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Abstract— The global trend of population aging presents
an urgent challenge in ensuring the safety and well-being
of elderly individuals, especially those living alone due
to various circumstances. A promising approach to this
challenge involves leveraging Human Action Recognition
(HAR) by integrating data from multiple sensors. How-
ever, the field of HAR has struggled to strike a balance
between accuracy and response time. While technological
advancements have improved recognition accuracy, com-
plex algorithms often come at the expense of response
time. To address this issue, we introduce an innovative
asynchronous detection method called Rapid Response
Elderly Safety Monitoring (RESAM), which relies on pro-
gressive hierarchical action recognition and multi-sensor
data fusion. Through initial analysis of inertial sensor data
using Kernel Principal Component Analysis (KPCA) and
multi-class classifiers, we efficiently reduce processing
time and lower the false-negative rate (FNR). The inertial
sensor identification serves as a pre-filter, enabling the
identification of filtered abnormal signals. Decision-level
data fusion is then executed, incorporating skeleton image
analysis based on ResNet and the inertial sensor data
from the initial step. This integration enables the accurate
differentiation between normal and abnormal behaviors.
The RESAM method achieves an impressive 97.4% accu-
racy on the UTD-MHAD database with a minimal delay of
1.22 seconds. On our internally collected database, the
RESAM system attains an accuracy of 99%, ranking among
the most accurate state-of-the-art methods available. These
results underscore the practicality and effectiveness of
our approach in meeting the critical demand for swift and
precise responses in healthcare scenarios.

Index Terms— Information fusion, action recognition,
neural networks.

I. INTRODUCTION

WE ARE witnessing a significant global demographic
shift. In 2019, 9% of the world’s population was aged

65 or older, projected to reach 16% by 2050, notably impact-
ing Europe and North America. The number of individuals
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aged 80 and above is expected to triple from 143 million
in 2019 to 426 million in 2050 [1]. This aging population
trend transcends borders, affecting advanced economies on a
global scale [2]. The consequence is a burgeoning demand
for healthcare services, particularly concerning the health and
well-being of elderly individuals who often reside indepen-
dently within residential communities or extensive nursing
facilities [3], [4]. The multifaceted challenges they confront
include limited access to healthcare services, aggravated by
physical limitations that curtail their mobility [5]. These chal-
lenges render seniors more susceptible to accidents or medical
emergencies. Managing their health, medications, and chronic
conditions, especially for those with multiple ailments, poses
significant hurdles. Human Activity Recognition (HAR)-based
surveillance algorithms gained prominence in response.

The proliferation of Internet of Things (IoT) technology
has introduced fresh avenues for tackling sensor-based HAR
challenges, notably utilizing time-series data from wearable
devices [6]. Accelerometers and gyroscopes, compact and
widespread in low-cost devices, play a key role in HAR. How-
ever, inertial sensor-based action recognition, while fast [7],
[8], falls short of video-based systems that benefit from
richer contextual cues. For example, deep learning-based fall
detection achieves just 86% accuracy when relying solely
on accelerometer data from wrist-worn devices [9] due to
the limitations of single-context accelerometer data lack-
ing 3D information for discerning wrist movements during
falls [10].

HAR based on RGB images shows advantages in accu-
racy [11]. RGB images contain rich information, including
color, texture, and spatial relationships, allowing for a
comprehensive understanding of human behavior in their
surroundings. Deep learning methods such as convolutional
neural networks (CNNs) have successfully extracted mean-
ingful features from RGB images and achieved high accuracy
in HAR tasks [12], [13]. The ability to capture scene con-
text enables RGB-based HAR systems to recognize complex
activities and interactions beyond the limitations of inertial
sensor-based approaches. However, HAR systems based on
RGB images face challenges in computational complexity
and data storage requirements, especially with high-resolution
videos. In addition, deploying cameras for human monitoring
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Fig. 1. Rapid response elderly safety monitoring (RESAM) system architecture.

may raise privacy concerns, limiting the locations where the
cameras can be installed.

