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Abstract 

Global Navigation Satellite System (GNSS) can provide an approach for spacecraft autonomous navigation in earth–
moon space to make up for the insufficiency of earth-based tracking, telemetry, and control systems. However, its 
weak power and poor observation geometry near the moon causes new problems. After the GNSS signal characteris-
tics and satellite visibility were evaluated in Phasing Orbit and Lunar Transfer Orbit, we proposed an adaptive Kalman 
filter based on the Carrier-to-Noise ratio (C/N0) and innovation vector to weaken the influence of GNSS accuracy 
attenuation as much as possible. The experimental results show that the spacecraft position and velocity accuracy 
are better than 10 m and 0.1 m/s near the Earth, and better than 50 m and approximately 0.2 m/s near the moon use 
GNSS with the proposed adaptive algorithms. Additionally, because of the deterioration of navigation performance 
based on the orbit filter during orbital maneuvering, we used accelerometer data to compensate for the dynamic 
model to maintain navigation performance. The results of the experiment provide a reference for subsequent studies.

Keywords Earth–moon spacecraft, Integrated navigation, Space service volume, Global navigation satellite system, 
Inertial navigation system, Star tracker

Introduction
Space research institutions worldwide have been invest-
ing significant energy into the moon, with numerous 
exploration missions planned to the moon as the desti-
nation. The 2018 and 2022 Global Exploration Roadmap 
supplement described the latest architecture for lunar 
surface missions, and contained a map of human mis-
sion planning for lunar exploration over the next decade 
(International Space Exploration Coordination Group, 
2018, 2022). In recent years, notable lunar explora-
tion missions have included the Chinese Chang’e—V, 

American Artemis, and Japanese HAKUTO-R. Lunar 
exploration has emerged as the initial stride toward 
future human deep space exploration missions and will 
captivate the spotlight in the upcoming decade.

It is well known that the determination of the space-
craft position, velocity, and attitude is an important part 
of the exploration mission, and is currently the respon-
sibility of the ground tracking, telemetry, and control 
group. The group forms a deep space network by building 
several monitoring stations on the ground, and uses the 
unified S-band system and very long baseline interfer-
ometry to determine the position and velocity of space-
craft (Erhu et al., 2023; Liu et al., 2022; Ulvestad, 1992). 
Although high-precision position and velocity can be 
obtained, the limitations of ground and on-board com-
puting resources make it difficult to achieve the real-
time tracking, telemetry, and control of large numbers of 
spacecraft. Therefore, spacecraft real-time autonomous 
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navigation has been a research direction with much 
attention (Ely et al., 2022).

Since the construction of the Global Navigation Satel-
lite System (GNSS), many scholars have come to under-
stand that it not only serves terrestrial users and Low 
Earth Orbit (LEO) satellites by using main lobe sig-
nals but also extends its service to Medium Earth Orbit 
(MEO), High Earth Orbit (HEO), and even ultra-HEO 
through its side lobe signals. The full Space Service Vol-
ume (SSV) of GNSS is shown in Fig. 1. The region from 
the Earth’s surface to 3000  km altitude is usually called 
the Terrestrial Service Volume (TSV), the area from 
3000 to 36,000  km is named SSV, and the area above 
36,000  km is called Extended SSV (ESSV) (Bauer et  al., 
2017). In 2012, Work Group B (WG-B) of the Interna-
tional Committee on GNSS (ICG) identified the advan-
tages of an interoperable GNSS SSV for the space user 
community. Subsequently, they have been working with 
GNSS service providers and space agencies to advance 
the SSV and consider its applications within and beyond 
cis-lunar space. Then WG-B officially released two book-
lets titled “The Interoperable Global Navigation Satellite 
Systems Space Service Volume” in 2018 and 2021, and 
the SSV characteristics of each constellation and service 
performance in space missions were analyzed (United 
Nations, 2021).

Other agencies and scholars have also focused on the 
performance of GNSS services in earth–moon space, 
and the characteristics and navigation performance of 
Global Position System (GPS) and Galileo satellite navi-
gation system (Galileo) signals have been analyzed more 
deeply. The European Space Agency is interested in lunar 
exploration and motivated an experimental platform 
to evaluate the navigation performance of GPS L1C/A, 

L5Q, Galileo E1C, and E5aQ signals in Lunar Transfer 
Orbit (LTO), Low Lunar Orbit (LLO), and descent and 
landing (D&L) in detail (Lopes et  al., 2014). One of the 
most important points is satellite visibility, which needs 
to be modeled and simulated as accurately as possible. 
Shehaj et  al. (2017) found that the Three-Dimensional 
(3D) GNSS antenna pattern model obviously affects sat-
ellite visibility in ultra-high orbit compared with the 
two-dimensional model. Accurate GPS and Galileo 3D 
antenna patterns were used to analyze the Carrier-to-
Noise ratio (C/N0), satellite availability, and Position Dilu-
tion of Precision (PDOP) of receivers in various orbits 
around the Moon. Delépaut et al. took into account the 
navigation message’s C/N0 demodulation threshold, and 
an “ephemeris-based visibility” approach was proposed 
to determine signal visibility (Delépaut et al., 2019, 2020). 
Also, some studies used GPS signals and inter-satellite 
links to determine the orbit and the time synchroniza-
tion of the Lagrange orbit near the Moon, which verified 
the availability of GNSS in the global space of the Earth 
and moon (Iiyama et  al., 2021; Qi & Oguri, 2023; Sirbu 
& Leonardi, 2023). As for BeiDou Navigation Satellite 
System (BDS), Lin et al. (2019) analyzed the propagation 
characteristics of the SSV signal in the ionosphere. Then 
Lin et al. (2020) used the 3D antenna pattern of BeiDou-3 
Navigation Satellite System (BDS-3) satellites to simulate 
and analyze the Doppler shift, C/N0, and measurement 
noise of the navigation signal for various space missions. 
The SSV service performance of BDS-3 and the advan-
tages of Inclined Geo-Synchronous Orbit (IGSO) and 
Geostationary Orbit (GEO) satellites in SSV service were 
analyzed (Guan et al., 2022; Ma et al., 2023).

However, the performance of GNSS decreases with 
the distance from the Earth, so that it cannot provide 
high-precision navigation services for users in lunar 
space. Therefore, scholars have explored the integration 
of multi-sensors for more accurate spacecraft estima-
tion state. Capuano et al. (2014) has been attempting to 
implement integrated navigation in ultra-high orbit since 
2014, and proposed the integration of the Inertial Navi-
gation System (INS), GNSS, star tracker, and orbital filter 
to obtain higher precision and robust navigation perfor-
mance. An autonomous navigation system was designed 
and used to provide real-time autonomous navigation 
and attitude determination for LEO, GEO, and even 
higher HEO missions (Capuano et al., 2017, 2018). How-
ever, accelerometers can only measure non-gravitational 
forces in space and cannot provide a complete dynamic 
model for spacecraft (Wei et al., 2023), some conclusions 
may need to be refined more clearly.

