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Abstract
The rapid advancement of artificial intelligence (AI), coupled with the utilization of aerial images from Unmanned Aerial Vehicles (UAVs), presents

a significant opportunity to enhance precision agriculture for crop classification. This is vital to meet the rising global food demand. In this study,

the effectiveness of 8-layer AlexNet, a Convolutional Neural Network (CNN) variant was investigated for automatic crop classification. A DJI Mavic

UAV was employed to capture high-resolution images of a mixed-crop farm while adopting an iterative training approach for both AlexNet and

the conventional CNN model. Comparison based on performance was done between these models across various training epochs to assess the

impact  of  training  epochs  on  the  model's  performance.  Findings  from  this  study  consistently  demonstrated  that  AlexNet  outperformed  the

conventional  CNN throughout all  epochs.  The conventional  CNN achieved its  highest performance at  60 epochs,  with training and validation

accuracies of 62.83% and 46.98%, respectively. In contrast, AlexNet reached peak training and validation accuracies of 99.25% and 71.81% at 50

epochs but  exhibited a  slight  drop at  60 epochs due to overfitting.  Remarkably,  a  strong positive correlation between AlexNet's  training and

validation  accuracies  was  observed,  unlike  in  the  conventional  CNN.  The  research  also  highlighted  AlexNet's  potential  to  generalize  its  crop

classification accuracy to datasets beyond its training domain, with a caution to implement early stopping mechanisms to prevent overfitting.

The findings of this study reinforce the role of deep learning and remotely sensed data in precision agriculture.
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 Introduction

By  2030,  global  population  growth  is  expected  to  have
grown close to  9  billion,  and this  will  consequentially  increase
global  demand  for  food[1].  Unfortunately,  destructive  natural
disasters  such  as  floods  and  drought,  and  climate  change
impacts  are  gradually  becoming huge threats  to  food security
on  local  and  national  scales[2].  Hence,  to  ensure  food  security,
there  is  a  need  to  have  timely  and  reliable  information  about
the location,  health,  extent,  type,  and yield  of  crops[3−5].  Accu-
rate  and  timely  crop  classification  can  produce  basic  data  for
various  applications  required  for  sustaining  adequate  food
production. This includes forecasting of crop yield, assessment
of food security, and crop area estimation.

Crop  classification,  an  integral  part  of  precision  agriculture,
consists of the identification of different crop types planted on
an  agricultural  farmland.  In  precision  agriculture,  crop  classi-
fication  is  necessary  for  automated  crop  health  and  growth
monitoring,  precision  fertilization,  yield  estimation,  and
prediction[6,7].  Unlike  the  manual  and  physical  contact
approaches  (expert  estimation)  of  identifying  and  classifying
crop  types  on  a  farmland,  automated  crop  classification  using
remote  sensing-based  technologies  reduces  time  and  labour
costs and has higher accuracies[8,9].

The  recent  evolution  of  Remote  Sensing  (RS)  involving  the
introduction of Unmanned Aerial Vehicles (UAVs) for earth and
environmental  studies  has  brought  about  notable  advance-
ment  in  scientific  studies,  especially  in  the  field  of  precision

agriculture[10].  The  use  of  this  technology  has  proved  very
beneficial by providing significant results for periodic and accu-
rate  croplands  monitoring,  extraction  of  information  about
crop  phenology,  crop  health,  crop  types,  and  yield  estimation
over small and large areas[11−13].

Hyperspectral  and  multispectral  remote  sensing  has  been  a
popular  technique  for  classifying  crops  in  recent  years  due  to
the fine spectral response to crop attributes[14]. Different analy-
tical and experimental approaches have been used by different
authors  for  achieving  this  aim.  Using  time-series  UAV  images,
some  studies  utilized  vegetation  index  to  recognize  and  clas-
sify crop planting area and vegetation[15,16]. More sophisticated
methods  involving temporal  feature  extraction approach such
as  pre-defined  mathematical  models  are  also  used  in  various
crop  classification  studies  involving  the  use  of  UAV  images[17].
Using these approaches based on temporal feature extraction,
remarkable  performance  in  crop  classification  has  been
recorded. However, most of the studies indicated some imper-
fections that hampered the reliability of the outputs. Generally,
these  approaches  usually  rely  on  expert's  experience  and
domain  knowledge  which  often  lead  to  information  loss,  and
hence,  limit  the  reliability  of  feature  extractors  and  effective-
ness of the crop classification processes[18,19].

The  concept  of  artificial  intelligence  (AI)  in  image  classifica-
tion  and  automatic  feature  identification  and  extraction  is
developing and becoming an important method in a variety of
disciplines[20,21]. Machine Learning (ML) and Deep Learning (DL)
are two major interwoven parts of artificial intelligence, and are
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also  referred  to  as  Machine  Intelligence  (MI),  has  recently
become research topical in many fields concerned with obtain-
ing  highest  possible  accuracy  for  an  effective  and  informed
decision-making[22].  Though,  there  is  a  very  thin  line  between
ML  and  DL,  various  studies  have  distinguished  their  approach
of  application.  ML  algorithms  have  excellent  generalization
strength  and  are  mostly  compatible  for  tackling  nonlinear
problems[17].  Based  on  their  manageable  degree  of  accuracy,
studies  such  as  the  one  by  Lu  et  al.[23] employed  both  pixel-
based  and  image-based  K-Nearest  Neighbour  (KNN)  algo-
rithms  combined  with  Landsat-8  images  to  classify  different
land  cover  types  in  China.  The  results  of  the  study  revealed
about  90%  classification  accuracy.  To  achieve  better  accuracy
Juan et  al.[24] recommended stacking of  multiple ML classifiers
as  this  can  produce  a  higher  advantage  in  crop  classification.
Based  on  these  ensemble  classifications,  Löw  et  al.[25] inte-
grated  random  forest  and  SVM  models  for  mapping  multiple
crops  in  Uzbekistan.  The  study  involved  analyzing  multispec-
tral  remotely  sensed  images  and  the  mapping  using  these
models  yielded  an  accuracy  of  approximately  95%,  exemplify-
ing  the  possibility  of  achieving  higher  classification  accuracy
when models are combined compared to when a single classi-
fier is used. Other studies have also evaluated the performance
of  various  ML  models  for  classifying  different  crops  on  large
and  small  extent  of  land[26−28].  Efficiency  of  ML  algorithms  for
classifying  different  crops  is  hampered  by  many  factors.  For
example, classical ML algorithms such as Random Forest,  KNN,
and SVM depend on feature selection where there is a need to
design  feature  extractors  which  mostly  perform  optimally  on
small  databases but fail  on larger and varied data[8].  Also, inte-
grating  these  algorithms  makes  computation,  training,  and
other  processes  more  cumbersome,  consuming  more  storage
space,  and  often  requires  sophisticated  computer  systems  for
implementation.

