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Abstract 

Among all the ambiguity resolution techniques, the Full Ambiguity Resolution (FAR), Partial Ambiguity Resolu-
tion (PAR) and Best Integer Equivariant (BIE) estimator are widely used. Although the researches have been done 
on the different classes of ambiguity resolution, we still hope to find the relationships among these specific algo-
rithms. In this work, we unify the PAR and FAR algorithms under a whole framework of BIE by applying multiple inte-
ger candidates. A concise estimation formula of the variance of Gaussian BIE estimator based on the variance of float 
solution and the probability distribution of the candidates is first derived. Then, we propose an algorithm named 
Multiple Integer Candidates Ambiguity Resolution (MICAR) to discover as many ambiguities in the BIE as possible 
that can be estimated more precisely by PAR (FAR) algorithm instead of BIE. In the experiments, we utilize the simu-
lated data of GPS (Global Positioning System) + BDS (BeiDou Navigation Satellite System) + Galileo (Galileo naviga-
tion satellite system) to contrast the effects of MICAR and single candidate estimator, i.e., FAR. By taking the threshold 
of 5 cm at 95% confidence level as an example, MICAR accelerates the convergence process by about 3.0 min. When 
the positioning sequence converges, MICAR reduces the root mean square of the positioning error by 9.8% in hori-
zontal directions and 3.5% in vertical direction, which is attributed to more fixed NL.

Keywords  GNSS, Ambiguity resolution, Best integer equivariant estimator, Covariance matrix, MICAR​

Introduction
The observation equation of the Global Navigation Satel-
lite System (GNSS) precise positioning as a mixed inte-
ger linear model can be expressed as follows (Teunissen 
1995; 1999A), Xu 2006):

where y is the observation vector, Ha and Hb are 
designed matrices, a ∈ Z

n and b ∈ R
m are parameters of 

(1)E(y) = Haa +Hbb

integer ambiguities and real-valued unknown geometry 
components, respectively.

Assume that the observation vector y follows a multi-
variate normal distribution with the covariance matrix 
given by D(y) = Qy . Regardless the integer nature of the 
ambiguities, Eq. (1) can be solved by the least-squares to 
derive the so-called “float solution”, and the estimate and 
its covariance matrix is written as

The essence of the ambiguity resolution technique 
is to take the integer nature of the ambiguities into 
account and give an integer ambiguity estimate ǎ ∈ Z

n . 
Having this, we can obtain the “fixed solution” as 
b̌ = b̂ −Q
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â

b̂

)

,

(

Qâ Q
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Concerning the Precise Pointing Positioning (PPP), the 
Uncalibrated Phase Delays (UPDs) caused by initial phase 
biases together with the signal dependent hardware 
effects destroy the integer property of the zero-difference 
ambiguities, and thus integer ambiguity resolution can-
not be achieved straightforwardly (Gu et al. 2015). As a 
result, the traditional PPP is usually performed with float 
ambiguity and takes about 30 mins to converge to cen-
timeter-level accuracy (Bisnath 2009). To overcome this 
dilemma, Gabor and Nerem  (1999) attempted to per-
form Ambiguity Resolution (AR) in PPP solution. Since 
then, PPP-AR has been a research hotspot, and many 
researchers in the GNSS community have intensively 
studied the issue (Collins 2008; Ge et al. 2008; Laurich-
esse et  al. 2009). Although AR was demonstrated as an 
efficient technique to accelerate the convergence speed 
of PPP, it still took almost 10 min to get an accuracy at 
centemeter-level (Li et  al. 2020). Until more recently, 
instantaneous convergence PPP was achieved with triple-
frequency integer ambiguity resolution and multi-con-
stellation measurements (Tao et al. 2022). Consequently, 
solving the fixed solution of ambiguities is crucial. To 
estimate the best integer solution, several Integer (I) esti-
mators were proposed, such as integer rounding, Integer 
Bootstrapping (IB), and Integer Least-Squares (ILS) esti-
mator, and ILS was proved to have the highest success 
rate among all integer estimators (Teunissen 1999A).

