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Coastal wetlands, crucial for global biodiversity and climate adaptation, provide essential ecosystem 
services such as carbon storage and flood protection. These vital areas are increasingly threatened by 
both natural and human-induced changes, prompting the need for advanced monitoring techniques. This 
study employs unmanned aerial systems (UASs) equipped with light detection and ranging (LiDAR) and 
multispectral sensors to survey diverse wetland types across 8 sites in North Carolina. Utilizing high-
resolution elevation data and detailed vegetation analysis, coupled with sophisticated machine learning 
algorithms, we achieved differentiated and highly precise classifications of wetland types. Classification 
accuracies varied by type, with estuarine intertidal emergent wetlands showing the highest classification 
accuracies due to less complex vegetation structure and clearer spectral signatures, especially when 
collections account for tidal influence. In contrast, palustrine forested and scrub–shrub wetlands presented 
lower accuracies, often due to the denser, mixed, and more complex vegetation structure and variable 
inundation levels, which complicate spectral differentiation and ground returns from LiDAR sensors. 
Overall, our integrated UAS-derived LiDAR and multispectral approach not only enhances the accuracy of 
wetland mapping but also offers a scalable, efficient, and cost-effective method that substantially advances 
conservation efforts and informs policy-making for coastal resilience. By demonstrating the usefulness 
of small-scale aerial data collection in ecological mapping, this study highlights the transformative 
potential of merging advanced technologies in environmental monitoring, underscoring their critical role 
in sustaining natural habitats and aiding in climate change mitigation strategies.

Introduction

Coastal wetlands, situated at the interface between terrestrial 
and aquatic ecosystems, are either seasonally or permanently 
inundated [1]. These dynamic environments undergo constant 
transformations due to river erosion and deposition, vegetation 
growth, and human activities [2]. Recognized as one of the most 
productive ecosystems, coastal wetlands provide critical habitats 
for diverse plant and wildlife species [3,4]. Their significant 
capacity to sequester carbon categorizes them as crucial carbon 
sinks [4]. Notably, salt marshes within these wetlands can achieve 
biomass productivities as high as 3,000 g C/m2/year, surpassing 
some agricultural outputs [5]. Beyond carbon sequestration, 
coastal wetlands buffer against storm runoff, enhance water qual-
ity, filter agricultural and industrial pollutants, recharge ground-
water reserves, and bolster biodiversity [4]. They also offer 
aesthetic, spiritual, and recreational values [6] and are valued 

alongside tropical rainforests as economically pivotal ecosys-
tems, estimated at US $10,000 per hectare [6,7].

Despite their ecological significance, coastal wetlands face 
mounting threats from natural and anthropogenic stressors, 
including dredging, eutrophication, habitat fragmentation, urban 
development, and rising sea levels [4,7]. Historically, between 25 
and 50% of the world’s coastal wetlands were repurposed for agri-
culture or aquaculture in the 20th century, with forecasts suggesting 
an additional loss of 20 to 45% due to sea level rise this century [7].

Mapping and monitoring coastal wetlands pose significant 
challenges due to their complex spatial scales and periodic 
flooding, which restricts accessibility and complicates tradi-
tional surveying methods [8]. In particular, forested coastal 
wetlands are difficult to map because of their dense or overlap-
ping canopies [9] and the constant shift in tidal waters [10]. 
Initially, the US National Wetland Inventory (NWI) in the 
1970s and 1980s marked a significant advancement by utilizing 
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satellite technology, albeit at coarse spatial resolutions with 
extensive temporal intervals [2]. However, these data are now 
outdated and fail to capture smaller, fragmented wetlands, par-
ticularly in areas like North Carolina where wetlands constitute 
76.3% (3,100,703 acres) of the state’s land [11].

In recent years, advancements in airborne and satellite 
remote sensing, coupled with the increasing use of unoccupied 
aircraft systems (UAS), have significantly improved the map-
ping of coastal wetlands [12]. UAS enable the capture of high-
resolution imagery on demand, addressing the inefficiencies of 
historical wetland mapping methods. The advent of UAS has 
been spurred by technological advances in miniaturization and 
cost reduction, facilitating their use across various Earth sci-
ence applications [10]. Remote sensing now frequently achieves 
hyperspatial resolutions of less than 1 m2, enhancing the detail 
and accuracy of wetland classification and analysis [13].

The primary sensors employed in UAS-based analysis of 
coastal wetlands include multispectral and LiDAR (light detec-
tion and ranging) systems. Multispectral sensors are particularly 
effective for vegetation classification and soil moisture evaluation 
[14], while LiDAR sensors provide detailed elevation and vegeta-
tion structure data, essential for hydrological and ecological 
studies [15–19]. However, the accuracy of UAS-derived elevation 
data can vary, particularly in densely vegetated wetlands [20,21]. 
Despite these challenges, the integration of LiDAR and multi-
spectral data has proven beneficial in refining wetland classifica-
tions and enhancing the precision of ecological models [22,23].

Given the complexity and vast scale of UAS-collected LiDAR 
and multispectral datasets, machine learning algorithms have 
become a practical solution for classifying wetlands through 
either supervised or unsupervised methods [17,24–26]. Among 
these, random forests (RF) is favored for its high accuracy, abil-
ity to handle varied data types, and straightforward interpret-
ability [27–29]. The potential to fuse LiDAR and multispectral 
data in wetland classifications, assessing their comparative 
effectiveness, remains a crucial area of research and develop-
ment, calling for further case studies [20,30].