Therefore, the skeleton image is introduced to avoid the
issues. By representing only key joint positions and motions,
skeletal data ensures privacy while capturing human behavior’s
underlying spatial relationships and temporal dynamics [14].
Skeleton data has a small footprint, improving computational
efficiency and reducing storage requirements. Deep learn-
ing models, such as graph convolutional networks (GCNs)
[15] or recurrent neural networks (RNNs) [16], efficiently
extract features from skeleton data for accurate, real-time
action recognition. Fusing skeletal data with other sensor
inputs, such as inertial data from wearable devices, enables
multimodal HAR systems to provide comprehensive insights
into human activity while preserving privacy and ethical
considerations [17].

Information fusion [18] is a pivotal aspect of HAR, enhanc-
ing system accuracy by integrating data from various sources
or modalities. Fusion occurs at three levels: data, feature, and
decision [13]. Data level fusion combines raw sensor data, like
accelerometer and gyroscope inputs, to create comprehensive
datasets. Feature level fusion merges relevant features from
heterogeneous data sources, such as the combination of the
eigenvectors of the RGB and depth image into a single one.
Decision-level fusion integrates information from multiple
sources to reach final decisions. This fusion strategy enables
HAR systems to recognize diverse activities while enhancing
system robustness accurately.

In healthcare for elders, a timely response is critical to
ensuring their safety and well-being. This paper proposes a
Rapid Response Elderly Safety Monitoring (RESAM) system.
This progressive HAR method combines the advantages of
wearable inertial data and Skeleton Images while mitigat-
ing their respective disadvantages. By integrating information
from both modalities, the RESAM system can gain a compre-
hensive picture of older people’s activities, enabling faster and
more accurate identification of their behavior. The RESAM
system performs action recognition based on the motion details
of the wearable device and quickly responds to potentially
dangerous behaviors. In addition, skeletal data allows more
precise identification results while maintaining privacy. Fur-
thermore, the data fusion of the two recognition methods
enhances the overall accuracy and robustness of the system.
This holistic approach maximizes the potential of healthcare

technology, ensuring prompt and effective responses to support
and safeguard the well-being of the aging population. The key
features are summarized below.

• Real-time response: The RESAM system prioritizes
real-time responses to potentially dangerous behaviors
of seniors. The system can quickly detect and identify
critical activities by utilizing wearable device data and
efficient motion recognition algorithms, enabling rapid
intervention and assistance when needed.

• Privacy-preserving human action recognition: Skele-
ton data integration for human activity recognition
ensures privacy preservation while maintaining accurate
action recognition. Skeletal data represents key joint posi-
tions and motions without processing or storing detailed
visual information, addressing privacy concerns and eth-
ical considerations in healthcare settings.

• Enhanced accuracy and robustness: The RESAM sys-
tem improves the accuracy and robustness of human
activity recognition by fusing decisions from multiple
modalities, including wearable device input and skeletal
data. Combining information from the two sources allows
for a more complete understanding of older adults’ activ-
ities, leading to improved performance and reliability in
recognizing and responding to various behaviors.

The rest of the paper is organized as follows. Section II
illustrates the rationale and detailed design of the proposed
RESAM system. In Section III, we introduce the datasets,
evaluation metrics, experimental setup, and results coopera-
tion. Finally, Section IV concludes the paper, summarizing
the findings and suggesting future research directions.

II. RESAM: RATIONALE AND METHODS

Figure 1 illustrates the architecture of the RESAM system.
It begins with the crucial step of data extraction, where
skeletal and inertial sensor data are collected and labeled with
corresponding tags. After that, the system performs feature
extraction on the inertial sensor data, utilizing it for initial
classification. If the detection results signify an emergency, the
subsequent action involves obtaining more precise outcomes
through the fusion of skeleton-based detection, which aligns
with the inertial sensor data labels. Finally, whether it is an
emergency or not, all data is stored in the cloud for future
long-term health state analysis.
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Fig. 2. Examples of inertial signal for normal and abnormal activities.

A. Inertial Data Pre-Processing
Thanks to the advancement of IoT technology, modern

wearable devices are equipped with multiple sensors, such
as accelerometers and gyroscopes, providing rich multi-
dimensional data. Therefore, in motion recognition systems
based on inertial sensors, the collected data is usually repre-
sented as a d-dimensional vector, where d is the number of
sensor channels in the wearable device.