These traditional AR techniques determined the 
entire ambiguity vector to an integer vector. However, 
due to either the noisy observation or the biased model, 
the ambiguity may be wrongly determined, and conse-
quently, an unacceptable error is introduced into the 
positioning result (Li et al. 2014). To overcome this dif-
ficulty, several validation methods such as the F-ratio test 
(Frei 1990), R-ratio test (Euler and Schaffrin 1991), dif-
ference test (Tiberius and Jonge 1995), and W-ratio test 
(Wang et  al. 1998) were proposed to control the risk of 
accepting the false ambiguity. As one of the most popular 
validation methods, the R-ratio test is defined as

where the integer vector ǎ1 and ǎ2 have respectively the 
minimum and second minimum quadratic form with 
â ; µ is the threshold that can be determined with either 
the empirical approach or the fixed failure rate approach 
(Wang & Verhagen 2015). Once Eq. (3) holds, we have 
the integer ambiguity estimate a = ǎ1.

Instead of determining the entire vector of ambiguity to 
integers, i.e., Full Ambiguity Resolution (FAR), the Partial 

(3)R =
�â − ǎ2�

2
Qâ

�â − ǎ1�
2
Qâ

≥ µ

Ambiguity Resolution (PAR) technique introduced by 
Teunissen (1999B) tried to fix a subset of the entire ambi-
guity vector. As demonstrated by Psychas et  al. (2020), 
PAR is more efficient than FAR once a sufficiently large 
subset of ambiguities is fixed. It should be noted that 
the subset in PAR can also be the linear combinations of 
the entire vector of ambiguity (Teunissen et  al. 1999B). 
Thus, it can be expressed as Ta = ž with T ∈ R

k×n the 
transformation matrix, ž the linear combinations of the 
integer ambiguities, and k < n in PAR technique. Note 
that in case k = n , we can get the inverse of T−1 , and it 
is expected that a = T−1ž = ǎ1 , i.e., the FAR solution. 
Therefore, if we allow the condition to be relaxed as 
k ≤ n , FAR is a special case of PAR.

Both FAR and PAR belongs to the class of Integer 
Aperture (IA) estimator (Teunissen 2003A; 2004) since 
some of the ambiguities are fixed to their float solution, 
and they usually use an I estimator (Teunissen 2003B) to 
fix the ambiguities such as ILS (the optimal IA estimator 
is given in Teunissen 2003A; Teunissen  2004). However, 
for a short observation period the R-ratio test (3) may fail, 
even for a subset of ambiguities. Thus, the Integer Equiv-
ariant (IE) estimator is proposed as a trade-off between 
the fixed and float solution and is larger than the class of 
I estimator (Teunissen 2003B) or IA estimator (Teunissen 
2003A; Teunissen 2004). In particular, the Best Integer 
Equivariant (BIE) Estimator is put forward as the mini-
mum variance unbiased estimator within the IE class. In 
this paper, by considering y is normally distributed, the 
BIE estimator of the ambiguities is given as

In addition, through Bayesian theory (Blewitt 1989; Betti 
1993; Wu and Bian 2015) we can derive the posterior 
probability

Thus, the BIE estimator can also be regarded as the mean 
value of all the integers (Odolinski & Teunissen 2020). 
However, since it is impossible to treat the infinite inte-
ger vectors as candidates, a practical method to address 
it is to select a finite subset of integers to approximate 
the integer set. Teunissen  (2005) presented a search-
ing method based on Chi-square distribution, and Wu 

(4)aBIE =

∑

z∈Zn

z · exp

(

−
1

2

∥
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)

∑

z∈Zn
exp

(

−
1
2
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and Bian (2015) presented a searching method using a 
lower bound based on the likelihood of estimated integer 
ambiguities. Notably, Yu et al. (2020) further derived an 
approximation for the covariance matrix of the Gaussian 
case BIE estimator. Based on this work, we derive a more 
concise estimation formula for this covariance matrix. 
With our formula, we can make intuitive connections 
between the covariance matrix between the float solu-
tion, the candidate set, and the BIE.

More recently, Teunissen  (2021) presented a new 
approach, i.e., Vectorial Integer Bootstrapping (VIB), that 
can combine various estimators together. Concretely, it 
expands IB to a vectorial form, which can sequentially 
apply different estimators to artificially partitioned ambi-
guity sub-vectors.

In this paper, we put forward a novel algorithm: Multi-
ple Integer Candidates Ambiguity Resolution (MICAR), 
to combine FAR and PAR estimator in the Gaussian case 
BIE. Our contribution mainly lies in the following two 
aspects. First, we derive a concise estimation formula to 
compute the variance of the Gaussian case BIE estima-
tor which deepens our understanding of the relationships 
between the float solution, the candidate set, and the BIE. 
Secondly, based on the Gaussian case BIE solution, we 
use the maximal linearly independent set to fully exploit 
the linear relationship among ambiguity candidates, 
enabling as many ambiguity elements as possible to be 
estimated by the PAR (FAR) estimator with zero vari-
ance, which offers higher precision than the original BIE 
solution.