On  the  other  hand,  DL  algorithms  are  recognized  as  a  reli-
able  approach for  analysing remote sensing data  such as  UAV
images[29].  In  classification  studies,  remote  sensing  data  has
become  highly  relevant  by  greatly  benefiting  from  DL  algo-
rithms due to their flexibility in feature automation, representa-
tion via end-to-end  procedure,  and  automatic  feature  extrac-
tion[30,31].  Based  on  these  unique  characteristics,  DL  models
(different networks and structures)  have been utilized for crop
type mapping/classification and crop yield monitoring.

Convolutional  Neural  Networks  (CNN)  is  one  of  the  most
popular  and  utilized  DL  networks[32−34].  Recently,  because  of
CNN,  DL  has  become  more  popular.  Compared  to  earlier
modeling systems, the conventional CNN automatically detects
significant features without human supervision which makes it
more  popularly  used  or  implemented[35].  Conventional  CNN-
architecture  consists  of  three  layers  which  are  the  convolve
layer, Rectified Linear unit (ReLu), and pooling layer[36]. Its major
role is  to track and capture data having similar  features to the
conventional  feed-forward  neural  network.  Each  image  is
submitted through the layers until a loss function is achieved at
the top layer[37].  Feature extractions from an image are usually
performed  by  using  image  patches  and  filters  that  progress
over the input image in the convolve layer.

Many studies have employed conventional CNN architecture
for  classification  studies.  For  example,  Zhao  et  al.[38] assessed
five different DL models for  classifying croplands.  The findings
of  the  study  show  the  high  effectiveness  of  1-D  CNN  for

classifying  crops.  Ji  et  al.[39] developed  a  3-D  CNN  model  for
automatically classifying crops using spatio-temporal remotely
sensed  images.  The  developed  network  was  fine-tuned  using
an  active  learning  technique  for  increasing  the  labeling  accu-
racy. Comparing the outputs of the study with a 2-D CNN classi-
fier,  the  findings  established  that  the  proposed  classifier
performed  efficiently  and  with  higher  accuracy.  Generally,
previous studies have established that DL models having CNN-
based architectures yield high accuracy for image classification
and object  detection (which are  the  major  ingredient  for  crop
type classification[40,41]. Such algorithms or models make use of
convolutional filters on an image to extract important features
for  understanding the object  of  interest  in  the image with the
help of  convolutional  operations  covering key properties  such
as  local  connection,  parameters  (weight)  sharing,  and  transla-
tion  equi-variance[42].  Pandey  and  Jain [43]presented  a  new
conjugated dense CNN (CD-CNN) algorithm having a new acti-
vation  function  tagged  SL-ReLU  for  multiple  crop  calibration
from  UAV-captured  RGB  images.  The  developed  CD-CNN  inte-
grates data fusion and feature map extraction process. SL-ReLU,
a dense block architecture served as an activation function for
the purpose of mitigating the chance of unbounded convolved
output  and  gradient  explosion.  The  proposed  CD-CNN
achieved a strong distinguishing capability from several classes
of crops. Experimental results show that the proposed module
achieved an accuracy of 96.2% for the used data. A recent study
by  Kalita  et  al.[44] also  established  the  possibility  of  obtaining
very  high  crop  type  classification  accuracy  (up  to  99%)  with
CNN-based  classifiers  using  UAV-acquired  images,  especially
when two or more of such models are combined (ensembled).

The  architecture  of  ML  models  is  a  vital  consideration  in
improving  their  performance  for  different  applications.  In  the
past  decades,  several  CNN  architectures  have  been  presented
as an improvement on the conventional CNN structure[45]. Such
modifications  of  the  conventional  architecture  include  para-
meter  optimizations,  structural  reformulation  and  regulation,
among  others.  Among  the  most  famous  conventional  CNN
modified models  include AlexNet,  a  high-resolution (HR)  three
dimensional  (in  the  context  of  input  data  structures)  CNN
model  variant  specifically  developed  for  image  classification
tasks, etc.[35].

AlexNet is an example of CNN-based model structures which
have  been  given  very  little  attention  for  image  classification
and  recognition,  especially  in  the  field  of  crop  type  classifica-
tion.  On  the  other  hand,  various  studies  have  established  the
smartness  and  effectiveness  of  AlexNet  in  recognizing  and
identifying  other  features  of  remotely  sensed  data.  Khan  et
al.[46] applied this  algorithm for classifying plant disease which
was  introduced  as  the  encoder  to  encode  an  image  into  a
compact representation as the graphical features. A prediction
model  CNN  was  selected  as  a  decoder  which  performed  the
plant  diseases  classification.  AlexNet  in  this  study  was  trained
using  stochastic  gradient  descent  which  makes  the  training
stage very easy. The output of the study revealed that AlexNet
is capable of detecting and recognizing rice diseases and pests
with an accuracy of over 96%. This makes the model an impor-
tant  advisory  or  early  warning  tool.  Also,  Pauline  et  al.[47]

applied AlexNet for classifying vegetation (including weed and
Chinese cabbage) to detect weeds for accurate smart spraying
solution.  This  study  used  UAV-acquired  images  which  were
pre-processed and subsequently segmented into crop, soil, and
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weed classes using simple linear iterative clustering super-pixel
algorithm.  These  segmented  images  were  subsequently  used
to  build  AlexNet  classifier.  The  accuracy  of  this  classification
was  assessed  by  comparing  it  with  the  output  from  Random
Forest classifier which established that the CNN-based classifier
achieved a higher overall accuracy (92.4%) than random forest
(86.2%).  Lv  et  al.[48] also  implemented  AlexNet  for  identifying
maize lead disease.