As a common attitude determination sensor, star 
tracker can provide a high-precision attitude for the vehi-
cle. Therefore, some multi-sensors integration methods Fig. 1 Signal reception geometry in the space service volume
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and adaptive algorithms have been proposed, including 
decentralized data fusion methods such as federated fil-
tering, in addition to centralized extended Kalman fil-
tering (Gao et al., 1993). At present, it widely integrated 
with INS and GNSS to provide autonomous navigation 
services for ground and near-earth vehicles, even include 
lunar and Mars surface probes (Gao et al., 2018; Hu et al., 
2023; Ning et  al., 2011). Different from the general sce-
nario, star tracker is more commonly integrated with an 
Earth sensor and orbital filter to provide the position and 
velocity for spacecraft (called starlight angle navigation), 
in addition to providing the spacecraft with a high-pre-
cision attitude, and is widely used in deep space probes 
because of its autonomy (Bhaskaran et al., 2000; Yu et al., 
2021). However, it is limited by the performance of the 
Earth sensor, which results in low navigation perfor-
mance. Many scholars have attempted to improve naviga-
tion accuracy by combining laser ranging, accelerometer, 
and other methods (Gui et al., 2021; Li et al., 2022a; Wang 
& Zhang, 2013). With the improvement of the accuracy 
of the earth sensor, the integration of starlight angle navi-
gation and GNSS will be the main autonomous naviga-
tion method for the future Earth–moon space spacecraft 
and requires further study.

After studying various difficulties in the autonomous 
navigation of earth–moon spacecraft, we believe that 
the primary problem for GNSS is to overcome precision 
attenuation as the distance increases. Additionally, the 
spacecraft will suffer from inevitable dynamic distur-
bance, such as orbital maneuver, descent, and landing, 
which will also cause a significant decline in navigation 
performance.

To solve these problems, we first simulate the observa-
tions of the GNSS receiver, IMU, and star tracker based 
on the Phasing Orbit (PHO) and LTO of the lunar probe, 

and analyze the signal characteristics and visibility of GPS 
and BDS in earth–moon space. Then we propose an adap-
tive algorithm based on the innovation vector to reflect the 
change of observation noise more accurately to suppress 
the precision attenuation of GNSS near the moon and 
improve spacecraft navigation performance. Finally, we 
use accelerometers during orbital maneuvers to compen-
sate for the dynamic model, and integrate INS, GNSS, and 
star tracker to maintain navigation performance.

This paper is structured as follows: the models and 
algorithms were described for the adaptive Kalman fil-
ter in detail in “Models and algorithms” section. Then 
the modeling and simulation approach for the sensors 
were introduced in “Observation simulation and charac-
teristic analysis” section. Finally, we analyze the solution 
results of various schemes used to evaluate the proposed 
approaches in “Experiments and analysis” section. And 
the conclusions and discussions are drawn in “Conclu-
sions and discussion” section.

Models and algorithms
First, to respond to the various states of earth–moon 
spacecraft, an autonomous navigation method based 
on orbital dynamics, assisted by GNSS, INS, and star 
tracker, is shown Fig. 2. Given the clear understanding of 
orbital dynamics, we use GNSS based on orbital filtering 
as the primary navigation method. Considering the on-
board accelerometer can only measure non-gravitational 
acceleration so that the non-gravitational model can be 
replaced by accelerometer data. We only use the accel-
erometer observations when the spacecraft is subjected 
to additional and unmodeled non-gravitational accel-
erations acceleration (e.g., the thrust of the thruster). 

GNSS receiver

State
estimator

and
navigation

solution

Accelerometer

GNSS aiding

Orbit dynamics 

Attitude dynamicsGyroscope

State

Rotation
angular rate

State estimation

Star tracker attitude observations
Star tracker

Predicted state

State estimation

Predicted state

Orbit maneuver

Orbital mechanics

Fault detection
and exclusion

Non-gracitational
acceleration

Observations

Dynamics parameter
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Regarding the star tracker, we only use it as an attitude 
determination system in our experiments.

Setting of the Kalman filter
For nonlinear stochastic model, the dynamic model 
and measurement model are shown in Eq. (1) and (2) as 
follow:

where Xk is the state parameter at epoch k; zk is meas-
urement vector at epoch k; f {·} is nonlinear dynamic 
state function and h{·} represents nonlinear measure-
ment function. Both wk and vk are modeled as zero-mean 
Gaussian white noise in dynamic model and measure-
ment model, with process noise covariance matrix Qk 
and measurement noise covariance matrix Rk . Moreover, 
the assumption is that wk and vk remain uncorrelated 
with each other at any time, which can be expressed as

where E(·) is defined as expectation operation, and D(·) is 
defined as covariance operation.

After linearization, the dynamic model and observation 
model can be expressed as:

where Φk ,k−1 is called the state transition matrix from 
epoch k–1 to k; Hk denotes the measurement matrix.

For conventional orbital filtering, the unknown state 
parameters Xk of the k-th epoch can be expressed as

which comprises the 3D position and velocity vectors �r 
and �v in Earth-centered inertial reference frame (i-frame); 
one solar radiation pressure coefficient CR ; the receiver 
clock offset parament dt in seconds (Li et al., 2022b); and 
the speed of light c.

The state transfer matrix can be calculated using the 
orbit dynamic model:

(1)Xk = f
{
Xk−1

}
+ wk

(2)zk = h{Xk} + vk

(3)
E(wk) = 0 D(wk) = Qkδk ,k−1

E(vk) = 0 D(vk) = Rkδk ,k−1

D(wk , vk) = 0

(4)xk = Φk ,k−1xk−1 + wk

(5)zk = Hkxk + vk

(6)Xk =
[
�r �v CR c · dt

]T
8×1

(7)Φk ,k−1 =



ϕx ϕCR

0

0 I 0

0 0 I



8×8

where ϕx =

[
∂�r/∂�r ∂�r/∂�v
∂�v/∂�r ∂�v/∂�v

]

6×6

 and ϕCR
=

[
∂�r/∂CR

∂�v/∂CR

]

6×1

 is 

the state transition matrixes of orbital dynamics; �t is the 
time interval and I is a unit matrix.

As mentioned above, on-board accelerometers have 
sufficient accuracy but only can measure non-gravita-
tional acceleration. The forces on the spacecraft during 
orbital maneuvers can be expressed as

The gravitational force �FG include the Earth’s gravity 
�Fearth , Sun’s gravity �Fsun , moon’s gravity �Fmoon , and grav-
ity of other celestial bodies �Fn . The non-gravitational 
force �FNG mainly includes solar radiation pressure �Fsrp , 
thruster thrust �Fman , and other unmodeled forces �Fε . The 
maneuvering time is usually short and the gravitational 
force is relatively stable, whereas the non-gravitational 
force can be measured by the accelerometer. Therefore, 
the pseudo-observations of IMU can be constructed and 
the spacecraft state during orbital maneuvering can be 
estimated using the integrated navigation system.