This study aims to quantify the metrics derived from UAS-
derived LiDAR point clouds and multispectral imagery across 
wetlands from palustrine to estuarine environments at 8 data col-
lection sites. We evaluated these metrics’ effectiveness in predicting 
the presence, extent, and types of wetlands. Utilizing LiDAR, we 
specifically aimed to address challenges in generating accurate 
surface models from imagery in sparsely vegetated areas [20,21]. 
We compared remotely sensed wetland delineations with tradi-
tional survey methods from the North Carolina Department of 
Transportation (NCDOT) and concurrent in situ ground reference 
point (GRP) data. Our research addresses 2 primary questions:

1. Can the integration of UAS-derived LiDAR topographic 
derivatives and canopy height data, along with multispectral imag-
ery, accurately classify coastal wetlands by functional type across 
varying coastal environments from palustrine to estuarine?

2. What are the most critical variables for predicting the 
presence of functional coastal wetlands along a gradient from 
salt marshes to freshwater and forested wetlands?

Materials and Methods

Study area and data collection platforms
We collected UAS LiDAR and multispectral data, along with 
in situ reference data, at 7 sites across the Atlantic Coastal Plain. 
These sites represent a gradient of wetland types from palustrine 

to riverine to estuarine along the southeastern coast of North 
Carolina (Fig. 1 and Table 1). Surveys were conducted once per 
site between May 2020 and February 2021. However, Masonboro 
Island—experiencing the largest tidal range in our study—was 
surveyed twice, during both low and high tide conditions, 
resulting in a total of 8 field surveys across 7 sites. The data 
spanned 4 coastal counties—Brunswick, New Hanover, and 
Pender—which are among the fastest growing in terms of 
human population on the North Carolina coast.

The wetland classifications used in this study adhere to frame-
works established at state, regional, and national levels [31], 
employing the Cowardin system, which was initially designed 
for inventorying U.S. wetlands and deep-water habitats, and later 
revised in 2013 [32]. While ecologically, deep-water habitats do 
not constitute wetlands, they are included in the classification as 
“permanently flooded lands lying below the deep-water bound-
ary of wetlands” to ensure broader applicability. The Cowardin 
hierarchy is organized into 5 main systems: marine, estuarine, 
riverine, lacustrine, and palustrine, each further divided into 
subsystems, classes, dominance types, and modifiers (Table 1). 
In this research, we use the class level to categorize wetland types, 
treating areas permanently flooded within these systems, such 
as unconsolidated bottom or shore, as water bodies.

The palustrine system, significant in southeastern North 
Carolina, typically comprises inland wetlands situated between 
the tidal estuarine and the nontidal riverine and lacustrine sys-
tems. Despite traditionally being nontidal, these areas are 
becoming increasingly tidal as sea levels rise, underscoring their 
dynamic nature.

For the 8 surveys at the 7 sites, the field data collection equip-
ment included a DJI Matrice 600 Pro equipped with a Quanergy 
LiDAR sensor, 2 Trimble RTK systems (an R8 for static collection 
and an R10 for GCP collection), and an eBee Plus RTK system 
fitted with a Parrot Sequoia multispectral camera (Fig. 2). 
Detailed descriptions of all equipment and survey methodologies 
are provided below.

UAS data collection and preprocessing for  
wetland mapping
For LiDAR data acquisition, we utilized the DJI Matrice 600 
Pro (M600 Pro), a 6-rotor UAS with an A3 Pro flight controller 

Fig. 1. Study area in southeastern NC showing the 8 collection locations across 4 
coastal counties.
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and Lightbridge 2 HD transmission, capable of reaching speeds 
up to 65 km/h. It was equipped with 6 TB48S batteries, enhanc-
ing its flight endurance. The UAS carried an 800-g Quanergy 
M8 LiDAR sensor alongside a Zenmuse X3 camera for in-flight 
video monitoring, crucial for ensuring operational safety. The 
Quanergy M8, an 8-laser scanner, boasts a 150-m range with 
5-cm accuracy, and features a comprehensive 360-degree hori-
zontal and 20-degree vertical field of view [9].

Parallelly, photogrammetric data were captured using a 1.3-kg 
eBee Plus RTK drone, integrated with a Parrot Sequoia multi-
spectral sensor, characterized by its 116-cm wingspan and the 
ability to cover extensive areas with a 2.5-cm ground sampling 
distance (GSD) at 122-m altitude. The eBee Plus RTK’s efficiency 
is underscored by its compatibility with FAA Part 107 regula-
tions, permitting flight durations up to 59 min. The Sequoia sen-
sor’s configuration includes 4 multispectral bands (green, red, 
red edge, and near-infrared) and a low-resolution RGB camera, 
which are pivotal for detailed vegetation analysis.

The operational protocol involved meticulous flight mission 
planning, including the strategic placement of ground control 
points (GCPs) within 15 m of flight paths to enhance the spatial 
accuracy of the collected data. GCPs, recorded using Trimble 
RTK systems (R8 for static GPS data and R10 for GCP collec-
tion), underpin the georeferencing accuracy of the ensuing 
models. On the day of operation, 1 × 1 m GCP targets were 
deployed at predetermined locations, their positions accurately 
documented with ~2-cm precision.

LiDAR preprocessing entailed an intricate workflow: kine-
matic corrections using NovAtel Inertial Explorer, laser point 
positioning and GCP-corrected point cloud generation in 
ScanLook PC, followed by noise removal and vertical accuracy 
assessment with Global Mapper’s LiDAR Quality Control tool 
and CloudCompare [18]. The processed LiDAR data facilitated 
the creation of comprehensive topographic models, including 
digital elevation models (DEMs) and digital surface models 

(DSMs), through ArcGIS Pro. These models served as founda-
tional layers for generating topographic and vegetation indices 
crucial for wetland delineation.