Figure 2 shows an example of both normal and abnormal
inertial signals, highlighting the difference between them. The
data from a wearable device containing accelerometers and
gyroscopes will be represented as multiple three-dimensional
vectors because each sensor measures acceleration or angular
velocity along three orthogonal axes (x, y, z). Therefore, the
resulting data consists of d-dimensional vectors, where d = 6,
counting three channels from the accelerometer and three
from the gyroscope. A d-dimensional vector encapsulates the
measurements of all sensor channels at a particular time,
forming raw sensor data collected over time. However, the
information contained in the original data is not all useful.
We need the features to distinguish different actions and
remove the part polluted by noise.

The dataset of inertial data includes N samples in d dimen-
sions. Each sample can be represented as a d-dimensional
vector X i ∈ Rd , where i = 1, 2, . . . , n.

B. KPCA-Based Inertial Signal Analysis
Kernelized principal component analysis (KPCA) is a

nonlinear dimensionality reduction method [19]. The basic
idea is to map the original linearly inseparable data to a
high-dimensional space through the kernel method, making
it linearly separable in the high-dimensional space; The space
is still linearly separable. The first step in KPCA is to compute
the kernel matrix K , which measures the similarity between
pairs of data points in the original space. The most commonly
used kernel is the Radial Basis Function (RBF) kernel, defined
as:

K (X i , X j ) = exp(−γ ∥X i − X j∥2) (1)

where γ is a parameter known as the kernel bandwidth, and
∥.∥ the Euclidean distance between X i and X j .

Once the kernel matrix K is computed, the next step is
to center it by subtracting the mean of each row and each

column and then double-centering the matrix. The centered
kernel matrix is:

K̃ = (In −
1
N

1n1T
n )K (In −

1
N

1n1T
n )T (2)

where I is the identity matrix, 1 is a column vector of ones,
and 1T is its transpose.

After that, the K̃ eigenvalues λ and eigenvectors v are cal-
culated. The eigenvectors represent the principal components
of the data in the higher-dimensional feature space, and the
eigenvalues indicate the variance captured by each principal
component.

Finally, we select the top k eigenvectors corresponding to
the k largest eigenvalues to form the projection matrix W ∈

Rnk , where k is the desired dimensionality of the feature space.
The transformed data in the feature space is obtained as:

φ(xi ) = W T K (xi , X) (3)

where X is the original dataset matrix, and φ(xi ) is the feature
representation of the data point xi in the higher-dimensional
space.

Using KPCA on inertial sensor data yields a potent
feature representation, capturing nonlinear relationships and
discriminative information and enhancing action recognition
performance. KPCA transforms the data into a higher-
dimensional space, unveiling intricate patterns not apparent
in the raw data and preparing data for the classifier.

C. Rapid Response for Inertial Signal
The transformed data is prepared for classification after

the feature extraction process using KPCA. In this study,
multiple classifiers are individually employed to achieve the
best performance. The selected classifiers include Support
Vector Machine (SVM), Random Forest, and XGBoost. Each
classifier is chosen based on its specific strengths and perfor-
mance characteristics.

1) Support Vector Machine: The core principle of Support
Vector Machine (SVM) involves identifying the optimal divid-
ing boundary within a hyperplane to differentiate various
categories [20]. Consequently, when dealing with KPCA-
processed data, enhanced outcomes are frequently achieved
due to the alignment within the system. SVM was initially
designed for binary problems, so when faced with multi-
classification issues, the natural idea is to construct multiple
binary devices and combine them, called the One-against-
all (OVA) algorithm. The m-th SVM is trained with all of
the examples in the m-th class with positive labels and all
other examples with negative labels. Thus given l training
data (x1, y1), . . . , (xl , yl), where xi ∈ Rn, i = 1, 2 . . . . . . l
and yi ∈ 1, . . . , k is the class of xi , the m-th SVM solves the
following problem:

min
ww,bw, ξw

1
2

∥∥∥wk
∥∥∥2

+ C
l∑

i=1

ξm
i (4)

subject to wT
k ø(xi ) + bk ≥ 1 − ξm

i , i f yi = m (5)

wT
k ø(xi ) + bk ≤ −1 + ξm

i , i f yi ̸= m (6)
ξm

i ≥ 0, i = 1, . . . ..l (7)
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where the training data xi are mapped to a higher dimensional
space by the function ø and C is the penalty parameter.
When data are not linearly separable, there is a penalty
term C

∑l
i=1 ξm

i , which can reduce the number of training
errors. After solving the equation, the k-th decision function
is obtained as:

f(x) = wT
k ø(x) + bk (8)

When there are multiple decision outcomes with positive
outputs, the input x will be classified as the one with the
largest decision function value: ŷ = argmax( fi ).