In general, the on-board accelerometer is installed 
parallel to the spacecraft body frame (b-frame), and the 
non-gravitational force �FNG under the i-frame can be 
expressed as

where C i
b is the rotation matrix from b-frame to i-frame, 

which can be obtained from the spacecraft attitude. The 
dynamic equation of INS in the i-frame can be described 
as

where �r and �v denote position and velocity vectors in the 
i-frame, respectively; �f bib is the specific force vector in 
the b-frame; �FG is the gravitational forces in the i-frame 
which is related to the position �r and can be obtained 
by precise dynamic model. Ωb

ib is the skew-symmetric 
matrix of ωb

ib , while ωb
ib is the rotation angular rate of 

gyroscopes output.
Usually, in order to suppress the error dispersion of 

INS, in addition to integrating with GNSS, it is also inte-
grated with star tracker to form an INS, GNSS and Star 
tracker integrate navigation system. And the accurate 
position, velocity and attitude can also be obtained even 
if the dynamic model provided by orbital mechanics is 

(8)
�Fall = �FG + �FNG =

(
�Fearth + �Fsun + �Fmoon + �Fn

)
+

(
�Fsrp + �Fman + �Fε

)

(9)�FNG = �Fsrp + �Fman + �Fε = C i
b
�FNG,b

(10)




�r
�v

C
i
b



k+1

=




�v

C
i
b
�f bib +

�FG

C
i
bΩ

b
ib



k
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inaccurate. The parameters to be estimated for the inte-
gration system can be expressed as

where, in addition to 3D position vector �r , velocity vector 
�v , receiver clock offset dt ; additional parameters include 
spacecraft 3D attitude �ψ , the accelerometer bias �ba and 
gyros bias �bg.

The state transition matrix ΦINS
k ,k−1 of the INS in the 

i-frame can be expressed as

where N g = ∂ �Fg/∂�r , ∧ is the symbol for calculate the 
skew-symmetric matrix, I3 is a 3-order unit matrix and 
03 is a 3-order zero matrix.

After we get the state transfer matrix for orbital filter-
ing Φk ,k−1 and that for INS ΦINS

k ,k−1 , respectively, the pre-
dicted state X̃k , covariance matrix P̃k , and epoch time k 
can be expressed as

where Xk−1 and Pk−1 are the estimated state and corre-
sponding covariance matrix, respectively. Qk is the covar-
iance matrix of system noise and represents the accuracy 
of the dynamic model.

As for the orbit filter, the pseudo-range ρ of GNSS as 
the observation, if n satellites are observed at epoch time 
k, the measurement matrix Hk , and measurement inno-
vation δzk can be expressed as

and

(11)Xk =
[
�r �v �ψ �ba �bg c · dt

]T
16×1

(12)

ΦINS
k ,k−1 =




03 I3 03 03 03 0

N g 03

�
C i

b ·
�f bib

�
∧ C i

b 03 0

03 03 ωb
ib 03 −C i

b 0
03 03 03 03 03 0
03 03 03 03 03 0
0 0 0 0 0 I



16×16

(13)X̃k = Φk ,k−1Xk−1

(14)P̃k = Φk ,k−1Pk−1�
T

k ,k−1
+Qk

(15)Hk =




e1 03 0 1
e2 03 0 1
...

...
...
...

en 03 0 1



n×8

(16)δzk = zk −Hk X̃k =




ρ̂1 − ρ̃1
ρ̂2 − ρ̃2

.

.

.

ρ̂n − ρ̃n



n×1

where the predicted value and measured value of ∗ are 
represented by ∗̃ and ∗̂ , respectively. ei is the unit vector 
of the line-of-sight direction from the GNSS receiver to 
the i-th satellite. zk is the observation at epoch time k.

As for INS, GNSS and Star tracker integrate navigation 
system, if m observations of the Star tracker also be consid-
ered, the measurement matrix and measurement innova-
tion can be rewritten as

and

where �lj is the unit vector of the j-th star in the b-frame; 

�̂lj = Cb
i �r

S
j  , Cb

i  is the inverse matrix of C i
b , and �rSj  is the 

unit vector of the j-th star in the i-frame.
In addition, according to Eq.  (10), the attitude dynam-

ics does not depend on other parameters except rotation 
angular rate, so the attitude of the spacecraft can be inde-
pendently calculated according to the outputs of the gyro-
scope and the star tracker.

Then the measurement is updated, and gain matrix K k , 
estimated state Xk , and covariance matrix Pk can be calcu-
lated using

where gain matrix K k determines the weight of obser-
vation information when the state is updated. Rk is the 
covariance matrix of observation noise and is a diagonal 
matrix composed of independent observation variance 
σ 2 at epoch time k. If observation noise increases, it is 
necessary to reduce the weight of observation informa-
tion by adjusting the R matrix and reducing matrix K k.

(17)Hk =




e1 03 03 0 1
...

...
...

...
...

ei 03 03 0 1
03 03 u1 0 1
...

...
...

...
...

03 03 ui 0 1



(n+3m)×16

(18)δzk = zk −Hk X̃k =



ρ̂i − ρ̃i

.

.

.

��lj −��lj



(n+3m)×1

(19)K k = P̃kH
T
k

(
Hk P̃kH

T
k + Rk

)−1

(20)Xk = X̃k + K kδzk

(21)Pk = (I − K kHk)P̃k
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GNSS fault detection and exclusion base on integrated 
system
As we all know, GNSS observations will inevitably have 
failures in practical situation, especially in the environ-
ment of weak signals in deep space, will make the wrong 
state parameters output by the estimator and reduce the 
accuracy of autonomous navigation. Therefore, Fault 
Detection and Exclusion (FDE) must be applied before 
the integrated solution.

In the Kalman filtering of integrated system, the pre-
dicted state X̃k and measurement vector zk are inte-
grated. The unknown parameters are estimated through 
the least squares estimation, and the measurement model 
is given by (Aghapour & Farrell, 2019; Hewitson & Wang, 
2007; Jiang et al., 2020):

where Ak denotes the design matrix, V k denotes the 
residual vector, and

where V zk denotes the residual vector of the measure-
ment, V ỸK

 denotes the residual vector of the predicted 
state, CLk denotes the covariance matrix corresponding 
to the measurement model (Hewitson & Wang, 2007). 
Based on the least squares estimation, the estimation of 
state parameters Ỹ k and its covariance matrix QX̃K

 are 
obtained by

Residual vector of the measurements V k and its covari-
ance matrix QVk

 are derived by:

(22)Lk = AkY k + V k

(23)Lk =
[
zk; X̃k

]

(24)Ak = [Hk ; I]

(25)V k =
[
V zk ;V X̃K

]

(26)CLk =

[
Rk 0

0 P−
k

]

(27)Ỹ k =
(
AT
kC

−1
Lk

Ak

)−1
AT
kC

−1
Lk

Lk

(28)QỸk
=

(
AT
kC

−1
Lk

Ak

)−1

(29)V k = Ak Ỹ k − Lk

(30)QVk
= CLk − AkQỸk

AT
k

In the integrated navigation system, the test statistics 
�k is defined based on the residual and its covariance 
matrix, namely,

�k obeys the Chi-square distribution with the freedom 
degree of m–n, namely,

where m is number of observations and n is number of 
unknown state parameters. It indicates no failures if 
the statistics satisfy the Eq.  (32), once �k is bigger than 
χ2
m−n(α) , the fault is detected.
After the failure identification is applied to locate fail-

ure and a fault has been detected with the global detec-
tion algorithm, the ω-test can then be used to identify the 
corresponding measurement (Teunissen, 1998), where 
the test statistic is defined as

where, ei =
[
0 · · · 1 · · · 0

]T is a zero vector whose i-
th element is set to 1. ωi obeys the normal distribution 
when no failures exist, namely, ωi ∼ N (0, 1) . In the pres-
ence of outliers, the test statistics would be bigger than 
the threshold TD = Nα/2(0, 1) ( α here is set to 0.1%, and 
the corresponding threshold TD = 3.2905 ), and the i-th 
measurement is thought failure. Accordingly, the failure 
identification is completed.