Similarly, the photogrammetric data underwent postpro-
cessed kinematic (PPK) correction in eMotion, followed by 
SfM-MVS processing in Pix4D Mapper Pro. This advanced pro-
cessing technique enabled the reconstruction of 3-dimensional 
(3D) landscapes from 2D images, leveraging the spatial geom-
etry captured from multiple vantage points [33–35]. The result-
ing georeferenced multispectral imagery, calibrated against the 
same GCPs used for LiDAR, yielded high-resolution reflectance 
rasters. These rasters were instrumental in computing vegetation 
and moisture indices [normalized difference vegetation index 
(NDVI), normalized difference red edge (NDRE), and nor-
malized difference water index (NDWI)], providing a nuanced 
understanding of the wetland ecosystems under study (Table 2).

Field collection—Habitat reference points
Two Trimble RTK systems were employed to collect static data 
during UAS flights. These included GCPs for correcting UAS 
data and habitat GRPs for training image classification models. 
To train the models, half of the habitat GRPs were randomly 
selected, with the remainder used for accuracy assessment. To 
mitigate locational bias, GRP sample locations were generated 
using NWI data as a reference. We randomly generated an aver-
age of 15 points per wetland class (with 3 to 5 classes typically 
present at each site) and 50 points for nonwetland areas using 
the Spatially Balanced Points tool in ArcGIS Pro. Due to the 
diversity within nonwetland areas—including upland grass, 
developed land, and open water—more habitat points were col-
lected in these areas compared to the wetland classes.

The randomly generated points were subsequently transferred 
to the Trimble R10 GNSS RTK GPS for field collection. On the 
day of the UAS flights, habitat GRPs were surveyed by navigating 
as close as possible to the generated points and collecting data 

Table 1. Wetland types, NWI codes, and descriptions characteristic of the wetlands found in the study area

Wetland type Wetland code Description

Estuarine intertidal emergent E2EM The estuarine system consists of deep-water tidal habitats and adjacent tidal 
wetlands that are usually semi-enclosed by land but have open access to the 
open ocean. This system is characterized by the presence of intertidal and 
emergent vegetation. In southeastern North Carolina, the E2EM wetlands are 
dominated by the saltmarsh species Spartina alterniflora and along the 
higher marsh edges Juncus roemerianus is found.

Palustrine forest PFO The palustrine system includes inland, nontidal wetlands characterized by 
the presence of bottomland hardwood swamp forests, dominated by 
Cypress, sweet gum, and black gum. Additionally, there are pine flatlands, 
most notably the longleaf pine, that dominate this forested wetland.

Palustrine emergent PEM The palustrine system includes inland, nontidal wetlands characterized by 
the presence of emergent vegetation in bogs and freshwater marshes, and 
this is the least prevalent wetland type.

Palustrine scrub–shrub PSS The palustrine system includes inland, nontidal wetlands characterized by 
the presence of scrub–shrub, which is woody vegetation less than 20 ft tall. 
In southeastern North Carolina, the dominant PSS is pocosin wetlands where 
there is poor drainage and dense vegetation such as evergreen yaupon and 
thorny vines.
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using the Topo method while also recording the corresponding 
wetland class. As is common in wetland mapping, many planned 
points were physically inaccessible due to challenging topog-
raphy, dense vegetation, or water inundation. These inacces-
sible points were documented during the fieldwork. Back in 
the laboratory, GRPs for wetland type and confidence level 
were determined using on-screen photointerpretation of 2020 
National Agriculture Imagery Program (NAIP) imagery and 
data collected by our eBee-equipped multispectral camera. The 
2020 true color NAIP imagery, available through the USDA’s 
data gateway (https://datagateway.nrcs.usda.gov/GDGHome_
DirectDownLoad.aspx), served as a valuable supplementary data 
source because it was approximately contemporary with our field 
surveys. Table 3 summarizes the general site characteristics, field-
work dates, and the number of GCPs and GRPs collected for 
each site, either directly in the field or through visual interpreta-
tion of NAIP and high-resolution multispectral imagery.

RF modeling and analysis
After ensuring that all data were resampled to a uniform spatial 
resolution of 0.3 m and properly aligned within the area of 
interest (AOI) of each collection site, we utilized the h2o pack-
age in RStudio [36,37]. Once the raster stacks were prepared, 
we applied the K-fold cross-validation (CV) method to the RF 
algorithm in this study (Fig. 3). CV is a resampling technique 
favored for its ability to evaluate the overall performance and 

stability of predictive models while preventing overfitting [38]. 
In our analysis, RF classification was executed using a 5-fold 
CV algorithm, trained with field-collected and visually inter-
preted GRPs [39,40]. The selection of this algorithm was influ-
enced by its favorable comparison with other machine learning 
algorithms, such as K-nearest neighbors (KNNs) and support 
vector machine (SVM) classifiers, in previous studies [41].

Initially, data for each site were randomly shuffled and 
divided into 5 equally sized folds. In the first run, we reserved 
the first fold as the testing set and used the remaining 4 folds 
for training a RF model. This model was then tested using the 
first fold to determine its classification accuracy. This procedure 
was repeated 4 additional times, cycling each fold as the testing 
set, which ultimately produced 5 RF models, each with a cor-
responding classification accuracy. The average and standard 
deviation of these 5 accuracies were calculated as key perfor-
mance metrics.

Two critical parameters for the RF models included the 
number of decision trees (ntree), set to a default of 500, and 
the number of variables to consider at each split (mtry), which 
was equal to the number of input predictors. With 13 predictors 
in total, we chose 4 variables per split, and the seed for ran-
domization was set at 1,122.