2) Random Forest: The Random Forest classifier operates
through an ensemble of decision trees, where each tree inde-
pendently predicts the class label of an input instance [21].
The final prediction is determined by aggregating the individ-
ual predictions through majority voting. The Random Forest
construction process involves the following steps:

1) Bootstrap Aggregating (Bagging): A sample of size N
is drawn N times with replacement. This process gen-
erates N samples, forming the foundation for decision
tree training. Each of these N samples is employed to
train a decision tree, serving as the samples at the root
node.

2) Feature Subsetting: With each sample containing M
attributes, during the formation of the decision tree,
at every node’s split, n attributes are randomly selected
from the M attributes, where m ≪ M .

3) Node Splitting: For each decision tree node, a split
attribute is chosen based on a criterion such as infor-
mation gain. Each node must be split according to
this attribute-selection strategy until further splitting is
infeasible. The attribute used for splitting in the parent
node is avoided for selection in the child nodes.

4) Ensemble Formation: This process is repeated numer-
ous times, generating many decision trees. The ensemble
of these trees constitutes the Random Forest.

5) Prediction and Aggregation: During prediction,
an input instance is passed through each tree to obtain
individual class predictions. The final prediction is deter-
mined through majority voting among the trees.

Random Forests create an ensemble of different decision
trees, each trained on a different subset of data and with a
different choice of attributes. Collective predictions of these
trees yield robust and accurate classification models.

3) XGBoost: XGBoost (eXtreme Gradient Boosting) is
an integrated learning algorithm in the integrated learn-
ing category [22]. It excels in handling sequential data,
making capturing temporal dynamics in human actions prac-
tical. It manages high-dimensional inertial signal data and
automatically selects the most informative features, simpli-
fying feature engineering. As an ensemble learning method,
XGBoost combines multiple models, typically decision trees,
which is advantageous in recognizing complex actions. This
approach mitigates the potential biases of individual sensors
and sensor noise. XGBoost also offers model interpretabil-
ity through feature importance scores, aiding in identifying
the most relevant sensor measurements for action recogni-
tion. Its gradient-boosting mechanism allows iterative error

correction, adapting well to the sequential nature of inertial
data. Furthermore, XGBoost includes techniques to handle
imbalanced datasets, a common challenge in human action
recognition, ensuring accurate recognition across all action
classes. In summary, XGBoost’s capabilities in sequential data
analysis, feature selection, ensemble learning, interpretability,
and adaptation to inertial signal characteristics make it a robust
choice for inertial signals-based HAR.

The tree model used is the CART regression tree model,
which assumes a binary tree structure, repeatedly dividing
based on features. For example, a node splits using the jth
feature’s eigenvalue: samples below the threshold s go left,
others right, shown as

R1( j, s) = x |x ( j)
≤ s and R2( j, s) = x |x ( j) > s (9)

Following this core concept, the process involves successive
feature segmentations to expand the tree. By iteratively adding
trees, we are learning new functions to match previously
predicted residuals. After training with k trees, predicting a
sample’s score involves directing it to a leaf node in each
tree, with each leaf node representing a score. Ultimately,
the expected value of a sample is the sum of the scores
corresponding to each tree. The comprehensive model for
generating a decision tree is

ŷ = ø(xi ) =

k=1∑
K

fk(X i ) (10)

where F = f (x) = wqx (q : Rm
→ T, w ∈ RT ) is a

collection of all classification and regression trees, xi is a
feature vector, q is the structural information contained in the
leaf nodes of the corresponding classification and regression
trees, T is the number of leaf nodes on the corresponding
classification regression tree, and each classification regression
tree corresponds to its structural information q and leaf nodes
weight w. The objective function definition of XGBoost is:

Obj =

n∑
i=1

l(yi , ŷ j ) +

K∑
k=1

�( fk) (11)

where l indicates the selected loss function, which calculates
the error between the predicted value ŷ and the real value
y, and the part after the plus sign is the regular term,
which reduces the complexity of the model and alleviates the
over-fitting of the model.