This paper is organized as follows: In Section  “Nota-
tion”, we give some notations about the symbols used in 
the text. In Section “Variance of BIE estimator”, we derive 
the estimation formula for the variance of the Gaussian 
case BIE estimator. In Section “Multi-integer candidate 
ambiguity resolution”, we present the MICAR algorithm. 
In Section “Discussion”, we discuss MICAR. In Section 
“Experiment”, we demonstrate the experiment.

Notation
In this paper, we adopt the following conventions:

Scalars are denoted with regular lower-case letters, 
(column) vectors are denoted in bold lower-case letters, 
and matrices are denoted in bold capitals. In denotes 
an identity matrix of dimension n . P(A) denotes the 
probability of event A . E(a) and D(a) are the mean and 
covariance operators of the random vector a , which 
are also denoted as ā and Qa respectively. In addition, 
trA and rankA denote the trace and rank of matrix A , 
respectively.

Method
In this section, we first derive the estimation formula for 
the variance of the Gaussian case BIE estimator. Then, we 
present the algorithm of MICAR.

Variance of BIE estimator
As mentioned in Section “Introduction”, the Gauss-
ian case BIE estimator is given as Eq. (4). Since it can be 
regarded as the mean value of integers, we denote it as ā 
for simplicity.

Since the infinite terms in the denominator are impos-
sible to calculate, a subset A = {ǎ1, ǎ2, . . . , ǎm} ⊂ Z

n is 
usually selected to replace all integers, e.g., the set of all 
the integers that pass the R-ratio test. Hence, the poste-
rior probability can be approximately substituted by

Then the BIE estimator is expressed as

If the subset is chosen reasonably where A consists of ǎi 
close to â , Eq. (7) is a good approximation since the expo-
nential power vanishes rapidly as ǎi moves away from â . 
Besides ā , its covariance matrix Qā is another crucial fac-
tor. Let the probability P(a = ǎi|â,Qâ) be defined as Pi 
in (6), so we can calculate D(a|â,Qâ) , denoted by Qa|â . 
Then, by taking the first order approximation of ā , we 
have

which is proved in the appendix. We denote the approxi-
mation of Qā as Q̃ā . Theoretically, this equation also 
applies to the original infinite probability space of a . The 
float solution can be improved with the constraint

where Pā is the weight matrix.1
Although Q−1

â
 is positive definite, the rank-defect in Qa|â 

can cause singularity in the approximation for Qā . For 
instance, when the value of a certain ambiguity is identical 
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(9)ā = a,Pā = Q̃
−1
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1  In the case that Q−1

ā
 is not invertible, Pā can be approximated by 

(Qā + εIn)
−1 with ε efficiently small instead.
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among the candidate set A , the corresponding variance 
in Qa|â will be zero, resulting in the zero-variance in the 
approximation Q̃ā . We argue that this approximation 
makes sense since in the case that the value among A is 
identical, the corresponding variance in the true value of 
Qā is very close to zero. This inspires the design of MICAR.

Since linear transformation can be taken on the ambigui-
ties, a linear transformation can be found to explore the lin-
ear structure in set A as much as possible. As a simple 
example, let A = {ǎ1 = (1 2 3 4)T, ǎ2 = (2 3 3 3)T, ǎ3 =

(3 4 2 2)T} be the candidate set. Although there is yet no 
zero-variance of ambiguities in Qa|â , i.e., no any ambiguities 
are identical in A, we can take a linear transformation on the 
ambiguities to make them identical, since there are potential 

linear structure in the set A . Let T =







0 0 1 0
0 0 0 1
1 0 0 1
0 1 0 1






 , 

Then Tǎ1 = (3 4 5 6)T , Tǎ2 = (3 3 5 6)T , Tǎ3 = (2 2
5 6)T . Now there are two ambiguities that are identical in the 
candidate set, and the covariance matrix of the candidate set 

becomes 
(

Q′
0

0 0

)

 , which results in two elements of the BIE 

having zero-variance approximately. The goal of MICAR is 
to find a linear transformation that makes the zero-variance 
ambiguities as many as possible.