Post-processing activities involved generating prediction 
maps and calculating performance metrics. We computed 5 key 
model performance metrics: averaged overall accuracy, the 

Fig. 2. Data collection platforms used in this study consisted of (A) DJI Matrice 600 Pro equipped with the Quanergy M8 LiDAR sensor, (B) Trimble RTK R8 used for static 
collections, (C) Trimble RTK R10 along with 1 × 1 m GCP targets, and (D) fixed wing eBee Plus RTK equipped with the Parrot Sequoia multispectral sensor.
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standard deviation of accuracies, kappa coefficient, and class-
level sensitivity and specificity. These metrics were derived from 
the accuracies of the 5-fold CV method and a confusion matrix. 
Additionally, we used standard variable importance plots to 
assess and rank the significance of various classification variables 
based on their impact on model accuracy when excluded. This 
approach allowed us to identify and quantify the most influential 
variables in classifying coastal wetland types.

To facilitate comparisons across sites and rank the most 
impactful variables, variable scores (ranging from 0.0 to 1.0) 
were converted to ranks (1 to 13), highlighting variables with 
scores above 0.7 as particularly significant.

The RF prediction model for each surveyed site was pro-
duced in raster format and visualized using ArcGIS Pro. Last, 
we conducted an assessment of overall model accuracy using 
all predictors across all 8 sites and a spatial assessment of GRP 
allocation correctness by functional wetland class compared to 
the final classification output [42].

Results and Discussion

Field data collection accuracy
A fundamental aspect of this project was establishing a reliable 
foundation for accurate LiDAR data collection using a UAS 

platform. To determine the optimal flight altitude and degree 
of overlap between flight lines, we conducted multiple tests over 
a densely forested 30-acre site. Previous studies have indicated 
that flying at lower altitudes increases the spatial resolution of 
the data, albeit at the cost of longer flight times necessary to 
cover the area [43]. However, altitude has been identified as a 
critical parameter in UAS LiDAR data collection [44], and other 
studies suggest that the percentage of flight line overlap may 
be more significant than altitude in certain contexts [45].

In our experiments, we tested 3 different flight altitudes (50, 
60, and 65 m) and 3 percentages of overlap (10%, 25%, and 
50%). The results indicated that the percentage of overlap had 
a more substantial impact on the point density of UAS LiDAR 
data than the altitude, albeit with specific nuances. For densely 
forested areas, a flight altitude of 65 m with a 25% overlap was 
found to produce the most reliable and dense point clouds. In 
contrast, less vegetated or bare areas yielded the highest point 
density with a flight combination of 50-m altitude and 25% 
overlap. Consequently, we adopted a standardized flight alti-
tude of 60 m and an overlap of 25% for all our site surveys.

Table 4 details the accuracy data for each site, including the 
vertical accuracies [root mean square error in the z direction 
(RMSEz)] of the LiDAR point clouds relative to ground control 
and check points, as well as the horizontal (x, y) RMSE for the 

Table 2. Summary showing the predictors and response variables derived from the UAS-collected LiDAR and multispectral data

Raster layer Variable Data input Definition

1 DSM Digital surface model Max height elevation in meters (including 
vegetation and artificial objects) [68]

2 DEM Digital elevation model Ground elevation in meters (vegetation and 
artificial objects removed) [68]

3 sDEM Smoothed DEM Ground elevation in meters, where microtopo-
graphic noise is removed [69]

4 hDEM Hydro-condition DEM Hydro-conditioning resolves topographic 
depressions before modeling flow paths [70]

5 Aspect Aspect Compass direction of the steepest downhill 
gradient

6 Slope Slope The rate of change of elevation per DEM cell

7 Curvature Curvature Combined curvature value from PlanCurv and 
ProfileCurv

8 PlanCurv Plan curvature The horizontal curvature of the slope 
(Curvature) [71]

9 ProfileCurv Profile curvature The vertical curvature of the slope 
(Curvature) [71]

10 NDVI Normalized difference vegetation 

index (
NIR− RED)

(NIR+ RED)

Uses the contrast of vegetation between 
near-infrared and red light to calculate the 
relative biomass in an area [72]

11 NDWI Normalized difference water index 
(GREEN− NIR)

(GREEN+ NIR)

An index that is used to measure the water 
content in vegetation at the canopy level [73]

12 NDRE Normalized difference red edge 

index (
NIR− REDEdge)

(NIR+ REDedge)

Measures the relative chlorophyll in plants 
due to reflecting light [74]

13 CHM Canopy height model Maps the height of the canopy layer as a 
continuous function [75]
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collected multispectral imagery, all calculated in accordance 
with the American Society of Photogrammetry and Remote 
Sensing (ASPRS) guidelines for photogrammetry and LiDAR 
processing. All collected imagery and LiDAR data conformed 
to class A accuracy standards for photogrammetric work as 
stipulated by the ASPRS.

As anticipated, horizontal positioning demonstrated greater 
accuracy and precision compared to vertical measurements. 
The average horizontal dilution of precision (DOP) was below 
2 cm, which is considered excellent, and the standard deviation 
among the sites was notably low, indicating minimal variability 
in accuracy across different locations. Interestingly, sites with 
a higher number of GRPs and GCPs, such as Surf City and 
Masonboro, did not exhibit significantly better horizontal or 
vertical accuracies.