The  aim  of  this  study  is  to  assess  CNN-based  AlexNet's  per-
formance  for  crop  type  classification  and  identification  using
a  UAV  image  covering  a  mixed  small-scale  agricultural  farm.
Generally,  the  objectives  of  the  study  includes  the  acquisition
of  high  resolution  UAV  captured  images,  setting  up,  testing,
and  training  the  CNN-based  AlexNet  structure  using  seg-
mented pre-processed images. Though the aim of this study is
built around AlexNet, to assess the effectiveness of its classifica-
tion  process  (degree  of  success  and  error),  conventional  CNN
architecture was also implemented for crop type classification.
Therefore, this study also presents a comparative analysis of the
performance  of  the  conventional  CNN  and  AlexNet  model  for
crop classification.

 Methodology

The study involved the acquisition of  data,  preparation,  and
pre-processing  of  the  data,  analysis  and  performance  evalua-
tion  of  AlexNet  model.  The  preparation  and  pre-processing
stage  involved  in  building  the  AlexNet  and  CNN  architecture,
training  and  testing  the  dataset  while  the  results  and  analysis
stage  involved  comparison  between  CNN  and  the  AlexNet
model and efficiency evaluation of AlexNet's performance.

Figure  1 shows  a  schematic  layout  of  the  sequential
methods employed in this study.

 Study area
The area for this study is a 21-hectare mixed cropping farm-

land  situated  in  Garatu,  a  rural  community  within  the  Bosso
Local Government of Minna, Niger State, Nigeria. The farmland
is the property of the Federal University of Technology, Minna,
Nigeria.  Geographically,  it  falls  within  the  projected  coordi-
nates  of  1047238mN-1054988mN and 220424m-217077mE,  as
illustrated in Fig. 2.

Generally,  vegetation  type  in  the  study  area  is  classified  as
Guinea Savannah which is characterized by the presence of few
scattered trees and dense grass cover.  Annual  rainfall  distribu-
tion in the location represents a tropical wet and dry or savan-
nah climate (Aw). The district's yearly temperature is 33 °C and
it is 4.04% higher than Nigeria's average. The host local govern-
ment receives about 130.0 mm of precipitation and has 151.08
rainy days (about 42% of the time) annually.

Specifically, the 21-hectare mixed farm has five crops grown
on it: maize, groundnut, yam, cassava, and soyabeans.

 Data acquisition
Before the actual flight mission, 20 evenly distributed ground

control  points  were  established  across  the  study  area  –  this  is
known as pre-marking. A differential global positioning system
(DGPS)  receiver,  operating  in  a  real-time  kinematic  mode  was
used  for  the  control  establishment.  These  established  points
were marked with a white rectangular material for easy identifi-
cation on the captured images.

The actual image data acquisition was done with a DJI Mavic
quad-rotor  drone (Fig.  3)  equipped with a  12MP CMOS sensor
and an f/2.8 lens having a 35 mm equivalent focal length of 24
mm.  The  flight  mission  contains  parameters  such  as  flight
speed of 22 mph. An average ground sampling distance (GSD)
of 22.2 mm was designed into the flight plan to cover the study
region.  The  lower  the  GSD  of  a  flight  mission,  the  higher  the
resolution which has  a  direct  influence on the accuracy  of  the
study.  Other flight parameters include flying height of  30 m, 5
m/s as the average speed, while forward and end overlaps were
respectively  fixed  as  75%  and  65%  to  achieve  higher  image
conjugate accuracy. A total of 1,488 images were taken to cover
the  entire  area.  Dronedeploy  installed  on  a  smartphone  was
used  for  the  flight  planning  and  launch. Tables  1 and 2 show
the flight specifications and camera specifications, respectively.

 Data processing
 Software used

The software packages used in this study for data processing,
model  training,  and  implementation,  output  analysis  and
presentation are listed as follows:

(a) Agisoft Metashape: Used for orthorectification of acquired
UAV images.
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(b)  Kaggle:  CNN  and  AlexNet  models  were  developed
through source codes on kaggle online platform. These custom
source codes and available frameworks such as tensor flow and
keras  were  used  for  the  model's  learning  and  implementation
(transfer learning). The platform also yielded evaluation metrics
such  as  training  accuracy  and  loss,  validation  loss,  validation
accuracy.

 UAV image processing
Before feeding the AlexNet system with captured images for

training and implementation,  the raw images were first  ortho-
rectified. The ortho-rectification process in succession involved
the  computation  of  key  points  (using  shift-invariant  feature
transform  (SIFT)  model)  required  for  automatically  extracting
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Fig. 2    The study area in Garatu Minna, Niger State, Nigeria[28].

 

Fig.  3    DJI  Mavic  drone  (Source: https://dronelife.com/2018/01/
23/dji-mavic-air, Malek Murison).

 

Table 1.    Flight specifications.

Parameters Specifications Remark

Number of rotors 4 Indirectly ensures no omission/gap in captured images
GSD 22.2 mm This helped to achieve a better image resolution
Mission time 94:17 min This is the total time taken for the drone to take off, cover the area of interest and return back
Battery 4,000 mAh Capacity of the drone's battery – has a direct impact on cost and time of the flight
Flight direction −50 °C
Number of batteries used 6 The life cycle of a fully charged battery of the drone is less than 16 min, hence, six were used for

the flight
Flying altitude 30 m Selected to ensure desired high spatial resolution is achieved

Flying velocity 5 ms−1 Velocity set in agreement with the desired image quality
Flight date August, 2019
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conjugate  points  (similar  points  on  consecutive  and  over-
lapping  images)  and  computing  matches.  The  images  were
then  calibrated  before  proceeding  to  the  generation  of  point
cloud  mesh.  Generation  of  the  point  cloud  mesh  involved
bundle block adjustments (based on tie  points  and the identi-
fied  ground  control  points  on  the  images).  After  this,  the
orthophotos were then extracted. These ortho-rectified images
are subsequently referred to as photographs or images fed into
the ML systems.