Adaptive estimation algorithm
As mentioned above, the real noise v of the observa-
tion is difficult to obtain; hence, matrix R is generally set 
to an empirical constant. However, different from the 
ground environment, when a spacecraft flies away from 
the Earth, the measurement noise of the GNSS signal 
increases significantly because of the free space propaga-
tion loss and the positioning geometry becomes worse 
inevitably. Therefore, noise covariance matrix R needs to 
be adjusted adaptively to the approximate actual meas-
urement noise. In this section, we introduce two adap-
tive estimation algorithms: “Measurement Noise-Based 
Adaptive Estimation” (MBAE) and “Innovation-Based 
Adaptive Estimation” (IBAE).

MBAE
The measurement noise is mainly caused by sign free 
space loss in deep space. So that in addition to setting the 
initial measurement noise, we also use a formula related 
to C/N0 in every epoch to make the noise covariance 
matrix approach the actual measurement noise more 

(31)�k = VT
kC

−1
Lk

V k

(32)χ2
m−n(1− α/2) ≤ �k ≤ χ2

m−n(α/2)

(33)ωi =
∣∣∣eTi CLkV k/

√
eTi CLkQVk

CLk ei

∣∣∣
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accurately. The covariance matrix of the measurements 
can be given by

where σρik is the pseudo-range measurement noise of the 
i-th satellite, and is set to 10 m. The coefficient m can be 
calculated using a modified sigma-Δ model and calcu-
lated from the receiver C/N0 (Brunner et al., 1999), which 
can be described as

where the coefficients a and b are obtained using a priori 
fitting based on different navigation systems and differ-
ent frequencies. Using the above equations, the adaptive 
estimation of the measurement noise matrix at low C/N0 
can be achieved, which results in an approximation of the 
actual measurement noise.

IBAE
Based on the MBAE algorithm above, we can obtain the 
covariance matrix of the theoretical measurement noise. 
However, obviously, the actual measurement noise is 
caused by various factors, such as multipath effects, in 
addition to signal free space loss, Eq.  (35) cannot fully 
represent the real measurement noise. Therefore, addi-
tional algorithms are needed to further improve the navi-
gation accuracy with weak signals.

When the dynamic model is accurate and observa-
tion noise increases, the measurement innovation δzk 
obviously increases, which is the difference between the 
observation value zk and predicted value Hk X̃k . Accord-
ing to this characteristic, we construct an adaptive algo-
rithm based on measuring innovation.

According to Eq. (3) and (5), Eq. (3) can be rewritten as

In addition, covariance matrix P̃k in the Kalman filter 
is the mathematical covariance of the difference between 
predicted state X̃k and truth value Xk , which can be 
expressed as

(34)RMBAE
k =



mσ 2

ρ1
· · · 0

...
. . .

...

0 · · · mσ 2
ρn



n×n

(35)m = a+ b · 10−
C/N0
10

(36)E
[
(zk −HkXk)(zk −HkXk)

T
]
= 0

(37)D
[
(zk −HkXk)(zk −HkXk)

T
]
= Rk

(38)D

[(
X̃k − Xk

)(
X̃k − Xk

)T]
= P̃k

Therefore, the squared uncertainty of the vector Hk X̃k 
predicted by the predicted state X̃k is

Consequently, according to Eq. (16), The mathematical 
expectation and covariance of the measurement innova-
tion δzk can be expressed as

So far, we can find that the measurement innovation 
δzk obeys a Gaussian normal distribution with a mean 
of zero and a variance of Hk P̃kH

T
k + Rk , i.e., δzk ~ N (0, 

Hk P̃kH
T
k + Rk).

Generally, in the process of state estimation using 
Kalman filter, if the variance Rk+1 of noise wk+1 increases 
for the measurement zk+1 at epoch time k + 1 and the 
dynamic model is accurate and stable, the variance 
Hk+1P̃k+1H

T
k+1 + Rk+1 of the measurement innovation 

δzk will also increase. In this case, it is necessary to use 
the variance expansion method to reduce the weight of 
observation information in the state update.

According to Eq. (36) and (37), a standardized innova-
tion vector S̃δz,k at epoch k can be defined as follows

where the standardized innovation vector S̃δz,k obeys 
the normal distribution when the covariance Rk can be 
given accurately. It is obviously impossible and is set to 
an empirical constant in the case of high quality and sta-
ble observations. But it cannot be applied to deep space 
environments with weak signals.

Therefore, the sigma-Δ model is used to obtained the 
prior covariance matrix RMBAE

k  , which is more accuracy 
than the empirical constant. Then the covariance matrix 
Rk in Eq. (42) can be rewritten as RMBAE

k .
We can see that the standardized innovation vector can 

reflect the change of observation noise. Therefore, adap-
tive factor ωk can be constructed and the observation 
noise covariance matrix RMBAE

k  of the k-th epoch can be 
reconstructed as R̃k . The calculation method for adaptive 
factor ωk and the reconstruction method for the meas-
urement noise covariance matrix, respectively, are given 
as follows:

(39)

D

[(
Hk X̃k −HkXk

)(
Hk X̃k −HkXk

)T]
= Hk P̃kH

T
k

(40)E
[
δzkδz

T
k

]
= 0

(41)D
[
δzkδz

T
k

]
= Hk P̃kH

T
k + Rk

(42)S̃δz,k = δzk√
Hk P̃kH

T
k +Rk
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where k0 and k1 are two empirical constants, which are 
usually selected in the ranges of 2.0–3.0 and 4.5–8.5, 
respectively (Yang et al., 2010). In this paper, we set the 
values to 2 and 7.5, respectively. Equation (42) shows that 
when innovation vector δzk is small, the quality of obser-
vations is relatively stable; and an increase in vector δzk 
means that the noise of the observation increases, which 
results in the increase of the vector S̃δz,k . At this time the 
adaptive factor ωk need to be used to expand covariance 
matrix RMBAE

k  , and reduce the weight of observation in 
the state update. However, when observation noise is too 
large, the weight of observation needs to be minimized. 
The covariance matrix R̃k obtained by the above method 
is substituted into Eq. (19) for subsequent measurement 
updates to obtain estimated parameters.

(43)ωk =




1

���S̃δz,k
��� ≤ k0

k0���S̃δz,k
���
×

�
k1−

���S̃δz,k
���

k1−k0

�
k0 <

���S̃δz,k
��� ≤ k1

0

���S̃δz,k
��� > k1

(44)R̃k = ω−1

k RMBAE

k

The IBAE algorithm can adaptively estimate the meas-
urement noise covariance matrix according to the meas-
urement innovation, which is suitable for earth–moon 
space, where GNSS measurement noise changes greatly; 
however, the initial value must be as accurate as possi-
ble. Hence, it is necessary to use the MBAE algorithm to 
determine the noise covariance matrix before the IBAE 
algorithm is applied. The adaptive Kalman filter solving 
process with the FDE, IBAE and MBAE algorithms is 
shown in Fig. 3.

We used simulation data to verify the effectiveness of 
above algorithms. In “Observation simulation and char-
acteristic analysis” section, we focus on the simulation of 
observed data from multiple sensors and the GNSS signal 
characteristics was also analyzed. The navigation perfor-
mance of earth–moon spacecraft was analyzed with the 
simulated observations and the adaptive algorithms in 
“Experiments and analysis” section.