Functional wetland type classification accuracy
We conducted a quantitative comparison of model performance 
metrics—including overall accuracies, standard deviations of 
overall accuracies, kappa coefficients (κ), sensitivities, and speci-
ficities—and the prediction maps generated using hyperspatial 
UAS LiDAR (Quanergy M8), UAS-collected multispectral data 
(Parrot Sequoia), and habitat GRPs. These evaluations primarily 
focused on the functional wetland types addressed in this study. 
It was hypothesized that elevation data and vertical vegetation 
metrics derived from UAS LiDAR datasets would enhance 

wetland classification compared to relying solely on stereo-
photogrammetry-based DSM measures, especially when com-
bined with multispectral-derived indices [22,23,46–48].

The RF UAS classification model generally performed well 
across the 9 surveyed locations (Fig. 4). The estuarine site at 
Masonboro Island, characterized by an absence of dense forest 
canopy and where LiDAR data were collected at both low and 
high tides (but multispectral data only at low tide), demon-
strated the highest overall classification accuracy (85.62% with 
κ of 0.782 at high tide and 82.24% with κ of 0.731 at low tide). 
The next highest accuracy was recorded at St. James, primarily 
a palustrine forested and scrub–shrub site, with an accuracy of 
78.70% and a κ of 0.676. This performance is notable, especially 
given the tidal challenges associated with estuarine sites.

Conversely, the sites with the lowest classification accuracies 
faced more challenging conditions. Carolina Bay had the lowest 
accuracy at 70.59%, compounded by the smallest number of 
GRPs available for collection in the field and significant land 
cover changes relative to NWI data. Castle Bay, which includes 
dense forest and wetland environments as well as a golf course, 
recorded an accuracy of 66.46%. Both sites were hindered by 
difficult field conditions such as standing water, deep mud, 
inaccessible terrain, and private property, complicating the col-
lection of training and validation points.

Moreover, the Carolina Bay site, which was also the small-
est surveyed location, exhibited a large standard deviation and 

Table 3. Field site characteristics, wetland type, date field work was conducted, size of the UAS survey (in acres), number of GCPs, and 
number of GRPs collected at each site.

Site name
General  

characteristics Wetland type Survey date
Size 

(acres)
Number of 

GCPs

Number of 
GRPs collected 

in field
Total number 

of GRPs

St James Managed freshwater 
wetlands sur-
rounded by 
residential 
development

PFO, PSS 5/12/2020 178.0 8 24 108

Castle Bay Mixed managed 
wetlands and dense 
scrub/shrub

PFO, PEM, PSS 6/29/2020 164.2 7 34 172

River Rd Palustrine forest 
and estuarine salt 
marsh

PFO, PEM 10/3/2020 54.34 11 29 137

Surf City Estuarine salt marsh E2EM, PFO, PSS 11/6/2020 78.28 15 18 157

Masonboro High 
Tide

Marine and 
estuarine barrier 
island

E2EM 12/7/2020 109.98 17 43 153

Masonboro Low 
Tide

Marine and 
estuarine barrier 
island

E2EM 12/11/2020 109.98 17 43 153

Maysville Palustrine mixed 
forested wetlands

PFO 1/22/2021 43.80 9 27 81

Carolina Bay Mixed forested 
wetlands with 
degraded wetlands

PFO 2/23/2021 59.4 13 15 34
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a low kappa coefficient, likely due to discrepancies with the 
NWI data initially used to generate GRPs for field data col-
lection (see Fig. S2). When the model was applied to all sites 

combined using a large, consolidated training dataset, the 
overall accuracy reached 71.12%, with a kappa coefficient of 
0.6443.

Fig. 3. Data processing and analysis workflow, where circular boxes represent input and output files, and olive boxes represent processing steps. The diagram shows the 
13 predictor variables [CHM, DEM derivatives (9), and vegetation indices (3)] and reference habitat points (also known as GRPs, variable from site to site as indicated in 
Table 2) used in the final model.

Table 4. Site vertical accuracy (root mean square error) for both unconstrained and constrained UAS LiDAR point cloud horizontal accuracy 
for multispectral UAS imagery and RTK horizontal and vertical accuracies for the GCPs and GCPs

Site Name

LiDAR RMSEz 
(m) Uncon-

strained

LiDAR RMSEz 
(m) Con-
strained

Multispectral 
RMSE (m) X,Y

GCP horizon-
tal precision 

(m)
GCP vertical 

precision (m)

GRP horizon-
tal precision 

(m)
GRP vertical 

precision (m)

St James 0.187 0.34 0.024 0.008 0.013 0.012 0.02

Castle Bay 0.446 0.169 0.008 0.007 0.013 0.013 0.025

River Rd 1.971 0.049 0.043 0.009 0.02 0.010 0.014

Surf City 0.421 0.078 0.072 0.007 0.014 0.014 0.024

Masonboro 
High Tide

0.42 0.044 Not flown 0.004 0.008 0.009 0.014

Masonboro Low 
Tide

0.047 0.047 0.080 0.004 0.008 0.009 0.014

Maysville 0.445 0.051 0.083 0.011 0.016 0.012 0.019

Carolina Bay 0.03 0.03 0.013 0.005 0.008 0.007 0.014
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Although the accuracy metrics across the sites are not opti-
mal, kappa values exceeding 0.61 are deemed to indicate sub-
stantial agreement and are considered acceptable [49]. To 
further evaluate the accuracy of our model, we conducted a 
spatial accuracy assessment to determine the distribution of 
correctly assigned GRPs to the final functional wetland classes, 
as classified by the RF model [42]. This assessment yielded an 
impressive 95% overall accuracy across the surveyed sites 
(Fig. S1A to C). We will delve into the accuracies specific to 
each functional wetland class in the subsequent section.