 Data sorting and resampling
To  increase  the  accuracy  of  categorized  images  and  ensure

that  all  photographs  were  correctly  labeled,  individual  data
making up the acquired dataset were labeled automatically by
lines  of  self-developed  source  codes.  These  different  data
include images of the crops present in the sub-mapped area of
interest. The AlexNet layer's input image to be considered were
all  ensured  to  be  224  ×  224  pixels  in  size,  a  process  tagged
resampling.  As  a  result,  the batch size  was  set  to  32 and all  of
the  photographs  had  to  be  resized.  The  resampled  images
were made to undergo a series of operations including shifting,
shearing,  zooming,  and  flipping  to  have  a  refined  and  redun-
dant  version  of  the  images.  It  is  during  this  stage  that  image
feature  extraction  was  implemented  for  the  image  feature
extraction process.

 Model preparation
The structure of the AlexNet model was reassembled before

model  training.  This  included specifying some training-related
parameters  such  as  the  optimizer,  learning  rate,  and  metrics.
The fundamental  components  that  allow the network  to  work
on the data are the optimizer, cost, and loss functions. Adam is
the  optimizer  applied  to  this  model,  and  its  learning  rate  is
0.0001.  This  is  significant  for  our  investigation  since  it  boosts
training  accuracy  and  monitors  validation  loss  to  minimize
over-fitting.

 AlexNet and CNN: implementation architecture
The  basic  architecture  of  a  CNN  consists  of  several  layers,

including  convolutional,  pooling,  and  fully  connected  layers.
The input to a CNN is an image, which is fed into the first layer,
the convolutional layer. The convolutional layer applies a set of
filters to the input image to extract features, such as edges and
corners.  Convolutional filters are typically small  in size, such as
3  ×  3  or  5  ×  5,  and  slide  across  the  input  image  to  produce  a
feature map.

The output of the convolutional layer is then passed through
a  non-linear  activation  function,  such  as  Rectified  Linear  Unit
(ReLU),  which  introduces  non-linearity  to  the  model.  The
output of the activation function is then passed through a pool-
ing  layer,  which  reduces  the  spatial  dimensions  of  the  feature
map  while  retaining  the  most  important  features.  The  most

common  pooling  operation  is  max  pooling,  which  selects  the
maximum value within a small window.

The  deep  convolutional  neural  network  architecture  known
as AlexNet was developed in 2012 by Krizhevsky et al.[49]. It was
the  winning  submission  in  that  year's  ImageNet  Large  Scale
Visual  Recognition  Competition  (ILSVRC),  a  contest  to  assess
how  well  computer  vision  algorithms  performed  on  object
detection tasks.

Eight  layers  make  up  AlexNet,  comprising  three  fully  linked
layers  and  five  convolutional  layers.  It  was  trained  using  the
ImageNet  dataset,  which  comprises  more  than  one  million
photos divided into 1,000 different categories and has over 60
million  parameters.  AlexNet's  design  makes  use  of  dropout
regularization,  overlapping  pooling,  and  ReLU  as  activation
functions.  AlexNet  and  CNN  have  been  used  to  identify  and
classify crops in this study.

 Training process
Training of AlexNet requires a large amount of data to ensure

optimum  performance  of  the  training  and  consequentially
amplifies  the  accuracy  of  the  implementation  (classification)
stage.  Extraction  of  features  is  a  technique  used  to  extract
paramount  features  (usually  targeted  objects  or  different
features)  from  the  images,  providing  sufficient  and  required
amount  of  data  for  the  model  to  train  so  that  the  model  can
generalize unseen (which can be regarded as redundant or less
important features) data more effectively.

During the training stage, we examined the characteristics of
the two models (AlexNet and CNN) and their hyperparameters.
The training on the  graphics  process  unit  (GPU)  was  executed
for  30  epochs  which  is  the  number  of  cycles  or  times  each
dataset  was  used  iteratively  during  the  training  process.  In
other words,  this means that the model has gone through the
entire  dataset  30  times  with  each epoch updating its  parame-
ters to minimize possible errors in classification due to data loss
and hence, improve the accuracy of the training data. The train-
ing process took about 2.73 h over 30 epochs for 32 batches of
the  dataset.  In  a  bid  to  improve  and  assess  the  effect  of  the
training dataset on the classification accuracy, the process was
repeated for 40, 50, and 60 training epochs.

 AlexNet performance refinement
 Activation function

Activation  functions  help  the  neural  network  to  use  impor-
tant  datasets  while  irrelevant  ones  are  suppressed.  Further-
more,  activation functions decide whether  a  neuron has  to  be
activated or ignored. This implies that it will decide whether the
neuron's input to the network is important for the targeted aim
or not, in the process of prediction by performing some mathe-
matical  operations.  Generally,  there  are  three  types  of  activa-
tion functions; binary step function, linear, and non-linear acti-
vation function.

AlexNet  and  other  deep  neural  networks  must  have  activa-
tion  functions.  By  providing  the  network  with  non-linearity,
they  make  it  possible  for  it  to  model  complex  interactions
between  inputs  and  outputs.  Each  neuron  in  the  network
generates  an  activation  or  output  by  applying  the  activation
function to its output.

AlexNet makes use of  the ReLU activation function,  a  piece-
wise linear  function,  which has  become a well-liked choice for
DL networks.

 

Table 2.    Camera specifications.

Parameters Specifications

Model Mavic 1
Sensor 94:17 min
Resolution Sensor type CMOS
Resolution 1.0 cm/px
F-stop f/2.8
ISO 100
Focal length 3.5 mm
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Equation (1) is an expression of the ReLU function:

F (x) = max(0, x) (1)
where, x is  the  input.  By  interpretation,  it  means  that  the
activation  function  would  output  0  whenever  the  input  is  less
than 0 or yields the input for the next process if it is greater than 0.
The ReLU function is simple and computationally effective, and it
has been shown to work well  in practice.  This  was used for  fine-
tuning  the  performance  of  the  AlexNet  model  during
classification.