Multi‑integer candidate ambiguity resolution
In this section, we present the MICAR technique. The 
main idea of this method is to find a linear transforma-
tion to divide the BIE estimator ā into two parts: the first 
part with approximately zero variances, and the second 
part with non-zero variances. The first part of BIE esti-
mators should be all integers since they are essentially the 
weighted sum of identical integers. Thus it can be seen as 
PAR as well. Therefore, we call the first part the PAR part, 
and the second part the BIE part for simplicity. Intui-
tively, we want to find a linear transformation that makes 
the size of the PAR part as large as possible.

Without loss of generality, let r = rankQa|â ≤ n , 
and suppose there exists an invertible matrix T  so that 
the covariance matrix of AT := {Tǎ1,Tǎ2, · · · ,Tǎm} , 
denoted as QTa|Tâ , is of the form

(10)QTa|Tâ =

(

Q′
Ta|Tâ 0

0 0

)

= TQa|âT
T

where Q′
Ta|Tâ

∈ R
r×r is positive definite.2 Under this 

transformation, the BIE becomes Tā As mentioned in the 
last section, this is equivalent to

where Q11 ∈ R
r×r is a positive definite matrix.

Let

where T1 ∈ R
r×n . From Eq. (11) ad (12) we have 

QT1ā ≈ Q11 and QT2ā ≈ 0 , and T1ā is uncorrelated with 
T2ā . Since T2ā is degenerate, there is a constant vector c0 
which satisfies T2ā = c0 . Thus, T2ā is the PAR part of Tā 
since its approximate variance vanishes. For the BIE part, 
we use the formula of Eq. (8) to calculate the approxima-
tion for Q11 , which is Q̃11.

Besides, we take the idea in Yu et al. (2020) that a vali-
dation condition tr Q̃ā < trQâ should be satisfied for BIE 
estimators, which is under the thought that the accu-
racy of BIE estimators should not be worse than the float 
solution, or we can directly utilize the latter. However, 
tr Q̃ā < trQâ has no connection with tr Q̃Tā < trQTâ 
for an arbitrary T .3 This means that the evaluation result 
depends on the transformation matrix T  , and this is obvi-
ously unreasonable. Therefore, we set a restriction that 
the transformation for BIE should be an identity matrix 
I to utilize the BIE part. With this, the evaluation process 
has no controversy. Under this restriction, T1 can only 
apply identity transformation on some of the ambiguities. 
Considering the assumption of (11), we have T1 =

(

I r 0
)

.
Next, the matrix T2 is to be determined. To achieve 

the goal, we need to use the concept of maximal linearly 
independent set.

Definition: Maximal Linearly Independent Set (MLIS). 
A subset of a vector set M ⊂ R

n is maximally linearly 
independent if including any other vector in the span of 
M would make it linearly dependent (i.e., if any other 
vector in the span of M can be expressed as a linear com-
bination of elements of a maximal set).

Determination of an MLIS is simple through Gaussian 
elimination. Regard Qa|â as a set of row vectors, which is 
Qa|â =

(

Q1 · · · QT
n

)T . Since its rank is r, we can deter-
mine an MLIS that contains r row vectors in Qa|â . With-
out loss of generality, we assume that the MLIS contains 
the first r row vectors. Then, the last n− r row vectors 

(11)QTā = TQāT
T ≈

(

Q11 0

0 0

)

(12)T =

(

T1

T2

)

2  Here we let the variance of the last elements of Ta to be zero. In general, 
by modifying the transformation matrix T  , these elements can be positioned 
arbitrarily.

3  Notice that the trace is invariant under similarity transformation. Hence, 
as long as the spectrum of Qā and Qâ is different, trQTā and trQTâ has no 
corresponding numerical relationship as T  changes.
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can be represented as linear combinations of the vec-
tors in the MLIS. This means that there exists a matrix 
B ∈ R

(n−r)×r so that

Thus we obtain T2 =
(

−B In−r

)

 . Let

Then we have

Subsequently, the covariance matrix of Tā becomes

The first r vectors of ambiguity is kept unchanged 
through the transformation T  , while c0 is an n− r dimen-
sional constant vector.

Recalling Eqs. (9), (14) and (16), the MICAR solution is 
written as

Obviously, the first constraint corresponds to the BIE 
part, while the second one corresponds to the PAR part.

Discussion
The motivation behind dividing the full ambiguity vector 
into two parts is to find a transformation that minimizes 
the number of ambiguities with zero variance. In this sce-
nario, PAR solution can be executed without the require-
ment for iterative finding of a subset of integers (Li & 
Zhang 2015). In addition, the idea of VIB (Teunissen 
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0

0 0

)

(16)TQāT
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ā1
...
ār
c0









(18)







ā1
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2021) also suggested dividing the ambiguity vector into 
multiple subsets. Thus, MICAR can be seen as a concrete 
implementation of Gaussian case BIE estimator and VIB 
solution. In this study, we not only derive a concise esti-
mate formula of the variance of BIE estimator (Eq. 8), but 
also determine a linear transformation to seize a better 
solution (Eq. 18).