Observation simulation and characteristic analysis
Parameters of the simulation orbit
We consider a typical earth–moon space exploration 
project: “Chang’e-I” (named as CE-1) as an example. As 
shown in Fig. 4, the orbit of the CE-1 spacecraft consists 

Fig. 3 Adaptive Kalman filtering algorithm procedure
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of PHO and LTO. PHO includes multiple HEOs with 
16-h, 24-h, and 48-h periods. The spacecraft makes 
several adjustments in PHO before entering LTO and 
finally reaching the Moon. The 48-h PHO and LTO for 
the data simulation and analysis were selected and the 
detailed initial state parameters and dynamic model set-
tings used in the simulation are shown in Tables 1 and 2, 
respectively.

We simulated the spacecraft attitude using “Satellite 
Tool Kit” software and set the attitude mode to “Nadir 
alignment with ECI velocity constraint.” The body Z axis 
points towards the nadir, and the X axis is constrained by 
the direction of inertial velocity. Then the observations 
from multi-sensors can be simulated.

GNSS
Celestial eclipse and signal propagation loss are the 
main factors that affect satellite visibility and the signal 
measurement accuracy of deep space GNSS receivers. 

Obviously, the main eclipse body for PHO and LTO in 
earth–moon space is the Earth, and for LLO and D&L, 
the Moon is also included.

We use the geometric approach to determine whether 
the satellite signal is blocked by the Earth. As shown in 
Fig. 5, θmain is the threshold of the available range of the 

Fig. 4 CE-1 lunar mission trajectory: the green and orange trajectories are PHO and LTO, respectively, and the yellow trajectory represents GNSS 
MEO and GEO. The orbit maneuver point is also marked

Table 1 Initial state parameter settings for the simulation orbits

Orbit Orbital period (h) Initial epoch [MJD] Initial State in ECI

PHO 48 54,211.952688 Pos (m) 6,965,138.922, 57,315.612, 1581.364

Vel (m/s) − 72.280, 8931.660, − 5363.521

LTO 96 54,213.945739 Pos (m) 2,405,932.950, − 5,294,449.058, − 3,021,365.507

Vel (m/s) 10,190.645, 3593.586, 1722.103

Table 2 Dynamic parameter settings for the simulation orbits

Dynamic model Setting

Earth gravity model EIGEN-6C(70 × 70) (Förste et al., 2012)

Moon gravity model GL0660B(30 × 30) (Konopliv et al., 2013)

N-body JPL DE405

Solar radiation pressure Macro model (Montenbruck & Gill, 2012)
Mass:1000 kg, Area: 26.78  m2, CR = 1.24

Solid tide and pole tide IERS 2010 (Petit & Luzum, 2010)

Ocean tide FES 2004 (Lyard et al., 2006)

Relatively IERS 2010
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GNSS main lobe signal, beyond which the side lobe sig-
nal is considered to be received. � is the off-boresight 
angle of the receiver antenna, which is related to the 
receiver antenna gain. Additionally, eclipse angle θEarth 
is also defined, and the spacecraft-satellite-Earth angle 
is marked as θ . According to geometry, satellite visibil-
ity and the type of signal received can be determined. 

The earth eclipse angle and main lobe angle of BDS-3 
and GPS are shown in Table 3 (Rathinam & Dempster, 
2016).

Signal propagation loss and receiver receiving power 
are key parameters in the simulation. We choose BDS-3 
B1C and GPS L1 as the frequency of simulated observa-
tions. The simulation parameter settings of the observa-
tions are shown in Table 4.

The simulation methods to calculate the C/N0 of the 
GNSS receiver is shown below:

where PT is the output power of the transmitter ampli-
fier; GT is the transmitter antenna gain, which relates 
to the elevation and azimuth; GR is the receiver antenna 
gain, which relates to the off-boresight angle; and LS rep-
resents the free space propagation loss. LA is the influ-
ence of the atmosphere and we set it to 0 dB Hz in our 
simulation because of the small influence. N0 is the noise 
power spectrum density and can be calculated as

where k = 1.3806505× 10−23 J/K is the Boltzmann con-
stant and Ts is the system noise temperature.

After we obtain the receiver C/N0 using Eq.  (45), the 
theoretical code noise can be calculated according to 
the signal modulation method. For GPS L1 signals using 
Binary Phase Shift Keying (BPSK) modulation, thermal 
noise code tracking jitter σDLL can be calculated as

where Bn = 0.05 is the code loop noise bandwidth in Hz, 
D = 0.25 is the early-to-late correlator spacing in chips. 
T = 0.02 is the coherent integration time in seconds.

(45)C/N0 = PT + GT + GR + LS − LA − N0

(46)N0 = 10lgkTs

(47)σDLL ∼=

√
Bn

2·C/N0
D
[
1+ 2

T ·C/N0(2−D)

]

Fig. 5 Geometry between GNSS satellites, spacecraft, and the Earth: 
spacecraft can receive GNSS signals from both the zenith and nadir 
directions

Table 3 Earth eclipse angle and main lobe angle of BDS-3 and 
GPS

Navigation system BDS-3 GPS

MEO GEO/IGSO MEO

eclipse angle (°) 13.21 8.7 13.84

main lobe angle (°) 25.0 19.0 26.0

Table 4 Parameter settings for the simulation observations

Item Setting

Satellite orbit and clock Precision orbit provided by WHU

Antennas phase center offset Igs14_2196.atx model (Rebischung & Schmid, 2014)

Earth occlusion range Earth Radius plus 1000 km for atmosphere

Receiver acquisition threshold 15 dB Hz

System noise temperature Nadir: 175 K, Zenith: 200 K

Observation data rate PHO:1 s, LTO:3 s

Receiver clock model Two-state Kalman Filter covariance model (Dieren-
donck et al., 1987)
PSD coefficients: h0 = 2.9 ×  10–23; h1 = 4.5 ×  10–30;h2 = 
3.4 ×  10–31 (Iiyama et al., 2021)

Pseudo-range measurement noise Random errors related to the C/N0 and Elevation-
dependent multipath model (Li et al., 2024)
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For the BDS B1C signal, the data component is modu-
lated by the sine-phased BOC (1,1), where the pre-cor-
relation band-limiting of the front-end can be neglected. 
The code tracking noise standard deviation corresponds 
to that of the BPSK signal multiplied by a factor 1/2 
(Groves, 2013).

As we described in the introduction, an accurate 3D 
antenna model is important for simulations. There-
fore, we used the BDS-3 and GPS 3D antenna model 
to achieve a more accurate simulation. Figures  6 and 
7 show the antenna equivalent isotropically radiated 
power, which includes the power amplifier and transmit-
ting antenna gain. GPS L1 models of all types of satellites 
were released by Lockheed Martin (Marquis & Reigh, 
2015) and the BDS-3 B1C models can be obtained from 
Lin et al. (2020).

Then we assumed that the spacecraft is equipped with 
nadir and zenith antennas that can capture GPS and 
BDS-3 signals. A high-gain antenna is mounted on the 

nadir receiver for the weak signals. The receiver antenna 
gains of the two antennas are shown in Fig. 8. The acqui-
sition and tracking threshold of the receiver adopts the 
recommended value, which is set to 15  dB  Hz (United 
Nations, 2021).