 Optimization function
The  optimization  function  used  by  AlexNet  is  stochastic

gradient  descent  (SGD),  a  popular  DL  optimization  technique.
Optimization attempts to minimize the loss function of a neural
network by shifting the weights of the network in the direction
of  the  loss  function's  negative  gradient.  After  calculating  the
gradient  of  the  loss  function  for  a  short  batch  of  training
samples, the weights of the network are changed using SGD, an
iterative  optimization  technique.  In  AlexNet,  momentum  is
incorporated  into  the  SGD  approach,  which  aids  in  accelerat-
ing convergence and reducing oscillations during the optimiza-
tion stage.  The momentum term increases  the  current  update
by  a  part  of  the  previous  update  by  accumulating  the  gradi-
ents from previous iterations. As a result, the updates are softer,
and  noisy  gradients  have  less  of  an  impact.  Another  adjust-
ment used in AlexNet is learning rate decay, which reduces the
learning rate over time to reduce overshooting the minimum of
the  loss  function.  This  is  crucial  because  a  high  learning  rate
might  result  in  the  optimization  process  diverging  or  oscillat-
ing  and  a  loss  function  for  a  neural  network  that  is  extremely
non-convex with lots of local minimums.

 Cost and loss function
The cost function is the objective function that AlexNet uses

to calculate the difference between the actual  class labels and
the predicted class probabilities. It deals with the entire dataset.
The cost function, which also instructs the optimization process
to  minimize  expenses,  is  used  to  evaluate  the  performance  of
the neural network.

On the other hand, the loss function estimates the error for a
single  data  point  and  not  for  the  entire  dataset.  AlexNet  uses
the  cross-entropy  loss  function.  Cross-entropy  is  a  measure  of
the difference between two probability distributions for a given
random  variable  or  set  of  events.  The  cross-entropy  loss
computes the discrepancy between the predicted class proba-
bilities and the actual class labels by averaging the logarithmic
losses  over  all  training  samples.  Mathematically,  cross-entropy
loss is described in Eqn (2):

L =
−sum (yi × log (pi)+ (1− yi) × log (1− pi))

N
(2)

where, N is  the  number  of  training  samples, yi is  the  true  class
label of sample i, pi is  the predicted class probability of sample i,
and log() is the natural logarithm function.

 Performance metrics
As  important  as  it  is  to  train  a  learning  model,  it  is  equally

important to evaluate how well the model performs on unseen
data[46]. Selection of suitable and effective metric(s) depends on
the kind of task to be carried out.  Usually,  AlexNet accuracy or
performance  metrics  determines  the  proportion  of  accurately
identified  samples  to  the  dataset's  overall  sample  count.  Few
terms used in model evaluation include:

Accuracy which is calculated as follows:

Accuracy =
No. o f correctly identi f ied samples (n)

Total samples (N)
(3)

The  accuracy  measure  is  a  frequently  used  evaluation  for
classification problems in ML and DL, hence, it was adopted for
this  study.  Here,  correctly  identified  samples  were  hereafter
regarded as actual output while the incorrect outputs (outputs
mis-identified  or  mis-classified  to  be  carrying  a  target  crop
type) were hereafter regarded as predicted output.

Other  evaluation  metrics  include  precision,  recall,  the  F1
score, and the ROC area. Intersection over union (IOU) is based
on  Jaccard  index  evaluating  the  overlap  between  two  bound-
ing boxes. However, both the ground truth bounding box and
predicted  bounding  box  is  required.  It  determines  whether  a
detection  is  positive  or  negative.  If Bp and Bgt are  areas  of
predicted  box  and  ground  truth  bounding  box,  respectively,
then IOU can be given as:

IOU =
Bp∩Bgt

Bp∪Bgt
(4)

True Positive (TP) is arrived at when IOU detection is greater
than or equal to predefined threshold.

TP = IOU detection ≥ threshold (5)
False positive and True positive are like conditional probabil-

ity  functions  and  their  sum  equals  to  1.  Hence,  Eqn  (4)  is  an
expression of false positive.

FP = IOU detection < threshold (6)
Precision as a measure of model evaluation can therefore be

expressed as proportion of TP to all detections:

Precision =
TP

TP+FP
(7)

Recall quantifies  the  ratio  of  actual  positive  samples  to  the
total number of true positive samples. It can also be referred to
as the percentages of TP detected among all ground truths. It is
calculated as[50]:

Recall =
TP

TP+FN
(8)

Where, FN (false negatives) is arrived at whenever a ground truth
is not detected from classification outputs.

Precision  and  recall  are  balanced  by  the  F1  score,  which  is
the  harmonic  mean  of  both  measurements.  It  can  be  calcu-
lated mathematically as follows:

F1 score =
2× (Precision × Recall)

Precision+Recall
(9)

The  AUC-ROC  shows  the  true  positive  rate  against  the  false
positive  rate  and  analyses  how  well  the  neural  network
performs at various projected probability levels.

The accuracy metric in AlexNet is frequently used in conjunc-
tion  with  the  top-k  error  rate,  which  counts  the  samples  in
which  the  true  class  label  does  not  fall  within  the  top  k
predicted  probability.  The top − k error  rate  can  be  written
mathematically as:

Top− kerrorrate =

No. o f samples w not among the k
highest predicted probabilities

Total no. o f samples
(10)

where, k is  a  hyperparameter  that  can  be  set  to  any  value.  The
value set for this study was AlexNet is k = 5; it is usually the default
value.
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 Comparative assessment of AlexNet and CNN for
crop classification

This  assessment  cut  across  the  efficiency  of  the  training
procedure  (model's  correctness  during  training  and  validation
phases),  and  the  accuracy  of  the  model  by  comparing  its
predicted  output  with  the  actual  output  of  the  training  data
(similar  to  Eqn  (3)).  The  accuracy  of  the  model  is  assessed  by
comparing the predicted output with the actual  output of  the
training data. This accuracy was computed as a ratio of the total
number  of  samples  predicted  to  that  which  was  correctly
predicted.

The assessment was performed over the validation dataset is
to  evaluate  each  model's  ability  to  correctly  classify  different
crop  samples  when  dataset  alien  to  its  training  process  are  to
be processed.

 Results and discussion

 AlexNet and CNN training outputs
To  identify  the  dataset  and  extract  unique  features  for  the

classification process, the model architecture reads the dataset
and  filters  it  through  its  parameters.  With  an  early  stop  call-
back,  the  training  was  carried  out  using  the  set  hyperparame-
ters highlighted in Table 3.