Classification accuracy by functional wetland type
The post-classification accuracy assessment results for each 
functional wetland type are presented in Table 3. For detailed 
classification results across all habitat classes, including non-
wetland types, please refer to Table S1. The accuracy assessment 
is influenced by several factors: the predominant wetland type 
at the site, the relative distribution of each class within the site, 
and the number of GRPs in each class. Typically, classes that 
occupy smaller portions of the study areas, and thus have fewer 
GRPs, also exhibit lower accuracies.

In developing a land cover classification model, there is a 
critical juncture where the objective to achieve the most effective 
classification model for the project’s goals surpasses the feasible 
number of accuracy assessment points available. Initially, we 
tested a binary wetland/nonwetland classification model, which, 
given satisfactory accuracy results against field-delineated and 
NWI assessments, was expanded to include multiple wetland 
classes in our final models. The presence of a single nonwetland 

class created confusion due to the spectrum of bare to upland 
forested areas at our sites. To address this, we categorized the 
habitat GRPs into 2 classes—“nonwetland open” and “nonwet-
land vegetated”—if they were located in areas predominantly 
featuring bare ground. Although this reclassification signifi-
cantly reduced the number of nonwetland GRPs for these 
2 categories, it stabilized the performance of the classification 
model (Table 5).

Moreover, the complexity of vertical vegetation at each site 
markedly influenced the overall model classification results. 
Sites dominated by forested palustrine vegetation demonstrated 
the lowest classification accuracy, followed by scrub–shrub and 
emergent types. This finding aligns with previous research indi-
cating that mapping and classifying forested wetlands—including 
mangroves, which have received the bulk of attention, with less 
focus on palustrine forested wetlands—poses additional chal-
lenges in determining community composition and achieving 
high mapping accuracies [15–55].

The class-specific sensitivities and specificities for each site 
were generally higher than the overall model accuracy averaged 
across the 5 folds of the CV. However, certain wetland classes at 
some sites consistently exhibited low sensitivities. We hypothe-
size that these low sensitivities resulted from the limited extent 
of the training and testing areas. For instance, the area designated 
as palustrine scrub/shrub constituted only 0.58% of the total area 
covered across our study sites, suggesting that small areas with 
high vegetation complexity are more challenging to classify accu-
rately compared to larger areas, even when vegetation complexity 
and within-class heterogeneity remain constant [40].

Fig. 4. Overall model classification accuracy and kappa coefficients for the 8 sites surveyed.

D
ow

nloaded from
 https://spj.science.org on July 18, 2024

https://doi.org/10.34133/remotesensing.0169


Pricope et al. 2024 | https://doi.org/10.34133/remotesensing.0169 9

The quality and detail of the final prediction maps are influ-
enced by the spatial resolution of the data, the response vari-
ables, and the selected predictors. When juxtaposed with the 
most recent NWI data, our prediction maps displayed much 
more distinct and highly resolved wetland classes because of 
the hyperspatial resolution of the UAS data employed (Fig. 5).

In terms of classification accuracy for functional wetland 
classes, the estuarine intertidal emergent (E2EM) outperformed 
both palustrine forest (PFO) and palustrine scrub/shrub (PSS). 
E2EM achieved an average sensitivity of 81.95% and specificity 
of 93.19%, compared to 78.19% sensitivity and 85.62% specific-
ity for PFO, and 80.98% sensitivity and 93.42% specificity for 
PSS. These metrics for all 3 classes are significantly better than 
the overall classification accuracy.

The higher accuracy for E2EM is attributed to the absence of 
complex forest structures, which often hinder the model’s ability 
to distinguish between upland and wetland forests (Fig. 6). This 
challenge is evident at sites like River Road, Maysville, and 
Carolina Bay, where Palustrine Forest is the predominant wet-
land type and is interspersed with upland forested areas (Fig. 7).

Palustrine Scrub/Shrub mapping also presents difficulties 
due to its composition of shorter, woody plants, which can 
easily be confused with emergent wetlands and upland shrubs 
and grasslands. Despite these challenges, sites with extensive 
areas of PSS, such as St. James, Castle Bay, and River Road, 
displayed the highest accuracies for this class, albeit these are 
generally low at the class level [39] (Fig. 7).

Across the surveyed sites, the 3 wetland types—E2EM, PFO, 
and PSS—achieved class accuracies at or above the overall map 
accuracies. This indicates that the UAS LiDAR and multispec-
tral imagery, combined with the RF classification method, 
yielded satisfactory results for wetland mapping, even with a 
reduced number of GRPs overall at the class level (Table S1).

Variable importance metrics for functional wetland 
type mapping and classification
The second research objective was to identify the most crucial 
variables (and the minimum number of predictor variables) 
that contribute to the classification of Coastal Plain wetlands 
and reflect the characteristics of the surveyed areas. Variable 
importance plots, which show the ranking of variables based 
on the mean decrease in model accuracy, were used for this 
analysis (see Fig. S3). In Table 6, to facilitate comparison across 
all sites, we adopted the ranking of each variable rather than the 
score itself, allowing us to assess the consistency in the impor-
tance of each variable across different locations. Variables with 
lower rankings (e.g., 1 or 2) were deemed more important than 
those with higher rankings (e.g., 10, 11, and 12). Additionally, 
the column “Count above 0.7” illustrates how often variable 
scores exceeded 0.7, indicating that a high score does not always 
correspond to the highest ranking due to the potential presence 
of multiple high-scoring variables in a model. For instance, 
Castle Bay had only 2 variables, DSM and canopy height, scor-
ing above 0.7, whereas Masonboro LT had 6.