Now, we can analyze the signal characteristics of GPS 
and BDS navigation signals received by spacecraft in 
PHO and LTO. Additionally, we can refer to the calcu-
lation method for the Doppler shift (Lin et  al., 2020). 
The two subplots in Fig.  9 show the Doppler shifts 
(top), C/N0 (middle), and number of visible satellites 
(bottom) for PHO and LTO, respectively.

We can determine that, at the beginning of PHO, 
the main lobe signal Doppler shift variation range 
can reach ± 50  kHz and is then below ± 15  kHz after 
3  h, and the side lobe signal Doppler shift is approxi-
mately ± 25  kHz in the entire orbit. Regarding LTO, 
the main lobe signal has a lower Doppler shift varia-
tion range, which is approximately ± 13  kHz, and the 
side lobe signal is approximately ± 25 kHz. Additionally, 
we can see that the main lobe received signal C/N0 is Fig. 6 BDS antenna pattern for B1C

Fig. 7 GPS antenna pattern for L1

Fig. 8 Receiver antenna gain
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higher than 40 dB·Hz, and even reaches 60 dB Hz and 
the side lobe is lower than 40 dB Hz in PHO. In LTO, 
the maximal main lobe received signal C/N0 can be 
approximately 35  dB·Hz; while the most side lobe sig-
nals are lower than 20  dB·Hz. Additionally, we found 
that GNSS can provide continuous signals for earth–
moon spacecraft, and weak GNSS signals can still be 
received even near the moon.

According to Eq.  (45), the minimum, maximum, and 
average values of the thermal noise code tracking jitter 
can be obtained for PHO and LTO, as shown in Fig. 10. 
We can see that the disparity of the ranging noise of dif-
ferent satellites is large, the maximum value is more than 
10 m, and the minimum value is better than 5 m, which is 

mainly related to the satellite antenna transmitting power 
and free space loss.

IMU and star tracker
An aerospace IMU was be used and the parameters of the 
accelerometer and gyroscope are shown in Tables 5 and 
6, respectively (Capuano et al., 2014; Groves, 2013).

Regarding the star tracker, the diagonal field size of the 
simulated star tracker is set to 10 degrees, the focal length 
is 85  mm, and the threshold of the stellar magnitude is 
7 Mv. Additionally, the Hipparcos catalog is chosen as the 
navigation catalog (ESA, 1997). Considering the accuracy 
of the star tracker is mainly affected by the recognition 
error of starlight in the image coordinate system, we set 

Fig. 9 Doppler shift (top), C/N0 (middle), and number of visible satellites (bottom) for PHO (left) and LTO (right)

Fig. 10 Maximum (blue), minimum (red), and average (green) of the thermal noise range error of PHO (left) and LTO (right)
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the recognition error to 1× 10−5 degrees to be as close as 
possible to the actual error. Figure 11 shows the attitude 
solution error of the simulated star tracker with a time 
interval of 1  s. The accuracy of the pitch, roll, and yaw 
are 3.87, 31.43, and 5.31″, respectively, which is consist-
ent with “Blue Canyon Technologies Nano-Star Tracker” 
mentioned in Capuano et  al. (2014). Additionally, it is 
worth noting that the accuracy of the roll angle is much 
lower than that of the pitch and yaw, which is also rea-
sonable (Liebe, 2002).

Experiments and analysis
After we obtained the simulate observations of multi-
sensors, the accuracy of orbit determination using multi-
sensors can be analyzed this section.

FDE for GNSS observations
Firstly, in order to maintain the reliability and stability of 
state solution in low C/N0 environment, the gross errors 

Table 5 Accelerometer characteristics

Parameter Value

Accelerometer biases in x, y, z direction ( G1 = 9.80665× 10
−6

m/s2)
[
30× G1 −45× G1 26× G1

]

Accelerometer scale factor and cross coupling errors



100× 10
−6 −120× 10

−6
80× 10

−6

−60× 10
−6 −120× 10

−6
100× 10

−6

−100× 10
−6

40× 10
−6

90× 10
−6




Accelerometer noise root PSD 20 × 9.80665× 10
−6

m · s−2 · Hz−0.5

Accelerometer quantization level
[
5× 10

−5
m/s2

]

Table 6 Gyro characteristics

Parameter Value

Gyro biases ((◦)/h)
[
−9× 10−4 13× 10−4

−8× 10−4
]

Gyro scale factor and cross coupling errors


8× 10

−6 −120× 10
−6

100× 10
−6

0 −6× 10
−6 −60× 10

−6

0 0 −7× 10
−6




Gyro noise root PSD ((◦)/h) 2× 10
−3

Accelerometer quantization level (rad/s2)
[
1× 10

−6
]

Fig. 11 Attitude determination error of the simulated star tracker

Table 7 Detailed configuration for GNSS gross error

Satellite PRN The epoch of gross error 
(s)

Gross error (m)

C24 1200–1400  ~ N (200, σ 2
DLL

)

C25 1300–1500  ~ N (100, σ 2
DLL

)

G17 2000–2100  ~ N (30, σ 2
DLL

)

Fig. 12 Value of �k and Chi-square distribution threshold 
in the process of solution and the success rate of elimination 
is counted
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of GNSS observations must be detected and excluded 
before state estimation.

The LTO orbit at the 48th hour was selected as the 
target orbit and the gross errors was added to the obser-
vations from three GNSS satellites, with the detailed con-
figuration shown in Table 7.

Then FDE algorithm mentioned above is used to 
detect and eliminate gross errors, Fig.  12 provides 
the value of �k and Chi-square distribution threshold 
χ2
m−n(α = 0.01) in the calculation process.
It can be seen that gross errors of C24 and C25 

will cause value of �k to increase significantly, which 
exceeds the corresponding detection threshold and can 

be easily detected and excluded, but the detection rate 
of small gross errors of G17 is significantly reduced by 
FDE algorithm. The recognition and exclusion rates for 
C24, C25, and G17 are 100%, 100%, and 30%, respec-
tively. The solution results before and after the FDE 
algorithm used are shown in Figs.  13 and 14, and the 
statistical results are presented in Table 8.

Obviously, the gross error in the observations makes 
the solution result extremely worse, and the accuracy 
of position and velocity determination is obviously 
decreased, which reduces the reliability of autonomous 
navigation using GNSS. However, FDE algorithm can 
excluded gross errors and the solution results can be 
maintained in 3-sigma confidence intervals, even if the 
recognition ability of small gross errors is limited.

Fig. 13 Results of position (left) and velocity (right) determination without FDE algorithm. (The three direction position result probabilities of being 
within the 3-sigma are 91.58%, 93.19%, and 94.08%. Additionally, the velocity results are 94.61%, 96.67%, and 96.25%, respectively)

Fig. 14 Results of position (left) and velocity (right) determination without FDE algorithm. (The three direction position result probabilities of being 
within the 3-sigma are 100.00%, 99.94%, and 100.00%. Additionally, the velocity results in all directions are 100.00%)

Table 8 Statistical values of solution results with and without FDE algorithm

Scheme Position in different direction (m) Velocity in different direction (m/s)

X Y Z Vx Vy Vz

Without FDE 149.52 160.01 290.25 1.82 2.08 3.69

With FDE 15.14 23.81 23.43 0.30 0.21 0.31
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Navigation use GNSS with the adaptive algorithm
According to the above analysis, GNSS can provide 
continuous available signals for spacecraft in earth–
moon space, which is suitable for spacecraft navigation. 
In addition, considering the noise in GNSS observation, 
the proposed adaptive algorithms are also used in the 
autonomous navigation solution of the Earth–moon 
spacecraft.