Specifically, let an float ambiguity solution 
â = (â1, . . . , âv)

⊤ ∈ R
n with âi ∈ R

ni , i = 1, . . . , v be 
its sub-vectors, and n =

∑v
i=1 ni . Then its VIB solution 

aVIB = (aVIB
1 , . . . ,aVIB

v ) is calculated by

where [·]i : Rni �→ Z
ni is an arbitrary admissible integer 

mapping Teunissen (1999A) and Qij|J are relative vari-
ance/covariance matrices. It extends the principle of IB 
to a vectorial form and considers dividing the ambiguity 
vector into several subsets and sequentially apply differ-
ent integer estimators to them, e.g., ILS or BIE, accord-
ing to the integer success rate Odolinski and Teunissen  
(2020).

However, as discussed above, MICAR can be regarded 
as whole BIE estimator and do not sequentially updates 
the variance of the subsets as the Eq. (20) does. For 
instance, it may first determine the PAR part, then 
updates the conditional variance of the BIE part. In addi-
tion, MICAR presented a novel idea to divide the ambi-
guity vector into multiple subsets. While the study that 
apply the idea of VIB to MICAR is interesting and we 
look for later researches.

Moreover, it is clear to see the relationship between AR 
methods (FAR and PAR) and MICAR. When only one 
candidate is selected, all the ambiguities have zero vari-
ance and MICAR becomes FAR. If the BIE part does not 
pass the validation process, MICAR becomes PAR.

Lastly, the transformation matrix T 2 can also be derived 
directly from the structure of A , and this algorithm is like 
the one proposed by Lawrence  (2009). To meet the con-
straint on T 1 , one may still need an MLIS to determine 
the “left-null space” in that paper.

Experiment
To verify the feasibility and performance of MICAR, we 
use software the FUS-ING (FUSing IN Gnss). FUSING 
is capable of the multi-GNSS filter precise orbit deter-
mination (Gong et  al. 2018; Lou et  al. 2022), real-time 
satellite clock solution (Shi et  al. 2019; Gu et  al. 2023), 
satellite bias estimation (Lou et al. 2017; Gu et al. 2022A), 

(19)

aVIB
1 = [â1]1

aVIB
2 = [â2|1]2 := [â2 −Q21Q−1

11 (â1 − ǎ1)]2
...

aVIB
v = [âv|V ]v := [âv −

∑v−1
j=1 Qvj|JQ−1

jj|J (âj|J − ǎj)]v
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atmosphere modeling (Luo et al. 2020; Gu et al. 2022B), 
and multi-sensor navigation (Gu et  al. 2021; Gu et  al. 
2022C). While we developed the AR module based on 
the LAMBDA package (Psychas et  al. 2020; Verhagen 
et al. 2012). Based on FUSING, we carry out PPP-AR and 
compare the results of MICAR and FAR in terms of posi-
tioning precision and convergence in this section.

Data and strategy
In the experiment, 233 stations shown in Fig.  1 were 
simulated on September 1, 2020 (Day of the Year 245, or 
DOY 245) for GPS (Global Positioning System) + BDS 
(BeiDou Navigation Satellite System) + Galileo (Galileo 
navigation satellite system) with 30 s sampling rate. The 
GPS constellation includes 32 Medium Orbit Satellites 
(MEO), the Galileo constellation includes 30 MEO, and 
the BDS constellation includes 3 Geostationary Orbit 
Satellites (GEO), 3 Inclined GeoSynchronous Orbit 
(IGSO), and 24 MEO. The simulation and positioning 
strategies are shown in Table  1. The simulated data is 
utilized to prioritize the derivation of theoretical meth-
ods, as it allows us to avoid potential outliers and other 
abnormal measurements that may occur in real observa-
tional settings. Moreover, we can only get the “true” value 
of each ambiguity from the simulated data to analysis 
the efficiency of AR with different algorithms. It is worth 
noting that to ensure the independence of data simula-
tion and positioning, the data simulation in this paper 

uses PANDA (Position And Navigation Data Analyst) 
software in the Earth Central Inertial (ECI) system (Liu 
and Ge 2003; Shi et al. 2008; Chen et al. 2014), and data 
processing uses FUSING software in the Earth Central 
Earth Fixed (ECEF) system. In addition, this paper adopts 
the IGS global high-precision ionospheric grid map, i.e. 
IGSG, to simulate the ionospheric delay. To obtain more 
samples, the solution is restarted every hour in data pro-
cessing, and there are more than 5000 samples involved 
in positioning convergence and accuracy analysis.