As mentioned above, the newly generated tree needs to fit
the residual of the last prediction, so after iteration, the model
for generating the t-th tree is:

ŷ(t)
i = ŷ(t−1)

i + ft (xi ) (12)

Therefore, the target formula can be expressed as the sum
of multiple iterations:

L(t)
=

n∑
i=1

l(yi , ŷ(t−1)
i + ft (X i )) + �( ft ) (13)

The next step is to find a ft that can minimize the objective
function. The idea of XGBoost is to approximate it with
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its Taylor second-order expansion at ft = 0. Therefore, the
objective function is approximated as:

L t
≃

n∑
i=1

[l(yi , ŷ(t−1)) + gi ft (X i ) +
1
2

hi f 2
t (X i )] + �( ft )

(14)

where gi = ∂ŷ(t−1)l(yi , ŷ(t−1)) is the first derivative and the
hi = ∂2

ŷ(t−1)
l(yi , ŷ(t−1))is the second derivative. Since the

prediction scores of the first (t −1) trees and the residual of y
do not affect the optimization of the objective function, they
can be removed directly. At the same time, each sample will
eventually fall into a leaf node, allowing us to utilize identical
leaf nodes. Consequently, point samples are regrouped. The
objective function can be rewritten as a quadratic function of
the leaf node score w, and the final calculation formula for
the optimal w and objective function value using the vertex
formula is as follows:

w∗

j = −
G j

H j + λ
(15)

Obj = −
1
2

T∑
j=1

G2
j

H j + λ
+ γ T (16)

where T is the leaf node number, w is the L2 regularization
of the leaf node score. When an internal node splits, if the
loss function value is less than γ , then the split stops. λ is
a similar penalty coefficient. G and H are summations of gi
and hi , respectively.

After obtaining the final objective function, it is only
necessary to continuously generate the optimal classification
regression tree and integrate it into the existing model to
form the final XGBoost model for classification. The fast
response these algorithms produce provides initial judgment
on the data obtained from the inertial sensors. However, the
captured target actions need further evaluation due to the
algorithm’s potential inaccuracy. Therefore, the next step is an
accurate classification based on the skeleton image captured
simultaneously with the inertial sensors.

D. Skeleton Image Pre-Processing
The Kinect sensor can construct a simplified human skeleton

model using 20 key points, as shown in Fig. 3, without
needing all 206 bones. Each joint point’s spatial coordinates
are denoted as well P(x, y, z), where x and y represent the
abscissa and ordinate, respectively, and z corresponds to the
distance from the camera to the human body. During move-
ment, the relative positions of these joints change. To better
represent the offsets of limb joint points with the hip joint
and remove the camera distance effect, the central node of the
hip is used as the central origin. The formula to calculate the
initial spatial position feature is given by:

f = pn − phip(n = 2, 3, . . . .N ). (17)

where pnrepresents the other nodes excluding the hip joint,
and phip is the hip-center joint.

Therefore, the differences in X , Y , and Z coordinates
are obtained using the 3D matrix vector calculation. These

Fig. 3. Skeleton Image. The points are: 1. hip center, 2. middle-spine,
3. shoulder center, 4. Head, 5. Left shoulder, 6. Left elbow, 7. Left
wrist, 8. Left-hand, 9. Right-shoulder, 10. Right elbow, 11. Right-wrist,
12. Right-hand, 13.Left-hip, 14. Left knee, 15. Left-ankle, 16. Left-foot,
17. Right-hip, 18. Right knee, 19. Right-ankle, 20. Right-foot.

differences form the feature vectors for the m-th frame: fm =

[ f m
x , f m

y , f m
z ] with the size of 19×3. An entire action can be

represented as a set of these feature vectors for all frames:

F = [ f1, f2, . . . . . . fM ] (18)

Due to the varying heights of individuals, the coordinate
values of skeletons can differ. Before training the database,
a normalization process is conducted. Point 1 represents the
hip center, while point 2 denotes the middle of the spine.
The middle spine length is defined as the Euclidean distance
between these points. This process involves determining the
maximum length of the spine across the entire dataset and
establishing it as a fixed parameter Max_Middle_Spine. This
normalization aims to ensure that every sample has the same
length of the middle spine, thereby canceling out the effect of
different heights of individuals. Therefore, the final normalized
action space feature vector is:

f̄ =
f

distance(P1, P2)/(Max_Middle_Spine)
(19)

F̄ = [ f̄1, f̄2, . . . . . . ¯fM ] (20)

E. ResNet-Based Accurate Classification
Residual Networks (ResNet) represent a significant

advancement in deep learning architectures, specifically
designed to address the vanishing gradient problem that can
hinder the training of very deep neural networks. ResNet intro-
duces the concept of residual blocks, which allows gradients
to flow more effectively during backpropagation, enabling the
training of much deeper networks.