The dynamic model and observation model param-
eters for the Kalman filter configuration settings are 
listed in Table  9. Because of the limited power of the 
onboard processor unit, and the higher-order gravity 
term has no significant effect on the accuracy of orbit 
determination for high and ultra-high orbits. We use 
gravity models of various orders at different locations 
in earth–moon space, which significantly reduces the 
amount of computation while maintaining similar navi-
gation performance.

We design three schemes to evaluate the performance 
of integrated navigation and the adaptive algorithm pro-
posed in this study:

Scheme 1 (short for S1): Navigation solution based on 
the Kalman filter with the constant covariance matrix 
(the diagonal elements of the covariance matrix are set to 
the constant 10 m for pseudo-range).

Scheme 2 (short for S2): Navigation solution based on 
the Kalman filter with the MBAE algorithm. (For GPS, 
we set the coefficients of a and b in Eq. (35) to 0.1596 and 
32.0745, respectively. Additionally, for BDS-3, we set the 
values to 0.0798 and 16.0373, respectively.)

Scheme 3 (short for S3): Navigation solution based on 
the Kalman filter with the IBAE algorithm.

The solution results for the position and velocity for 
the three schemes of PHO and are shown in Figs. 15, 16 
and 17. Additionally, the statistical Root Mean Square 
(RMS) of the solutions are listed in Table  10. We can 

Table 9 Parameter settings ( r  is the distance from the Earth’s center)

Item Setting

Dynamic model Earth gravity model r < 9600km GGM05S (10 × 10)
9600km ≤ r < 50000km GGM05S (6 × 6)
50000km < r GGM05S (2 × 2)

Moon gravity model particle model

N-body JPL DE421 (Folkner et al., 2009)

Solar radiation pressure Macro model

Solid tide and pole tide IERS 2010

Ocean tide FES 2004

Relatively IERS 2010

Observation model Satellite Orbit and clock Broadcast ephemeris

Observations Simulated GNSS observations

Initial position variance 5 000 m

Initial velocity variance 2 m/s

Initial clock bias 1 μs

Filter Type Adaptive Kalman filter

Fig. 15 Results of the PHO position (left) and velocity (right) determination of S1. (The three direction position result probabilities of being 
within the 3-sigma are 94.95%, 94.65%, and 95.22%. Additionally, the velocity results are 99.97%, 99.72%, and 99.80%, respectively)
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conclude that compared with S1, the position accu-
racy of S2 increased by 16.0% and the velocity accu-
racy increased by 38.7%. Additionally, more solutions 
exist in the 3-sigma range. S3 has the highest solution 
accuracy and the average position error of the solution 
is 99.97% within the 3-sigma. Compared with S1, the 
position and velocity accuracy increased by 28.3% and 
44.3%, respectively, which proves the effectiveness of 
the proposed IBAE algorithm.

Similarly, we used the same three strategies to deter-
mine the position and velocity of LTO. Additionally, 
we statistically calculated the accuracy of the solutions 

in three segments according to distance r between the 
spacecraft and the center of the Earth, where r < 20RE , 
20RE < r < 40RE , and 40RE < r < 60RE , and RE is the 
radius of the Earth. The results are shown in Figs.  18, 
19 and 20 and Table 11. Similar to PHO, the navigation 
performance of S3 is also better than that of S2 and S1. 
Compared with S1, S3 has a position accuracy increase 
of 36.27%, the average probability of being within the 
range of 3-sigma is 99.97%, and the average probabil-
ity of the velocity result within the range of 3-sigma is 
100.00%.

Fig. 16 Results of the PHO position (left) and velocity (right) determination of S2. (The three direction position result probabilities of being 
within the 3-sigma are 99.94%, 99.94%, and 99.93%. Additionally, the velocity results in all directions are 100.00%)

Fig. 17 Results of the PHO position (left) and velocity (right) determination of S3. (The position result probabilities of being within the 3-sigma are 
99.97%, 99.98%, and 99.97%. Additionally, the velocity results in all directions are 100.00%)

Table 10 Statistical values of the PHO solution results for the three schemes

Scheme Position in different direction (m) Velocity in different direction (m/s)

X Y Z Vx Vy Vz

S1 1.89 6.27 5.09 0.08 0.14 0.13

S2 1.58 5.25 4.30 0.05 0.08 0.08

S3 1.37 4.38 3.70 0.05 0.07 0.07
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Additionally, the left and right figures in Fig.  21 
show the position results in PHO and LTO with the 
C/N0 thresholds of 15, 20, and 25  dB  Hz. And the sta-
tistical results of the position accuracy and the num-
ber of visible satellites with different C/N0 threshold 
are shown in Fig.  22. To analyze the performance of 

GNSS in lunar space, only the results at the end of the 
LTO ( 40RE < r < 60RE ) were counted. We found that, 
compared with the navigation performance of space-
craft in PHO, that of spacecraft in LTO is significantly 
affected by the C/N0 threshold. If the threshold of C/N0 
increase to 20 dB Hz, the navigation accuracy near lunar 

Fig. 18 Results of the LTO position (left) and velocity (right) determination of S1. (The position result probabilities of being within the 3-sigma are 
90.92%, 90.84%, and 90.78%. Additionally, the velocity results are 98.85%, 99.13%, and 98.91%, respectively)

Fig. 19 Results of the LTO position (left) and velocity (right) determination of S2. (The position result probabilities of being within the 3-sigma are 
99.56%, 99.57%, and 99.40%. Additionally, the velocity results are 99.99%, 99.99%, and 100.00%, respectively)

Fig. 20 Results of the LTO position (left) and velocity (right) determination of S2. (The position result probabilities of being within the 3-sigma are 
99.56%, 99.57%, and 99.40%. Additionally, the velocity results are 99.99%, 99.99%, and 100.00%, respectively)
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space deteriorates significantly, and continuous naviga-
tion services cannot be achieved if the threshold is set 
to 25  dB  Hz. Therefore, the spacecraft needs to carry a 
receiver with a C/N0 threshold of 15  dB  Hz to navigate 
with GNSS in cis-lunar space, which is also a common 
view. For PHO, the requirement of the C/N0 thresh-
old is relatively low, and the navigation performance 

better than 15 m can be obtained even with a threshold 
of 0.25 dB Hz.

In conclusion, we found that GNSS can provide navi-
gation services in most regions of earth–moon space 
through simulation experiments. Additionally, we veri-
fied the effectiveness of the proposed adaptive algo-
rithm, which can further improve the performance 
of the navigation service of GNSS with an accurate 
dynamic model, and provide a reference for the use 
of GNSS in earth–moon space. By the way, it can be 
seen that there are obvious fluctuations in the curves 
of PHO and LTO solution results, which is caused by 
GNSS positioning geometry.