Results analysis
To verify the effectiveness of the MICAR algorithm, we 
contrast it with FAR for the effects of single candidate 
and multiple candidates estimators.

To determine the multi-candidate ambiguity vectors a , 
we utilize a method based on the R-ratio test. The essence 
of our selection strategy is to fix ǎ1 and test every integer 
vector ǎi to see if it satisfies (3) (let ǎi be ǎ2 ). An inte-
ger vector ǎi does not satisfy (3) means that it is relatively 
close to â , so it cannot be ignored. Hence, a consists of 
the integer vector with the smallest quadratic form, along 
with all the other integer vectors that do not satisfy (3). In 
this experiment, we set the ratio threshold µ as 3.

As for the evaluation metrics, we calculate the num-
ber of correctly and falsely fixed NL, its correct rate, 
and the convergence sequence of both methods. Note 
that the number of correctly fixed NL r0 can be derived 

Table 1  Details of the data simulation and positioning strategy

Item Simulation Positioning

Period  DOY 245, 2020

System GPS 32 MEOsatellites

Galileo 30 MEO satellites

BDS 3 GEO satellites + 3 IGSO satellites + 24 MEO satellites

Stations 233 stations as distributed in Fig. 1

Code noise 0.3 m

Phase noise 0.3 cm

Sampling 30 s

Satellite orbit Tangential and Normal with Fixed

12-hour periodic error of 3 cm

Satellite clock 0.03 ns white noise

Relativistic effect IERS

Earth rotation ECI Corrected in ECEF

PCO/PCV Null

Ionosphere IGS final GIM product IGSG Null

Troposphere SAASTAMOINEN model and GMF mapping function

DCB/UPD Null

Receiver clock Zero mean white noise White noise

Ambiguity Zero mean constant Random constant

Software PANDA FUSING
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in this experiment since the “true integer value” for each 
ambiguity (or their linear combination) is exactly “0” as 
simulated. Thus, we can only talk about the concept of 
“correctly fixed ambiguity” for strong constraints, i.e., 
FAR and PAR constraints.

Figure 2 shows the number of correctly and falsely fixed 
NL with their correct rate of FAR and MICAR in the 
first 30 min. Since the FAR is a special case of MICAR, 
MICAR will fix more NL than FAR. In this period, FAR 
gives 5.79 fixed NL per epoch on average with 5.11 cor-
rect ones (88.2%), while MICAR gives 9.31 fixed NL with 
8.02 correct ones (86.2%), and extra 0.21 NL constrained 
by the BIE part. Concerning the correct rate, the MICAR 
performs better than FAR during the first few minutes, 
and both of their correct rates are lower than 60%. Later 
FAR exceeds MICAR, and their correct rates are nearly 
90% for both.

Figure  3 shows the convergence sequences at 95% 
confidence level of FAR (blue) and MICAR (red) in the 
first 30 min. As we can see, the convergence is acceler-
ated with MICAR. Taking the threshold of 5  cm as an 
example, the vertical component takes 21.5 min and 18.5 

min for convergence with FAR and MICAR, respectively. 
While the horizontal component takes 23.5 min and 
18.0 min for convergence with FAR and MICAR, respec-
tively. Moreover, Table  2 shows the Root Mean Square 
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(RMS) error of two methods in the last 30 min, where the 
positioning sequence has already converged. Although 
in most epochs the correct rate of FAR exceeds that of 
MICAR, this does not result in the precision of position-
ing. Instead, thanks to more correctly fixed ambiguities, 
MICAR performs slightly better in positioning.

Conclusion
In this study, we derive a concise estimate formula of the 
variance of the Gaussian case BIE estimator, dominated 
by the variance of the float solution and the probability 
distribution of the integer solution candidates.

With this, an algorithm, MICAR was put forward to 
unify FAR and PAR solution in a single BIE estimator. 
MICAR uses a maximal linearly independent group to 
divide the ambiguities into two parts and apply differ-
ent transformations to them. We gave two versions of 
MICAR with the same essence but from different aspects. 
As was demonstrated, FAR and PAR solutions are special 
cases of MICAR.