Each residual block consists of skip connections, also
known as shortcut connections, which bypass one or more
layers. This helps mitigate the vanishing gradient problem
and enables the training of deeper networks. The output of a
residual block is a combination of its input and the output of
the internal layers, creating a residual; the output of a residual
block can be represented as:

Output = I nput + F(I nput) (21)

where F represents the transformation performed by the inter-
nal layers of the block. This formulation enables the network
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TABLE I
RESNET-20 ARCHITECTURE AND PARAMETER SIZES

to learn the residual transformation, making optimizing and
learning more complex features easier. In terms of layers,
a typical ResNet architecture includes several convolutional
layers and residual blocks. The specific architecture can vary,
but the basic structure involves stacking multiple blocks
together. The architecture often starts with initial convolutional
and pooling layers, then a series of residual blocks, and
concludes with fully connected layers for classification.

ResNet-20 is a specialized architecture designed to work
efficiently with small-scale images, which is particularly
relevant for scenarios like our skeleton images after process-
ing [23]. In our case, the action represented in the skeleton
matrix is 19×3×20, effectively making it a small image with
three channels after transposition. The ResNet-20 architecture
is well-suited for such compact images and is optimized
for tasks like human action recognition using skeleton data.
It allows for effective feature extraction and classification,
which is crucial for accurately recognizing actions based on
skeletal information.

Table I shows the parameters and architecture of ResNet20.
“Time” is the number of frames used to represent the
whole action. “Input Size” represents the dimensions of the
input Skeleton Image. The “Filter Size/Parameters” column
describes the filter sizes and the number of parameters for
each layer. “Output Size” shows the dimensions of the output
feature maps or layers, while GAP means Global Average
Pooling. The parameter count for the Fully Connected (FC)
layer depends on the specific number of classes in the
classification task. ResNet-20 allows the residual blocks to
reach the desired depth while performing well, particularly on
small-scale image classification tasks.

F. Decision-Level Information Fusion
In the last step of our RESAM scheme, the Dempster-

SHAFER evidence theory (D-S theory) is adopted to integrate
decision-level data [24]. The D-S theory is a robust framework
for reasoning and combining data from various sources when
processing uncertainty. In RESAM, we use the function of
basic probability distribution (BPA).

Two distinct sources of evidence, I and S, are consid-
ered to apply the DS-Theory on the decision-level fusion.
Each provides degrees of belief regarding various hypothe-
ses within a frame of discernment, denoted as 2, where
2 = H1, H2 . . . . . . HN , including 22

= A/A ∈ 2 =

ø, Hi , H2 . . . . . . HN subsets. The following equations calculate
the Belief (Bel):

m(A) =
1

1 − k

∑
B∩C=A

m I (B)mS(C) (22)

k =

∑
B∩C=∅

m I (B)mS(C) (23)

where the m I (B) and mS(C) are the mass assigned to hypothe-
ses B and C by Inertial-based HAR(I) and Skeleton-based
HAR(S).

To combine evidence from both sources I and S, we employ
Dempster’s rule of combination to compute the Belief (Bel)
and Plausibility (Pl) functions for hypothesis A:

Bel(A) =

∑
B∈A

m(B) (24)

Pl(A) =

∑
A∩B ̸=∅

m(B) (25)

Here, Bel(A) represents the overall degree of belief in
hypothesis A, considering both sources I (Inertial Sensor-
based HAR) and S (Skeleton-based HAR). On the other hand,
Pl(A) indicates the total degree of support for hypothesis
A across both sources. The final decision-making process
involves comparing the maximum Pl(A) and the maximum
Bel(A), allowing us to choose the most plausible and believ-
able hypothesis.

These functions are crucial for fusing Inertial Sensor-based
HAR and Skeleton-based HAR evidence. Calculating
belief and plausibility values enables comprehensive
decision-making in human action recognition scenarios,
ensuring that the system makes informed and accurate
judgments based on multiple sources of evidence.