As seen in Table 4, for the AlexNet model and 32 batches, the
training process took an average of 2.73 h over 30 epochs, 4.15
h  over  40  epochs,  5.58  h  over  50  epochs,  and  finally  over  60
epochs,  the  training  process  took  an  average  of  6.85  h  for  32
batches.

When  analyzing  42  images  at  once,  the  network  adjusts  its
weights  and  biases  based  on  the  estimated  discrepancy
between  the  predicted  and  observed  outcomes.  Each  batch's
loss  and  accuracy  are  computed,  and  then  averaged  through-
out  the  entire  period.  The  difference  between  the  predicted
and actual outputs is represented by the loss.

For  the  first  epoch,  the  obtained  accuracy  was  0.1695  and
the  initial  loss  was  2.0428.  This  reveals  that  at  the  first  epoch,
AlexNet could not perform beyond 17% accuracy which is also
seen in the initial loss. However, after a series of iterations, the
performance was noticed to have been optimized by minimiz-
ing  all  associated  errors.  After  the  50th epoch,  the  accuracy
obtained was over 99% and the loss dropped to 0.0250 (almost
negligible).

For the CNN model and 32 batches, the training process took
an average of 2.8 h over 30 epochs, 4.17 h over 40 epochs, 5.45
h  over  50  epochs,  and  finally  over  60  epochs,  the  training
process took an average of 6.67 h. A complete repetition of the
neural  network's  training  data  is  represented  by  each  epoch.
The  neural  network  learns  to  produce  more  accurate  predic-
tions  by  adjusting  the  weights  of  its  neurons  while  it  is  being
trained. The accuracy and loss measures are used to assess how
well  the  neural  network  performed  throughout  the  training
phase.

Also,  for  every  epoch,  aside  the  training  loss  and  accuracy,
the  training  process  reports  the  validation  loss  and  accuracy.
The  validation  parameters  are  used  to  assess  how  well  the
model  performs  on  data  that  was  not  presented  during  train-
ing.  The  training  loss  and  training  accuracy  in  the  first  epoch
are  2.0453  and  0.1643,  respectively.  The  validation  accuracy  is
0.2148, and the validation loss is  2.0423 in the first epoch. The
training  procedure  aims  to  maximize  accuracy  while  minimiz-
ing loss on both training and validation data. The training accu-
racy at 60 epochs is 0.6283 after the training session, while the
training loss is 1.0200. The validation accuracy is 0.4698 and the
validation loss is 1.4237.

Table 4 shows a summary of both AlexNet and CNN training
performance statistic.

 AlexNet accuracy assessment
As  shown  in Table  4,  when  trained  in  over  30  epochs,  the

model  classified  the  crops  with  an  accuracy  of  93.73%  (which
implies  about  94%  of  the  training  dataset  was  correctly
predicted)  and  61.07%  on  the  validation  data  at  this  same
epoch. Also, in the course of training the dataset at 40 epochs,
the model's  classification accuracy was 94.84% on the training
data and 67.79% of  the validation data.  At  50 epochs,  AlexNet
accurately  predicted  the  expected  output  with  99.25%  accu-
racy  on  the  training  data  and  71.81%  accuracy  on  the  valida-
tion  data.  This  can  be  interpreted  as  it  correctly  predicted
99.25% of the results of the data. When trained over 60 epochs,
the model's accuracy of predicting the right output was 98.58%
on the training data and 65.77% on the validation data.

These trends show that as the training and validation epochs
increase  from  30  to  50,  AlexNet's  performance  increases.
Conversely, towards the 60th epoch, its accuracy began to drop
both  on  the  training  dataset  and  validation  dataset.  This  is
remarkable  and  can  be  tied  to  the  complexity  of  the  training
process.  More  explicitly,  it  means  that  training  the  model
beyond  50  epochs  would  cause  an  overfitting  which  implies
that the performance of the model during training may be rela-
tively  acceptable  but  the  model  would  perform  poorly  when
fed with datasets outside the training dataset.

 Convolutional neural network evaluation of
accuracy

In Table  4,  for  CNN,  at  30  epochs,  the  model  correctly
predicted  the  outputs  with  44.29%  accuracy  over  training

 

Table 3.    Hyperparameters for training sample analysis.

Hyperparameters AlexNet CNN

Depth 8 layers 5 layers
Image size 224 × 224 224 × 224
Batch size 32 32
No of epochs 30−60 30−60
Learning rate 0.0001 0.0001

 

Table 4.    AlexNet and CNN training performance.

Epochs
Time taken (h) Training accuracy (%) Training loss Validation Accuracy (%) Validation loss

AlexNet CNN AlexNet CNN AlexNet CNN AlexNet CNN AlexNet CNN

30 2.73 2.04 93.7% 44.3% 2.043 2.045 61% 21% 1.262 1.682
40 4.15 4.17 94.8% 54.2% 0.071 1.408 68% 39% 0.988 1.482
50 5.58 5.45 99.3% 54.5% 0.025 1.208 72% 42% 1.745 1.435
60 6.85 6.67 98.6% 63% 0.079 1.020 66% 47% 1.730 1.424
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dataset.  At  this  epoch,  the model  accurately  predicted 21.48%
of  the  validation  data.  As  the  number  of  epochs  rises  or
increases, the performance of the model also improved signifi-
cantly. In this study, it was observed that the training accuracy
rose  to  0.6283  at  60  epoch.  The  validation  accuracy  exhibited
the same pattern improving from 0.2483 at 30 epochs to 0.6577
at 60 epochs.

 Statistical interpretation of classification results
 Epoch-wise performance characteristics of AlexNet and
CNN
 Behaviour at 30 epochs

Table  5 shows  a  summary  of  each  model's  behavior  during
classification at 30 epochs. Over training data, the results show
that AlexNet performed better than CNN by almost 210% while
over validation data, the relative performance was almost 285%
better  than  that  of  CNN.  However,  when  fed  with  validation
dataset, AlexNet's accuracy was 46% lower than that of its train-
ing process accuracy. While for CNN, its validation accuracy was
about 52% lower than that of its training accuracy. This implies
that  when  trained  at  30  epochs,  AlexNet  can  yield  relatively

better results over validation datasets (dataset outside its train-
ing domain) than the CNN model.