In the experiment, we utilize simulated data to com-
pare the performance of MICAR and FAR. Generally, 
MICAR correctly fixes 57% more NL ambiguities than 
FAR, resulting in a significant enhancement in position-
ing performance. Concerning the positioning conver-
gence with the threshold of 5 cm at 95% confidence level 
as an example, it takes 21.5 min and 18.5 min for vertical 
convergence with FAR and MICAR, respectively. While it 
takes 23.5 min and 18.0 min for horizontal convergence 
with FAR and MICAR, respectively. In addition, when 
the positioning sequence converges, MICAR reduces the 
root mean square of the positioning errors by 9.8% in 
horizontal directions and 3.5% in vertical direction.

Appendix A: Proof of Eq. (8)
From Eq. (7) we have ā =

m
∑

i=1

Pi(â) · ǎi , differentiating it

Let

Then

(20)

dā =

m
∑

i=1

dPi(â) · ǎi

=

m
∑

i=1

ǎi
∂Pi(â)

∂â
T

dâ

Ni = exp

(

−
1

2
�â − ǎi�

2
Qâ
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Fig. 3  Convergence sequences in 95% confidence level with all the experimental samples over the first 30 min for vertical (left panel) 
and horizontal (right panel), respectively

Table 2  The Root Mean Square (RMS) of the last 30 min of each 
convergence sequence at confidence level of 95%

Method RMS of different positioning directions 
(cm)

Horizontal direction Vertical 
direction

MICAR​ 2.68 3.31

FAR 2.97 3.43
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So we have

Taking the derivatives of Ni , we have

Substituting (22) into (21), we have

Pi(â) =
Ni

m
∑

j=1

Nj

(21)
∂Pi(â)

∂âT
=

∂Ni

∂âT

k
∑

j=1

Nj − Ni

k
∑

j=1

∂Nj

∂âT

(

m
∑

j=1

Nj

)2

(22)
∂Ni

∂â
T
=

∂ exp(− 1
2�â − ǎi�

2
Qâ

)

∂â
T

= −Ni(â − ǎi)
TQ−1

â
.

(23)

∂Pi(â)

∂â
T

=

∂Ni

∂âT

m
∑

j=1

Nj − Ni

m
∑

j=1

∂Nj

∂âT

(

m
∑

j=1

Nj

)2

=

−Ni(â − ǎi)
TQ−1

â

m
∑

j=1

Nj + Ni

k
∑

j=1

Nj(â − ǎj)
TQ−1

â

(

m
∑

j=1

Nj

)2

=

ǎi
T

m
∑

j=1

Nj −
m
∑

j=1

Njǎ
T
j

(

m
∑

j=1

Nj

)2
NiQ

−1
â

=

ǎi
T

m
∑

j=1

Pj(â)−
m
∑

j=1

Pj(â)ǎ
T
j

(

m
∑

j=1

Pj(â)

)2
Pi(â)Q

−1
â

= (ǎi − ā)TPi(â)Q
−1
â

The last equation is based on the fact that

and

Then

Now we have obtained the first order approximation 
ā ≈ â+

dā

dâ
T
· ε where ε is the error of â . According to 

the law of error propagation, we have

Q.E.D.

m
∑

j=1

Pj(â) = 1

ā =

m
∑

j=1

ǎjPj(â)

(24)

m
∑

i=1
ǎi

∂Pi(â)
∂âT

=

m
∑

i=1
ǎi(ǎi − ā)TPi(â)Q−1

â

=

( m
∑

i=1

(

Pi(â)ǎiǎiT
)

− āāT
)

Q−1
â

=

(

E(aaT|â,Qâ)− E(a|â,Qâ)E(a|â,Qâ)
T
)

Q−1
â

= Qa|âQ
−1
â

(25)
Qā ≈

(

m
∑

i=1

ǎi
∂Pi(â)

∂â
T

)

Qâ

(

m
∑

i=1

ǎi
∂Pi(â)

∂â
T

)T

= Qa|âQ
−1
â

QT
a|â

Appendix B: Example
In order to enhance readers’ understanding, here we pre-
sent an example from the simulation data to concretely 
demonstrate the MICAR algorithm. Suppose we have the 
float ambiguity solution