Integrated navigation with INS, GNSS and star tracker
During the long-term flight in deep space, the spacecraft 
will inevitably be disturbed by unknown acceleration that 
cannot be modeled (e.g., the change of the space environ-
ment or orbital maneuver). The accuracy of the dynam-
ics model based on orbital mechanics will be significantly 
reduced, and the accuracy of the solution will be signifi-
cantly deteriorated. Spaceborne accelerometers can make 

Table 11 Statistical values of the LTO solution results for the three schemes

Distance Scheme Position in different direction (m) Velocity in different direction (m/s)

X Y Z Vx Vy Vz

r < 20RE S1 12.67 6.10 9.42 0.17 0.12 0.15

S2 10.72 5.11 7.86 0.10 0.07 0.09

S3 9.03 4.15 6.43 0.09 0.06 0.08

20RE < r < 40RE S1 26.15 13.36 21.10 0.26 0.16 0.23

S2 21.81 11.19 17.71 0.15 0.10 0.14

S3 17.75 9.22 14.45 0.12 0.08 0.10

40RE < r < 60RE S1 35.15 20.92 30.21 0.30 0.20 0.26

S2 29.67 17.73 25.73 0.17 0.12 0.16

S3 22.97 14.27 20.87 0.13 0.09 0.12

Fig. 21 Navigation performance of spacecraft in PHO (left) and LTO (right) when the C/N0 thresholds are set to 15, 20, and 25 dB Hz

Fig. 22 Navigation performance in PHO (up) and LTO (down) 
with various SNR thresholds. (The position accuracy and number 
of visible satellites are shown in blue and red, respectively)
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up for the defects of orbital mechanics and provide an 
accurate dynamic model. We attempt to analyze the navi-
gation accuracy of the dynamic model compensated for 

by the accelerometer when the spacecraft is subjected to 
unknown acceleration.

We assume that the spacecraft made an orbital maneu-
ver in LTO at 15:41:51.907 on April 24, 2007. An accel-
eration of (0.281096, − 0.194355, 0.0755011) m/s2 was 
applied in the X, Y, and Z directions in b-frame for 10 s. 
At this time, the known dynamic model failed and the 
additional acceleration caused by this orbital maneuver 
can be obtained by on-board accelerometer. In addition, 
the moment of using accelerometer data can be deter-
mined according to the difference between accelerometer 
data and model acceleration, since normally the differ-
ence should not be significant.

Orbits 20 min before and 40 min after the moment of 
the maneuver were selected, and the accelerometer data 
were simulated according to the characteristics of the 
accelerometer in Table  4. Figure  23 shows the assumed 
real acceleration of the spacecraft, the model acceleration 
in the orbit filter, and the simulated accelerometer data.

It should be noted that the premise of using the pro-
posed IBAE algorithm is an accurate dynamic model, 

Fig. 23 Assumed real acceleration (green), model acceleration 
used in the orbital filter (blue), and acceleration measured 
by the accelerometer (red). Considering the scale limit, the change 
of the maneuvering acceleration is not displayed

Fig. 24 Position (left) and velocity (right) results of S1. (The position result probabilities of being within the 3-sigma are 96.31%, 96.19%, and 95.89%. 
Additionally, the velocity results are 99.17%, 99.83%, and 99.44%)

Fig. 25 Position (left) and velocity (right) results of S2. (The position result probabilities of being within the 3-sigma are 99.61%, 99.33%, and 99.56%. 
Additionally, the velocity results in all directions are 100.00%)
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only the MBAE algorithm can be used when the orbit 
maneuvers. Two schemes were designed to evaluate the 
navigation accuracy during the orbital maneuver:

Scheme  1 (short for S1): Navigation solution using 
GNSS observations based on the Kalman filter.

Scheme  2 (short for S2): Integrated navigation using 
INS, GNSS, and star tracker during the orbital maneuver.

The results are shown in Figs. 24 and 25, and the RMS 
values are listed in Table  12. In Fig.  24. We found that 
relying only on the orbital dynamic model cannot main-
tain navigation accuracy during the orbital maneuver, 
and the position and velocity accuracies decrease rap-
idly, with position accuracy even below 500  m. How-
ever, when the accelerometer data are used instead of the 
dynamic model, navigation accuracy returns to normal.

Additionally, it is considered that the attitude of space-
craft can be determined using a gyroscope and star 
tracker. The spacecraft attitude determined by the star 
tracker alone and the gyroscope, star tracker integrated 
solution is provided in Fig. 26.

We found that the attitude determination accuracy of 
the single star tracker is better than 50 arcseconds, and 
the combined solution of the gyroscope and the star 
tracker can further improve accuracy and is better than 
10 arcseconds.

Conclusions and discussion
Considering the need for autonomous navigation for 
future spacecraft, we explored the navigation per-
formance of GNSS in earth–moon space. And an 

autonomous navigation system based on the GNSS 
receiver, IMU, and star tracker integrated system with 
orbit filtering is adopted. Additionally, we proposed the 
MBAE and IBAE algorithms, which we used in the case 
of GNSS ranging accuracy attenuation in earth–moon 
space.

Signal characteristics received by PHO and LTO orbit-
ing spacecraft were analyzed, which shows that satellite 
navigation signals can cover most areas in Earth–moon 
space. The experiment shows that users can receive 
more BDS satellites than GPS, which may be due to the 
stronger power of the BDS sidelobe signal, and the higher 
orbital altitude of the BDS GEO and IGSO.

The accuracies of PHO in the X, Y, and Z directions 
using GNSS and orbital filter solving are 1.89, 6.27, and 
5.09 m, respectively. Accuracy improved by 16.0% with 
the MBAE algorithm and further improved by 28.3% 
with the IBAE algorithm. A similar conclusion also be 
obtained for LTO, where the accuracies are 35.15, 20.92, 
and 30.21 m in the three directions when the spacecraft 
distance from the center of the Earth is greater than 
40 Re, which proves that GNSS can provide navigation 
services in near-lunar space. We verified the effective-
ness of the proposed adaptive algorithm. Additionally, 
we considered spacecraft maneuvers, for which posi-
tion accuracy was substantially reduce than 500  m 
when determined using GNSS alone with the orbit 
filter; hence, we used accelerometers to compensate 
for the dynamic model, and improve the position and 
velocity accuracy during orbital maneuvers use INS, 
GNSS and star tracker integration navigation system. 
With the integration of a gyroscope and star tracker, an 
attitude accuracy of better than 10 arcseconds can be 
obtained.

Based on the above experiments and analysis, we 
proved the feasibility of autonomous navigation using 
GNSS for Earth–moon spacecraft, and then proposed 
an adaptive algorithm to effectively suppress GNSS 
observations noise, so that high-precision position of 
spacecraft can still be obtained in lunar space. Finally, 
the performance of INS, GNSS and star tracker inte-
grated navigation system is verified, and the solution 
accuracy can be maintained during orbital maneuvers.

In the future, we will consider the integration of 
more sensors and navigation methods (e.g., the celestial 

Table 12 Statistical results for the two schemes

Scheme Position in different direction (m) Velocity in different direction (m/s)

X Y Z Vx Vy Vz

S1 55.31 10.90 16.51 9.60 5.22 7.10

S2 16.46 7.99 9.89 0.96 0.57 0.73

Fig. 26 Attitude solution results determined by a single star tracker 
and gyro/star tracker integrated system
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navigation system) to further improve the autonomous 
navigation performance of spacecraft in and outside 
earth–moon space.
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