Figure  4 shows  a  graphical  representation  of  AlexNet's
behavior  over  30  epochs  with  the  training  and  validation
dataset.  For  the  model  accuracy  (Fig.  4a),  the  model's  training
accuracy  rises  gradually  from  0  to  15  epochs,  then  begins  to
fluctuate from 15 to 30. Over the validation dataset, the model's
accuracy,  increases  on  an  average  from  0  towards  30  epochs,
however, fluctuates all along from 0 to 30 epochs. The model's
loss  over  training  and  validation  datasets  is  similar  and  oppo-
site to that of its accuracy for both training and validation.

For  the  CNN  algorithm  (Fig.  5a & b),  its  training  accuracy
shows  a  stable  and  gradual  increase  as  the  number  of  epoch
goes from 0 to 30. However,  this is not the same for its valida-
tion accuracy. This implies that for CNN, training accuracy may
not be a perfect determinant for the expected behaviour of the
model  when  fed  with  validation  datasets  or  any  other  dataset
outside its training domain. This same pattern is observed in its
model loss.

 Behaviour at 40 epochs
As  seen  in Table  6,  over  training  datasets,  AlexNet  outper-

formed  (almost  two-times  better)  CNN  and  the  same  relative
rating  was  recorded  over  the  validation  dataset.  Compared  to
its  training  accuracy,  AlexNet's  validation  accuracy  was  29%
lower (derived from ratio of the difference between the model's
training  and  validation  accuracy  over  the  training  accuracy
multiplied  by  100).  Compared  with  30  epochs,  results  of  the
classification  shows  that  validation  accuracy  of  AlexNet
increased at 40 epochs. Though an increase was observed, the

 

Table 5.    AlexNet and CNN behaviour over 30 epochs.

Model AlexNet CNN

Training accuracy 93.73% 44.29%
Validation accuracy 61.07% 21.48%
Validation loss 1.2616 1.6816

 

1.0

0.8

0.6

0.4

0.2

0

Model Accuracy

0 5 10 15 20 25 30
Epochs

0 5 10 15 20 25 30
Epochs

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

Model Loss

A
cc

u
ra

cy

L
o
ss

Train

Validation

Train

Validation

a b

Fig. 4    (a) AlexNet training and validation accuracy. (b) AlexNet training and validation loss.
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Fig. 5    (a) CNN training and validation accuracy. (b) CNN training and validation loss.
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rate of refinement in its training accuracy from 30 to 40 epochs
was not similar to that of its validation. While for CNN, its valida-
tion  accuracy  was  about  28%  lower  than  that  of  its  training
accuracy. This implies that when trained at 40 epochs, AlexNet
can yield relatively  better  results  over  validation datasets  than
the CNN model.

AlexNet shows an irregular rise from 0 to 40 epochs for train-
ing  performance  accuracy  (Fig.  6a),  while  an  irregular  pattern
was also noticed over the validation dataset. Specifically, at the
33rd epoch,  there  was  a  very  poor  performance  accuracy
noticed  over  the  training  dataset  and  validation  dataset.  This
shows  that  the  model  failed  at  the  33rd epoch.  As  usual,  the
behavior  of  the  validation  and  training  loss  was  noticed  to  be
similar  and  opposite  to  that  of  their  respective  accuracy
(Fig. 6b).

On the other hand, at 40 epochs (see Fig. 7a), CNN's training
accuracy  consistently  increased  from  0  to  40  with  almost  no
fluctuation noticed.  This  was  not  the same over  the validation
dataset  which  showed  a  fluctuating  and  irregular  behavior
from  0  to  40  epochs.  These  behaviours  were  also  noticed  for
training  and  validation  loss  (see Fig.  7b.)  which  is  consistent
with the performance characteristics observed at 30 epochs.

 Behaviour at 50 epochs
Table  7 presents  the  obtained  results  of  both  AlexNet  and

CNN's training and validation accuracy and their respective loss
at 50 epochs while still  maintaining the same batch size of 32.
At this epoch, compared to its training accuracy, AlexNet's vali-
dation accuracy was 28% lower. The model shows a 4% and 5%
increase  in  training  and  validation  accuracy  respectively  from
40 epochs to 50 epochs. These values are near 0 and show that
the model's learning is either becoming poor or ineffective due
to redundant data

Figure  8a shows  AlexNet's  behavior  through  50  epochs  of
training and validation. At the beginning of the iteration, there
was a linear increase in training and validation accuracy, and a
fluctuation that featured a drop in accuracy was noticed at 13th

epoch.  After  this,  almost  a  linear  but  very  slow  increase  (no
tangible  rise)  in  both  training  and  validation  accuracy  was
recorded.  However,  just  as  in  30  and  40  epochs,  there  is  a
strong correlation between the behavior of training and valida-
tion  accuracy.  The  same  characteristics  were  also  recorded  for
the training and validation loss.

On the other  hand,  for  the CNN model,  the validation accu-
racy  was  23%  lower  than  its  training.  Relative  to  its  perfor-
mance  at  40  epochs,  the  CNN  model's  training  accuracy
improved by less than 1% at 50 epochs and over the validation
dataset, the increase was over 8%. These results reveal that the
CNN-based model  is  getting saturated with training and there
is a need to update some parameters such as the quality of the
training dataset in the implementation phase.

 

Table 6.    AlexNet and CNN behaviour at 40 epochs.

Model AlexNet CNN

Training accuracy 94.84% 54.23%
Validation accuracy 67.79% 38.93%
Validation loss 0.9879 1.4820
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Fig. 6    (a) AlexNet training and validation accuracy (at 40 epochs). (b) AlexNet training and validation loss (at 40 epochs).
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Fig. 7    (a) CNN training and validation accuracy (at 40 epochs). (b) CNN training and validation loss (at 40 epochs).
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Remarkably,  as  observed  in Fig.  9a and b,  contrary  to  other
epochs  earlier  considered,  the  pattern  of  behavior  of  the  CNN
model for both training and validation accuracy was noticed to
be  similar.  Though  there  was  only  a  slight  increase,  the
behaviour of the model's accuracy for both training and valida-
tion  was  more  linear  and  stable  except  for  a  few  moments  of
fluctuation.