â =
�

−0.2969 −3.4934 −3.4065 −2.6495 −0.6531 −2.8687 0.0620 −0.7806 0.4633
�T

Qâ =































0.4979 − 0.2520 0.4182 − 0.4109 − 0.1387 0.6874 − 0.2148 − 0.3445 0.3081

−0.2520 1.9161 0.9552 1.7689 0.6737 0.6137 0.5699 0.7523 − 0.3094

0.4182 0.9552 1.5046 0.3040 − 0.3265 1.2634 − 0.6848 0.0822 − 0.1393

−0.4109 1.7689 0.3040 2.0557 1.2167 0.2172 1.3466 0.7954 − 0.1046

−0.1387 0.6737 − 0.3265 1.2167 1.1826 0.0446 1.4677 0.3005 0.3262

0.6874 0.6137 1.2634 0.2172 0.0446 1.4881 − 0.1626 − 0.1673 0.3043

−0.2148 0.5699 − 0.6848 1.3466 1.4677 − 0.1626 1.8849 0.3111 0.4483

−0.3445 0.7523 0.0822 0.7954 0.3005 − 0.1673 0.3111 0.4297 − 0.2579

0.3081 − 0.3094 − 0.1393 − 0.1046 0.3262 0.3043 0.4483 − 0.2579 0.4372






























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First, from the ratio test, we can obtain a subset a and the 
corresponding approximate posterior probabilities given 
by Table 3.

With this, we obtain ā and Qa|â . Then, from (8) we have

Let Qā =
(

qT1 qT2 · · · qTn
)T , where qi are row vectors of 

Qā . By calculation we have that {q1, q2, q3, q8} is an MLIS 
of the row vectors of Qā.

Then by taking projection, we have

Qā =































0.0038 − 0.0482 − 0.0215 − 0.0496 − 0.0242 − 0.019 − 0.0256 − 0.0192 0.0025

−0.0482 0.6419 0.2868 0.6619 0.3269 0.2586 0.3469 0.2546 − 0.0282

−0.2151 0.2868 0.1282 0.1022 − 0.2411 − 0.2715 − 0.4257 0.1137 − 0.3997

0.3376 0.6619 0.2958 1.0698 1.1116 1.0413 1.5195 0.2624 0.7455

0.5565 0.3269 0.1461 0.9180 1.3284 1.2938 1.9196 0.1295 1.1477

0.1745 0.2586 0.1156 0.4605 0.5194 0.4921 0.7213 0.1024 0.3764

0.9423 0.3469 0.1551 1.3259 2.1132 2.0765 3.0922 0.1374 1.9214

−0.0192 0.2546 0.1137 0.2624 0.1295 0.1024 0.1374 0.1010 − 0.0113

0.3897 − 0.0282 − 0.0125 0.3583 0.7605 0.7636 1.1470 − 0.0114 0.7762































B







q1
q2
q3
q8






=











q4
q5
q6
q7
q9











where

Let

Then, we obtain

B =











−1 − 2 2 0
−2 − 2 3 0
−2 − 1 1 0
−3 − 3 5 0
−2 − 1 2 0











T =

























1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
−1 − 2 2 1 0 0 0 0 0
−2 − 2 3 0 1 0 0 0 0
−2 − 1 1 0 0 1 0 0 0
−3 − 3 5 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
−2 − 1 2 0 0 0 0 0 1

























QTā =

























0.0038 − 0.0482 − 0.0215 0 0 0 0 − 0.0192 0
−0.0482 0.6419 0.2868 0 0 0 0 0.2545 0
−0.2151 0.2868 0.1282 0 0 0 0 0.1137 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

−0.0192 0.2545 0.1137 0 0 0 0 0.1010 0
0 0 0 0 0 0 0 0 0

























Table 3  The integer candidates and posterior probabilities

i ǎi Pi(â)

1 0 −1 −2 0 1 −1 2 0 1 0.99869571802598866

2 1 −8 −5 −7 −2 −3 −1 −3 2 0.00065485699544514059

3 −1 −5 −4 −5 −3 −5 −3 −1 −1 0.00033659200325458858

4 0 −3 −3 −2 0 −2 1 −1 1 0.00017589634099994113

5 0 −7 −5 −6 −2 −4 −1 −2 1 0.00013693663431163909
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For the PAR part, from (18) we have

Since Tǎ1 =
(

0 −1 −2 −2 −3 −2 −5 0 −2
)T , we 

have c0 =
(

−2 −3 −2 −5 −2
)T.

For the BIE part, by calculation, the sum of the 1, 2, 3, 
and 8th diagonal elements of QTā is 0.8749, while that 
of TQâ is 4.3483 (as is mentioned, we can calculate it 
directly by the corresponding elements in Qâ ). Thus, 
the BIE validation passes, and the constraint is given as
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