III. EXPERIMENTAL RESULTS

A. Database and Evaluation Method
1) UTD-MHAD Database: Due to the time consistency

requirements of the inertial sensor and skeleton data in the sys-
tem design, the experimental data set must contain two kinds
of data collected concurrently. Therefore, the UTD-MHAD
data set is selected because it is deliberately designed to
include a single Kinect camera and wearable inertial sen-
sor [25]. The Kinect camera captures color images at 640 ×

480 pixels and 16-bit depth images at 320 × 240 pixels,
running at approximately 30 frames per second. The wearable
inertial sensors used in the dataset were developed at the
ESSP lab at the University of Texas at Dallas. The sensor
consists of a 9-axis MEMS sensor that captures 3-axis accel-
eration, 3-axis angular velocity, and 3-axis magnetic field
strength. It integrates a 16-bit low-power microcontroller,
a dual-mode Bluetooth low-energy unit for wireless data
transfer to a laptop/PC and a serial link between the MEMS
sensor and the microcontroller for control commands and data
transfer.

The UTD-MHAD dataset covers 27 actions, including arm
swings, hand waves, clapping, and motion-related movements.
Motions were performed using wearable inertial sensors on the
subjects’ right wrist or right thigh, depending on whether the
action was primarily arm- or leg-based. Exercises 1 through
21 have the sensor on the right wrist, while drills 22 through
27 use the right thigh position. This database provides a
valuable resource for studying and analyzing human motion
in various scenarios and activities.
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TABLE II
COUNT OF ACTIONS FOR SELF-COLLECT DATABASE

Fig. 4. Skeleton images for the same action from 3 cameras.

2) Self-Collected Database: While public databases can
be used for synchronization purposes, they are not well
suited to the specific requirements of elderly safety monitor-
ing. As such, they lack action designs to address behaviors
associated with potential risks. To fully validate the fast
response mechanism and the precision of our RESAM scheme,
we conducted laboratory experiments in a simulated home
environment, collecting proprietary data.

In this experimental setup, three Kinect V2 cameras were
strategically placed in front, to the right, and behind the sub-
ject, giving the skeleton image for the actions from different
directions simultaneously, as shown in Fig. 4. At the same
time, the TicWatch Pro3 is used to collect inertial sensor
data. Fifteen volunteers actively participated in the experiment,
resulting in 389 datasets. In total, the experiment consisted of
12 different actions. Table II presents the details of the action
and number of each class.

This customized experimental setup allowed us to evaluate
the system’s efficacy in scenarios that mirror real-life situa-
tions, fine-tuning its rapid response mechanism and assessing
its accuracy.

3) Evaluate Method: In healthcare, it is crucial to recog-
nize that the accuracy rate alone may not adequately gauge
diagnostic efficiency. The False Negative Rate (FNR), often
called the missed diagnosis rate, assumes pivotal importance.
To illustrate, when a routine action is erroneously classified
as an emergency, this error can be rectified in a subsequent
retest with minimal harm. However, in contrast, if a genuinely
hazardous action is mistakenly perceived as usual and subse-
quently disregarded, the repercussions can be severe, including
delayed disease diagnosis and the loss of an optimal treatment
window.

F N R =
F N

F N + T P
(26)

Therefore, clinical practice emphasizes minimizing the
FNR, calculated as Eq.26, where FN and TP are the False
Negative and True Positive, to ensure that critical conditions
are not overlooked.

B. Experimental Results
1) Inertial Sensor Recognition: Table III compares our pro-

posed approach with existing state-of-the-art methods in the
inertial sensor-based action recognition field. When applying
the inertia data collected by Ticwatch to accurate inertia data,
our method obtained the highest accuracy. This indicates the
effectiveness of our approach and suggests that it may affect
the potential of various applications.

The accuracy of the type of action may decrease slightly
compared with other existing studies, but it is still within
the acceptability range. This adaptability and robustness make
our method a multi-functional tool that recognizes extensive
human behavior, even if those were previously considered
more complicated or subtle.

Achieving an FNR as low as 1.2% is a significant milestone,
signifying the system’s ability to maintain a high level of
sensitivity and reduce the risk of missed diagnoses.