Table 5. Wetland class sensitivity, specificity, and user’s and producer’s accuracy for the 7 sites surveyed (8 total surveys)

Site name Wetland class Sensitivity Specificity User’s accuracy Producer’s accuracy Area (%)

St James Palustrine forested 73.81% 84.85% 75.61% 73.81% 30.63%

Palustrine scrub/shrub 78.95% 87.14% 76.92% 78.95% 49.20%

Castle Bay Palustrine forested 78.26% 86.09% 69.23% 78.26% 40.04%

Palustrine scrub/shrub 80.00% 95.21% 63.16% 80.00% 5.58%

Palustrine emergent 0.00% 100.00% 0.00% 0.00% 0.05%

River Road Palustrine forested 62.50% 85.26% 64.10% 62.50% 27.68%

Palustrine emergent 85.29% 91.09% 76.32% 85.29% 45.53%

Surf City Palustrine forested 85.29% 88.24% 67.44% 76.32% 33.22%

Estuarine intertidal 
emergent

80.00% 92.13% 73.68% 93.33% 29.05%

Palustrine scrub/shrub 84.00% 97.92% 62.50% 38.46% 1.46%

Masonboro-High Tide Estuarine intertidal 
emergent

82.93% 94.64% 85.00% 82.93% 41.07%

Masonboro-Low Tide Estuarine intertidal 
emergent

82.93% 92.79% 80.95% 82.93% 39.72%

Maysville Palustrine forested 80.00% 80.00% 64.52% 80.00% 36.71%

Carolina Bay Palustrine forested 89.29% 89.29% 25.00% 16.67% 9.91%

Average palustrine forested 
(N = 7)

78.19% 85.62% 60.98% 64.59% 29.70%

Average palustrine scrub/
shrub (N = 3)

80.98% 93.42% 67.53% 65.80% 18.75%

Average estuarine intertidal 
emergent (N = 3)

81.95% 93.19% 79.88% 86.40% 36.61%
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Fig. 5. Example model prediction (top panel) for the Surf City study site showing detailed wetland classes (palustrine forested, estuarine intertidal emergent, and palustrine 
scrub/shrub) compared with the NWI classification (bottom left) and the NC DOT wetland delineation (bottom right) created using traditional field methods.
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Using this ranking system, elevation variables derived from 
UAS LiDAR—such as DSM, DEM, smooth DEM, and hydro-
condition DEM—along with canopy height and vegetation indi-
ces (NDVI, NDRE, and NDWI) from multispectral imagery, 
consistently ranked within the top 5 across all sites (Table 6). 
The inclusion of multispectral imagery significantly enhanced 
the performance of the RF models, with NDVI and NDWI fre-
quently emerging as the top variables at most sites (6 and 5 
instances, respectively, out of 9 classification models). Conversely, 
hydrological variables like flow direction and flow accumulation 
were among the least important, leading to their exclusion in 
the final model runs. The 3 curvature variables and aspect were 
generally not useful, with the exception of curvature at Castle 
Bay, which ranked fourth but scored below 0.7 (0.64).

These findings align with the general characteristics of the 
Coastal Plain area—predominantly flat landscapes covered by 
hydrophilic vegetation. Interestingly, canopy height exhibited 
significant variability in its importance, scoring above 0.7 at 3 
sites but ranking as the least important (rank = 13) at 3 others, 
including Masonboro Island, which is dominated by low veg-
etation (emergent and scattered patches of upland grass and 
scrub/shrub). Although canopy height was not a top variable 
at sites dominated by salt marshes and low emergent vegetation, 
its role in assessing vegetation heights or microtopography as 
proxies for above-ground biomass or sediment accumulation 
rates in marshes is critically important and remains an area for 
further research [20,56]. At sites like Maysville and Castle Bay, 
where forest cover is complex and includes a mix of forested 

wetland and upland forest, canopy height data from LiDAR 
proved crucial, echoing findings by Zhang [57], Richardson 
et al. [58], and Albarnaz et al. [59]. When combined with both 
optical RGB and multispectral imagery, canopy height models 
(CHMs) significantly improve classification accuracies, regard-
less of the modeling framework employed [60]. Moreover, other 
LiDAR-derived variables like DSM and smoothed DEMs 
were also important, closely followed by DEMs and hydro-
conditioned DEMs across the palustrine to estuarine gradient 
we surveyed.

Challenges, limitations, and future directions in 
functional wetland type mapping and classification
As noted by Guo et al. [30] in their comprehensive review of over 
5,000 papers on wetland remote sensing, various techniques, 
datasets, and approaches have been employed for over 50 years 
to map, delineate, and classify wetlands, with a particular focus 
on coastal wetlands. They identified 2 main frontiers: the integra-
tion of multiple data sources, particularly optical and LiDAR 
data, to enhance classification accuracies, and the development 
of data collection methodologies, especially those that improve 
spatial and spectral resolution. Our study advances both frontiers 
by developing a methodology that combines UAS-collected and 
field reference data, integrating optical and multispectral col-
lections with concurrent high-accuracy LiDAR surveys to 
derive functional wetland classifications across a range of wet-
land types.

Fig. 6. Estuarine intertidal emergent wetland type dominated classifications for Masonboro high and low tide and Surf City study sites.
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One limitation of this research was the difficulty in accessing 
most of the sampled areas and the challenge of supplementing 
our field-collected training data with high-quality response vari-
able data, hindered by the outdated NWI wetland extent data 
for North Carolina. Accurate and up-to-date GRPs are crucial 
for creating high-quality and precise wetland classifications 
[25]. Additionally, limited accessibility due to water and mud 
cover and the challenge of distinguishing between forested and 
scrub–shrub classes during visual inspections using NAIP or 
even high-resolution multispectral UAS imagery complicated 
the creation of additional training and validation data. However, 
focusing solely on accuracy metrics for our classification at the 

functional class level for 3 major classes of interest—palustrine 
forested, shrub, and estuarine emergent—and accepting a mar-
gin of error (MOE) estimate of 7 to 10%, allowed us to utilize 
relatively small sample sizes for model training and validation 
[39,61].