 Behaviour at 60 epochs
From Table  8,  AlexNet's  validation accuracy  is  noticed to  be

33%  lower  than  that  of  its  training  accuracy.  −0.7%  and  −8%
drop  in  training  and  validation  accuracies,  respectively,  were
noticed  in  its  performance  when  compared  with  50  epochs.
Compared  to  the  increasing  performance  observed  from  30
through 50 epochs, the accuracies became poorer, with signifi-
cant  negative  effects  on  the  validation  phase.  This  behavior,
however, suggests that there is a need for early stoppage after
50 epochs of training.

As  observed  in Fig.  10a and b,  there  was  a  fast  increase  in
both training and validation accuracy from 0 to 20th epoch, and
a very slow increase and fluctuating behavior noticed for both

the  training  and  validation  accuracy  of  the  AlexNet  model.
Similar  to  previous  observations,  there  was  a  strong  and  posi-
tive  correlation  between  the  model's  training  and  validation
accuracies while loss also exhibited similar patterns.

For  the  CNN  model,  the  validation  accuracy  was  noticed  to
be  25%  lower  than  that  of  its  training  accuracy.  Compared  to
previous  epochs,  at  60  epochs,  the  CNN  model's  performance
for both training and validation was relatively better with 13%
and 10% respective increase in  training and validation accura-
cies than at  50 epochs.  This  shows that CNN, unlike AlexNet is
still learning from the training as the epoch increases, hence, its
structure can be said to be capable of handling overfitting until
this epoch.

Figure 11a shows a positive and linear increase in the CNN's
training  accuracy  while  a  fluctuating  behavior  was  noticed  for
its validation accuracy at this epoch. These two patterns exhibit
dissimilarity,  indicating  that  training  accuracy  should  not  be
used as a sole indicator for assessing validation accuracy. These
patterns  are  also  noticed  for  training  and  validation  loss
(Fig. 11b).

 Conclusions

The primary objective of  this  study was to evaluate the effi-
cacy  of  AlexNet,  a  Convolutional  Neural  Network  (CNN)-based
model  variant,  in  identifying  a  particular  crop  in  a  mixed  crop
farm  using  high-resolution  aerial  imagery  obtained  from  low-
altitude UAVs.

 

Table 7.    AlexNet and CNN behaviour at 50 epochs.

Model AlexNet CNN

Training accuracy 99.25% 54.53%
Validation accuracy 71.81% 42.28%
Validation loss 1.7448 1.4350

 

0 10 20 30 40 50
Epochs

0 10 20 30 40 50
Epochs

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0

1.0

0.8

0.6

0.4

0.2

0

A
cc

u
ra

cy

L
o
ss

Model Accuracy Model Loss

Train

Validation

Train

Validation

a b

Fig. 8    (a) AlexNet training and validation accuracy (at 50 epochs). (b) AlexNet training and validation loss (at 50 epochs).
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Fig. 9    (a) CNN training and validation accuracy (at 50 epochs). (b) CNN training and validation loss (at 50 epochs).
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The acquired aerial images were meticulously organized into
32  batches  to  optimize  computational  efficiency  during  data
processing. Training and validation of the AlexNet model were
conducted  following  a  similar  methodology  as  that  of  the
conventional  CNN,  allowing  for  a  comparative  analysis  of  the
two models.

It is a common expectation that, under well-defined learning
parameters,  the  performance  of  AI  algorithms  designed  for
image classification should exhibit improvement in both train-
ing  and  validation  accuracy  as  the  quantity  and  quality  of  the
training  dataset  increase.  To  assess  the  behaviour  of  these
models  during  training,  four  different  training  epochs  were
considered,  specifically  30,  40,  50,  and  60  epochs.  The  evalua-
tion criteria  were based on training and validation loss  as  well
as accuracy.

Throughout  all  the  epochs,  AlexNet  consistently  outper-
formed the CNN model in terms of both training and validation
datasets.  As  anticipated,  the  accuracies  of  AlexNet  increased
progressively  from  30  epochs  through  50  epochs,  but  a

decrease in accuracy was observed at 60 epochs, indicating the
onset  of  overfitting.  In  contrast,  while  CNN's  accuracies  were
not  as  high  as  AlexNet's,  they  demonstrated  a  continual
increase  as  the  number  of  epochs  increased,  suggesting  that
CNN's  architectural  design  allows  for  effective  learning  from
extensive data without suffering from the complexities of over-
fitting.

This  study  underscores  AlexNet's  capability  to  accurately
classify crops within a mixed vegetation field, particularly when
utilizing  high-resolution  UAV  images.  AlexNet  achieved  a
remarkable  maximum  training  accuracy  of  99.25%  and,  when
tested  on  datasets  outside  its  training  domain  (validation
dataset), attained a maximum accuracy of 71.81%, notably at 50
epochs.

The  findings  of  this  study  align  closely  with  the  research
conducted  by  Arya  et  al.[51],  which  also  compared  the  perfor-
mance of conventional CNN and AlexNet in detecting diseases
in potato leaves. Additionally, a recent study by Arya & Singh[52]

has  reported  findings  that  are  consistent  with  the  results
presented in this current work.

In light of the observed overfitting, we strongly recommend
implementing  early  stopping  techniques,  as  demonstrated  in
this  study  at  50  epochs,  or  modifying  classification  hyperpa-
rameters to optimize AlexNet's performance whenever overfit-
ting is detected. Further research efforts will be invested in the
investigation of the performance of AlexNet in classifying crop

 

Table 8.    AlexNet and CNN behaviour at 60 epochs.

Model AlexNet CNN

Training accuracy 98.58% 62.83%
Validation accuracy 65.77% 46.98%
Validation loss 1.7301 1.4237
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Fig. 10    (a) AlexNet training and validation accuracy (at 60 epochs). (b) AlexNet training and validation loss (at 60 epochs).
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Fig. 11    (a) CNN training and validation accuracy (at 60 epochs). (b) CNN training and validation loss (at 60 epochs).
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plantations  beyond  two  categories.  It  will  involve  optimizing
the  pre-processing  stage  and  refining  hyperparameter  defini-
tions  to  ensure  that  the  model  can  be  trained  with  the  maxi-
mum  available  dataset  and  iterations,  thereby  advancing  the
field of crop classification in precision agriculture.
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