2) Skeleton Image Based HAR: Recently, skeleton-based
action recognition based on deep learning and neural networks
has been widely used, as shown in Table IV. In this rapid
development landscape, our method offers simplicity and
effectiveness. Despite the complexity of challenges brought by
bone motion recognition, we have reached the accuracy level
of the most complicated algorithms that can be used today.

While complex algorithms can achieve impressive results,
it is essential to remember that the balance between simplicity
and efficiency is often the top priority in real-world appli-
cations. Our method not only meets the strict requirements
of modern action recognition but also accomplishes this in a
simplified and effective way. The simple algorithm allows our
system to deploy in hardware with less powerful computing
power, such as home computing centers, and maintain accu-
racy while responding quickly.

3) Decision-Level Fused Result Analysis: Table V provides
a comprehensive comparison with state-of-the-art approaches,
offering a detailed analysis encompassing both accuracy and
power and time consumption metrics. We have achieved
superior accuracy while maintaining efficient power usage and
rapid processing times.

Table VI represents the running time of the experiment
under different hardware configurations. On high-performance
GPUs, such as GeForce 1080, GeForce 4080, and RTX A5000,
the system’s rapid response time is 2.04 seconds, 1.40 sec-
onds, and 1.22 seconds, respectively, on average. In contrast,
the response time extends to 36.5 seconds when using the
Raspberry Pi 4 to run the system.

Our RESAM system was initially designed for the safety of
older people living alone. What needs to be considered is that
our target group may not be able to use the high-performance
equipment used in the laboratory environment in actual appli-
cation scenarios. A report in 2017 showed that the average
response time for emergency services after 911 in the urban
community was about seven minutes [45]. This response
time can be extended to 15 minutes or longer in the rural
environment. The result shows that even if the system runs
on a low-computing device like a Raspberry Pi 4, it only
takes half a minute to respond. Our experimental results
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TABLE III
PERFORMANCE COMPARISON OF SKELETON-BASED ACTION RECOGNITION IN TOP-1 ACCURACY (%). THE BEST

ONE IS IN BOLD, AND THE SECOND ONE IS UNDERLINED

TABLE IV
SKELETON BASED ACTION RECOGNITION

TABLE V
COMPARISON OF HAR SYSTEM

TABLE VI
RESPONSE TIME ON DIFFERENT HARDWARE

demonstrate its adaptability to low-cost edge devices with
limited computational and storage capacity, which aligns with
our primary goal.

IV. FUTURE DIRECTION AND CONCLUSION

Action recognition, particularly when involving the fusion
of inertial and skeletal data, presents notable challenges,
with precise synchronization during data collection being
paramount. Maintaining impeccable temporal alignment
between these data sources demands meticulous attention
and often necessitates specialized hardware setups. Creat-
ing a comprehensive database housing synchronized inertial
and skeletal data proves essential for achieving accurate
fusion-based action recognition results. One promising avenue
lies in online medical care within the Metaverse, augmented by
digital twins (DT). Harnessing the DT’s capabilities, includ-
ing real-time data integration, historical data storage, and

AI-driven enhancements, enables the acquisition of vast infor-
mation volumes, ultimately yielding more precise recognition
outcomes. Moreover, the intricate human-machine interaction
within DT models enhances the provision of insightful and
actionable recommendations for decision-makers within the
context of online healthcare scenarios [46].

In summary, this paper presents a fast and accurate method
for human action recognition, harnessing the fusion of inertial
sensor data and skeletal information. Our RESAM scheme
leverages the unique strengths of both modalities, blend-
ing the spatial richness of skeletal data with the temporal
dynamics captured by inertial sensors. Experimental results
attest to its exceptional performance in precisely identifying
diverse human actions. RESAM possesses the ability to deliver
high-accuracy results while maintaining a low complexity.
Moreover, its adaptability to various hardware configurations
underscores its practicality and versatility. We employ the
Dempster-Shafer evidence theory to provide a robust frame-
work for decision-level data fusion, capable of integrating
information from multiple sources under uncertain condi-
tions, thereby achieving comprehensive and dependable action
recognition. RESAM minimizes the risk of missed diagnoses
in critical medical applications, where timely and accurate
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diagnosis is paramount. This study underscores the significant
potential of multimodal fusion in enhancing the accuracy and
responsiveness of human action recognition systems, with
anticipated advancements in healthcare, security monitoring,
and beyond.
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