer-Tiny to categorize them accurately. In contrast, LGNet not only implements 
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precise classifications between disease categories but also improves the metric distance between 
different subcategories. This is because LGNet can adaptively perceive different symptomatic 
disease areas and introduces well-designed modules to extract key features, thus resulting in 
stronger feature representations.

Figure 9. The t-SNE visualization results for the three models on the AI Challenger 2018 dataset

4.6 Comparisons with SOTAs on the AI Challenger 2018 dataset

The comparison results between our proposed LGNet and the state-of-the-art models on the 
AI Challenger 2018 dataset are shown in Table 4. LGNet achieves a state-of-the-art performance 
with an accuracy of 88.74%. In contrast, previous studies have almost always been designed based 
on a single CNN or VT model, making their performances limited to diverse plant disease datasets. 
Although the hybrid structure of CNN and VT is also used in the ConvVIT-Ti+ model, they simply 
fused the structure of the convolutional structure and the structure of the self-attention module and 
did not consider the trade-off between the global disease features and the local disease features. 
This makes their accuracy only 86.17%, which is 2.57% lower than that of LGNet, verifying that 
our proposed hybrid architecture based on a CNN and VT is effective.

Table 4. Comparison results on the AI Challenger 2018 dataset

Model Acc (%)
Inception-ResNet-v2 [57] 86.1

DECA_ResNet [30] 86.35
Swin Transformer-Tiny [54] 87.09

ConvViT-Ti + [44] 86.17
ConvNeXt-Tiny [53] 87.4
SMLP_ResNet [58] 86.93

Improved attention model [59] 87.11
HCNet [60] 88.42

LGNet 88.74

4.7 Comparisons with SOTAs on the SCD dataset

We verify that LGNet also has a state-of-the-art performance on the plant disease recognition 
task in a field environment. We conduct comparative experiments on the SCD dataset using several 
classical models and several previous corn disease recognition models. Table 5 exhibits the 
comparison results on the SCD dataset. LGNet achieves the highest recognition accuracy of 99.08%, 
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which is 0.61% and 0.31% higher than that of DFCANet and FCA-EfficientNet, respectively, 
further demonstrating the effectiveness of our proposed method.

Table 5. Comparison results on the SCD dataset

Model Acc (%)
ResNet50 [61] 96.92

MobileNetV2 [62] 96.3
Swin Tranformer-Tiny [54] 97.2

ConvNeXt-Tiny [53] 97.53
DFCANet [63] 98.47

FCA-EfficientNet [64] 98.77
LGNet 99.08

5. Discussion
We propose a dual-branch network, LGNet, based on a CNN and VT for plant disease 

recognition. In LGNet, the AFF module is designed to efficiently fuse CNNs and VTs for local and 
global feature extraction of plant diseases. In addition, we design the HMUFF module to fuse 
multiscale disease features to further enhance the disease sensing capabilities. Subsequently, 
extensive experimental results validate that our method is more effective than a single deep network, 
and it outperforms the existing state-of-the-art plant disease recognition models on both the AI 
Challenger 2018 dataset and the SCD dataset.

Moreover, through our study, we found that there are still some key issues that need to be 
addressed, such as efficient plant disease recognition models and robust plant disease recognition 
models. We further discuss them in the following subsection.

(1) Efficient plant disease recognition models

Efficient plant disease recognition models are those that can accurately identify various plant 
diseases while maintaining low computational complexity, fast inference speeds, and minimal 
resource utilizations. In agricultural production environments, the development of efficient plant 
disease recognition models is particularly important due to the scarcity of computing power and 
poor equipment. Given that LGNet is designed based on the parallel structure of CNN and VT, the 
number of parameters and computations of LGNet will also increase significantly. Therefore, the 
development of efficient models using machine learning methods is an important direction for our 
future studies [65]. Knowledge distillation could be an effective means to solve this problem. 
Knowledge distillation aims to transfer knowledge from a larger, high-performing teacher model 
to a smaller, more efficient student model that can help retain the recognition capabilities of the 
former while inheriting the compactness of the latter [66]. In the future, we will develop LGNet 
with a larger backbone network (ConvNeXt-Base and Swin Transformer-Base) to gain more in-
depth knowledge, and then use it as a teacher model to guide lightweight student models to learn 
more effective representations, thus designing highly efficient disease recognition models that can 
be deployed on mobile devices to help users identify plant diseases.

(2) Robust plant disease recognition models

In real agricultural environments, plant diseases not only have complex backgrounds but also 
suffer from other environmental factors, such as light, rain, and fog. This is a challenge for existing 
deep learning models. From the dataset perspective, obtaining more samples from real 
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environments or mimicking real environments for data augmentation is extremely effective. From 
a model structure perspective, in general, large-size models have more complex network results and 
therefore greater robustness. In addition, model training using the current state-of-the-art training 
methods, such as the meta-learning-based methods and self-supervised learning-based methods, 
can improve the robustness of the model. Overall, the development of robust plant disease 
recognition models, and improving the generalization ability of these models in real-world 
environments, is highly important for agricultural production.
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