If the ultimate goal is to enhance the accuracy of Coastal 
Plain wetland prediction models, improving the quality of 
response data remains a high priority for any future map-
ping and modeling project using UAS technology. Future 
approaches could involve using polygon sample data, rather 
than point data, to cover a larger area [62,63]. Additionally, 
models parameterized with different predictor variables than 

Fig. 7. Palustrine forested and palustrine scrub–shrub wetland type dominated classifications for River Road, St. James, Castle Bay, Maysville, and Carolina Bay study sites.
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those chosen for this research should be considered to refine 
the moderately good results, partially influenced by our selec-
tion of predictor variables in line with current wetland map-
ping programs in North Carolina [64]. Future iterations of 
this work will also explore object-based image analysis (OBIA) 
approaches, which tend to perform better than pixel-based 
methods when utilizing high-resolution drone imagery [65]. 
Moreover, different machine learning classifications, such as 
various ensemble methods like gradient boosting [61,66,67] 
and deep learning classification methods [60], will be tested 
to compare model performance. However, these advanced 
machine learning modeling approaches typically require a 
much larger amount of training data, which could be obtained 
through field collection, on-screen digitization, or a combina-
tion of both.

Conclusion
In conclusion, this study has demonstrated the powerful capa-
bilities of unmanned aerial systems (UASs) for the collection 
of LiDAR and multispectral imagery, significantly enhancing 
the classification and mapping of various wetland types across 
the coastal plain. A key innovation was achieving an optimized 
balance between flight altitude and line overlap for UAS LiDAR 
collections—specifically a flight altitude of 60 m with a 25% 
overlap—proving to be most effective across the surveyed sites. 
The high-quality LiDAR data obtained from these optimized 
flight parameters played a pivotal role in accurately classifying 
functional wetland types through the integration of elevation 
data and vertical vegetation metrics from UAS LiDAR datasets 
with multispectral-derived indices.

Furthermore, the study highlighted the critical ecological 
role of coastal wetlands as natural buffers against floods and 
storm surges, emphasizing the urgent need for updated maps 
and spatial models to effectively assess and maintain their eco-
system services. By utilizing models parameterized with UAS-
collected LiDAR and multispectral data and trained using 
habitat GRPs and on-the-ground wetland delineations, the 
research achieved moderately spatially accurate wetland delin-
eations compared to National Wetlands Inventory (NWI) data.

The research also underscored the importance of highly 
resolved topographic variables such as DSMs and smoothed and 
hydro-conditioned DEMs, alongside vegetation height and indi-
ces (NDVI and NDWI), as crucial predictors for wetland pres-
ence. This integrative approach using UAS technology for 
wetland mapping and classification presents a replicable study 
design that substantially advances the field of coastal wetland 
mapping. It further exemplifies the successful integration of opti-
cal multispectral imagery with active remote sensing techniques, 
bolstering efforts in wetland prediction and classification.

The study’s results not only showcase the potential of UAS 
technology but also point to the necessity of collecting more 
habitat points to improve overall accuracies and class-specific 
sensitivities for specific mapping projects. The challenges encoun-
tered, particularly those related to accessibility and the limitations 
of the current methodologies, underscore the ongoing need for 
methodological advancements in the remote sensing of wetland 
environments. These results suggest potential areas for further 
development, such as the use of OBIA and advanced machine 
learning techniques like deep learning, to enhance classification 
accuracy and efficiency in future wetland mapping and monitor-
ing endeavors.

Table 6. Variable scores (ranging from 0.0 to 1.0) were converted to ranks (ordered from 1 to 13) indicating the strength, or importance, of 
each variable. Variables with scores above 0.7 are in bold font, indicating how many and which variables at each study site are important to 
derive the classification.

Variable name St James Castle Bay River Rd Surf City
Masonboro 

HT
Masonboro 

LT Maysville
Carolina 

Bay
Count above 

0.7

DSM 8 1 7 2 6 6 5 1 4

DEM 5 5 5 4 5 5 3 9 2

Smooth DEM 2 6 4 7 3 1 2 8 3

Hydro-DEM 7 3 3 1 4 2 4 12 2

Canopy 
Height

6 2 13 5 13 13 1 3 3

Aspect 9 13 8 11 8 11 10 11 0

Slope 4 7 11 9 9 9 7 2 1

Curvature 13 12 10 13 10 8 13 4 0

Plan 
Curvature

10 9 9 12 11 12 8 7 0

Profile 
Curvature

12 11 12 10 12 10 11 10 0

NDVI 1 8 2 3 1 3 6 6 5

NDWI 3 4 1 6 2 4 12 5 4

NDRE 11 10 6 8 7 7 9 13 0

D
ow

nloaded from
 https://spj.science.org on July 18, 2024

https://doi.org/10.34133/remotesensing.0169


Pricope et al. 2024 | https://doi.org/10.34133/remotesensing.0169 14

Overall, this research provides valuable insights and lays a 
robust foundation for future studies aiming to refine the accu-
racy, efficiency, and functionality of wetland mapping and 
monitoring using advanced remote sensing technologies. It 
stresses the importance of continuous improvement in data 
collection strategies and the integration of diverse remote sens-
ing data types to effectively capture the dynamic nature of wet-
land ecosystems.
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